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Abstract 

Background:  Colorectal cancer (CRC) consensus molecular subtypes (CMS) have dif‑
ferent immunological, stromal cell, and clinicopathological characteristics. Single-cell 
characterization of CMS subtype tumor microenvironments is required to elucidate 
mechanisms of tumor and stroma cell contributions to pathogenesis which may 
advance subtype-specific therapeutic development. We interrogate racially diverse 
human CRC samples and analyze multiple independent external cohorts for a total 
of 487,829 single cells enabling high-resolution depiction of the cellular diversity and 
heterogeneity within the tumor and microenvironmental cells.

Results:  Tumor cells recapitulate individual CMS subgroups yet exhibit significant 
intratumoral CMS heterogeneity. Both CMS1 microsatellite instability (MSI-H) CRCs 
and microsatellite stable (MSS) CRC demonstrate similar pathway activations at the 
tumor epithelial level. However, CD8+ cytotoxic T cell phenotype infiltration in MSI-H 
CRCs may explain why these tumors respond to immune checkpoint inhibitors. Cel‑
lular transcriptomic profiles in CRC exist in a tumor immune stromal continuum in 
contrast to discrete subtypes proposed by studies utilizing bulk transcriptomics. We 
note a dichotomy in tumor microenvironments across CMS subgroups exists by which 
patients with high cancer-associated fibroblasts (CAFs) and C1Q+TAM content exhibit 
poor outcomes, providing a higher level of personalization and precision than would 
distinct subtypes. Additionally, we discover CAF subtypes known to be associated with 
immunotherapy resistance.

Conclusions:  Distinct CAFs and C1Q+ TAMs are sufficient to explain CMS predictive 
ability and a simpler signature based on these cellular phenotypes could stratify CRC 
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patient prognosis with greater precision. Therapeutically targeting specific CAF sub‑
types and C1Q + TAMs may promote immunotherapy responses in CRC patients.

Keywords:  Cancer-associated fibroblast, CMS classification, Colorectal cancer, Single-
cell analysis, Immunotherapy, Stromal signatures

Background
Colorectal cancer (CRC) is the third most common cancer in the world and the lead-
ing cause of cancer-related mortality [1]. Approximately one third of patients expe-
rience disease relapse following curative-intent surgical resection and chemotherapy 
[2, 3]. Despite the high prevalence and mortality of advanced CRC, only a few treat-
ments have been approved in indications for a small subset of CRC patients, such as 
immune checkpoint inhibitors in microsatellite unstable (MSI-H) tumors and com-
bined EGFR/BRAF inhibitors in BRAF V600E mutant CRCs [4, 5]. The molecular het-
erogeneity of CRC and its variable clinical course hinder the advancement of effective 
therapeutics and present considerable challenges in accurately evaluating prognostic 
and predictive indicators. Although The Cancer Genome Atlas (TCGA) has estab-
lished the somatic mutational landscape within CRC, numerous studies have shown 
that stromal and immune signatures, such as fibroblasts and cytotoxic T cells may be 
the key drivers of clinical outcomes [6–9]. These results indicate that a diverse niche 
of heterotypic cell interactions inside the tumor microenvironment (TME) governs its 
tumor biology, and consequently its clinical phenotypes of CRC and, consequently, its 
tumor biology.

Many groups have proposed CRC subtypes based on large-scale gene expression 
studies. The International Consortium published the consensus molecular subtypes 
(CMS), which classified CRC as CMS1 (MSI immune), CMS2 (canonical), CMS3 
(metabolic), and CMS4 (mesenchymal) based on bulk transcriptomic signatures [10]. 
However, all CRC classifications, including CMS classification, relied on data acquired 
through bulk sequencing, which inherently lacks the resolution to probe CRC tumors 
and their complex microenvironment at the cellular level necessary to detect molec-
ular signatures in small yet critical cell populations. This has been demonstrated in 
numerous bulk expression studies in which stromal cells conceal essential signals 
emanating from other major cellular phenotypes within the CRC spectrum, influ-
encing CRC classifications [11–13]. In addition, the potential clinical implications of 
intratumoral CMS heterogeneity have been suggested by several recent retrospective 
studies [14–16].

The only prospective study to date that used the CMS classification (specifically the 
CMS4 subtype) for patient selection based on dual PD-L1/TGF-ß expression signa-
tures was halted due to futility, implying that CMS does not fully reflect the biologi-
cal diversity of colorectal cancer [17]. Thus, CMS should be used as a starting point 
to further CRC biology research in order to develop novel biomarkers and rational 
combinatorial therapies. More recently, single-cell studies in CRC have attempted 
to provide a global view of the CRC landscape [18, 19]; however, in-depth system-
atic characterization of how cells of tumor and TME shape the tumor, stromal and 
immune landscape leading to specific CRC subtypes has not been completely charac-
terized to date.
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To provide additional insights into how cellular populations of tumor epithe-
lia, stroma and immune cells shape the CRC landscape, we utilized single-cell RNA 
sequencing (scRNA-seq) and confirmed our findings in additional three independ-
ent single-cell datasets with advanced computational analysis on CRC tumors. Our 
study enabled us to answer several outstanding questions in CRC disease pathogen-
esis, including uncovering the unique tumor cell-intrinsic features that impact immune 
and stromal cell infiltration in each CMS group, the role of cells constituting the tumor 
microenvironment in each CMS at single-cell resolution, and identified cell popula-
tions including distinct Cancer-associated fibroblasts (CAFs) and immunosuppressive 
tumor-associated macrophages (TAMs) subtype driving clinical outcomes. We uncov-
ered various cell populations in CRC tumors that could be exploited as therapeutic tar-
gets for drug development.

Results
To determine and dissect the extent of tumor, immunological, and stromal heterogeneity 
in CRC patients, we performed droplet-based scRNA-seq on 16 racially diverse, treat-
ment naïve CRC patient tissue samples and seven adjacent normal colonic tissue sam-
ples (totaling 23 samples) (Fig. 1A–D, Additional file 1: Fig. S1, Additional files 2, 3 and 
4: Tables S1–S3). Stringent quality control yielded 49,589 high-quality, single cells for 
further analysis (Fig. 1A). Graph-based clustering of merged and normalized cells identi-
fied robust, discrete clusters of epithelial cells (EPCAM+, KRT8+, and KRT18+), fibro-
blasts (COL1A1+), endothelial cells (CLDN5+), T cells (CD3D+), B cells (CD79A+), 
and myeloid cells (LYZ+) based on canonical marker genes (Fig. 1B). Clusters express-
ing hybrid cell markers were manually removed from further analysis (see Methods). To 
deconstruct the molecular makeup of the tumor and TME for each CMS, we evaluated 
each cell type independently and identified subpopulations with diverse functional roles. 
Interestingly, re-clustering of major compartments individually also detected clusters 
expressing hybrid markers, as well as cell clusters expressing markers from distinct line-
ages (such as T cell clusters expressing B cell markers); these were manually removed 
and excluded from the downstream analysis. Clustree (V0.4.1) and manual review of dif-
ferentially expressed genes in each subcluster were studied to choose the best cluster 
resolution without cluster destabilization (see Methods). Cell population designation 
was chosen by specific gene expression, and SingleR and Bioturing were also utilized 
for unbiased cell type recognition [20–24] (see Methods). Taken together, these steps 
allowed us to retain high-quality single-cell data. In parallel, we performed bulk RNA-
seq analysis of the same samples to classify the CMS of each tumor (see Methods). This 
study revealed a complex cellular ecosystem made up of 49 distinct immune, stromal, 
and cancer-cell subclusters (Fig. 1D). The tumor cells were mostly clustered by patient, 
which confirms the significant interpatient heterogeneity observed in previous studies 
[18, 19, 25, 26]. Cells from both the stromal and immune compartments, on the other 
hand, were clustered by cell type clusters suggesting a limited batch effect (Additional 
file 1: Fig. S1).

To validate our findings, we profiled three independent CRC datasets [18, 19, 27] 
using similar quality metrics as that of primary CRC data to retain only high-quality 
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cell phenotypes (Additional file  1: Figs. S2–S7). All datasets identified similar cell 
populations providing independent validation to our findings. We utilized compara-
tive analysis to compare 18,296 CAF cells from a breast cancer (BC) cohort to CRC 

Fig. 1  Identification and clustering of single cells. A Workflow of sample collection, sorting, and sequencing 
(methods contain full description for each step) and t-SNE characterization of the 49,859 cells profiled. B 
Identification of various cell types based on expression of specified marker genes. C Characterization of the 
proportion of cell types identified in each sample in tumor vs. normal colon tissue and Consensus Molecular 
Subtypes (CMS) of bulk RNA-seq data. D Characterization of the proportion of cell types identified in tumor 
vs. normal colon tissue, sidedness (right vs. left), microsatellite instability (MSI) status, single-cell Consensus 
Molecular Subtypes (scCMS) classification, Consensus Molecular Subtypes (CMS) of bulk RNA-seq data, and 
origin of sample. The graph represents total clusters and cell types identified after re-clustering of each cell 
compartment depicting global heterogeneous landscape of colorectal cancers



Page 5 of 30Khaliq et al. Genome Biology          (2022) 23:113 	

cohorts in order to discover the existence of distinct CAF subtypes not previously 
reported in CRC samples [28].

Interestingly, all CRC samples in four independent datasets showed discordant and 
wide-ranging cell proportion enrichment irrespective of CMS classification. It is most 
likely owing to the high prevalence of dropouts associated with single-cell RNA sequenc-
ing, capturing only a small fraction of the RNA molecules, as shown in many single-cell 
studies in diverse tumor types [18, 23, 25, 29–31] (Fig. 1C and D, Additional file 1: Figs. 
S6–S8). We also noted immune cell enrichment in the majority of the samples, which is 
consistent with previous findings in other studies indicating that dissociation protocols 
significantly impact on non-immune cell recovery in droplet based scRNA-seq analysis 
[32–34]. Furthermore, differences in the sampling procedure or intratumoral CMS het-
erogeneity could have influenced these results (see below) [19, 27]. In total, we profiled 
487,829 single cells in this study.

Additionally, we employed two bulk- gene expression datasets and computed the prev-
alence of cellular phenotypes using two distinct approaches, including CIBERSORTx, to 
characterize their prognostic significance and evaluate their contribution to the existing 
CMS subgroups (see Methods) [35, 36]. Both methodologies yielded comparable results, 
validating our analysis.

Tumor epithelial cells exhibit intratumoral CMS heterogeneity and drives immune‑stromal 

cell infiltration

It is currently unknown if cell autonomous or cancer cell intrinsic cancer-cell pro-
grams influence stromal and immune infiltration patterns in different CMS groups. 
To address this critical question, we pooled tumor cells from 38 samples (N = 7,530 
cells, this study and Lee et  al. [18]) that were classified into various CMS subtypes 
using their matched bulk RNA sequencing data to represent each of the four CMS 
subgroups appropriately. After batch correction and normalization, we performed 
pseudo-bulk differential expression analysis, followed by pathway analysis between 
the CMS utilizing scRNA-seq data (Fig. 2A, B, Additional file 5: Table S4) (see Meth-
ods). Notably, there were significant tumor-cell transcriptional differences between 
CMS groups. CMS1 tumor epithelial cells showed increased enrichment of immu-
nological, proteasome, JAK-STAT and PD-1 signaling pathways, whereas CMS4 
tumor epithelial cells displayed epithelial-mesenchymal transition (EMT), VEGF, 
and TGF-β activation, among other pathways (Fig. 2B) [10]. CMS3 and CMS4 tumor 
epithelial cells showed unexpected enrichment in the Wnt pathway, with Wnt activ-
ity expressed in a decreasing gradient from the crypt base to the differentiated com-
partment, suggesting CMS subtypes are associated with distinct regions of the colon 
crypts (Fig. 2B) [37]. CMS2 tumor epithelial cells also showed gene expression driven 
by copy number alterations in the MYC and DNA repair genes. Further, CMS2 was 
associated with substantial variability and enrichment of multiple pathways regu-
lating metabolism and the cell cycle, confirming CMS2 is the most heterogeneous 
among the various CMS subgroups (Fig.  2B) [37, 38]. Also, CMS3 tumor epithelial 
cells showed KRAS signaling was upregulated at the transcriptomic level in CMS3 
which also demonstrated immunological and immune evasion signatures (JAK-STAT 
signaling), implying this subtype is not entirely immune deficient, consistent with the 
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observation that a subset of MSI tumors are represented by this subtype [10]. CMS4 
demonstrated upregulated KRAS signaling, supporting a tumor cell autonomous 
mechanism of cetuximab resistance in the absence of KRAS gain of function muta-
tions [39].

Even though both MSI-H and MSS CRC tumors are included in the CMS1 sub-
group, MSS tumors within this subgroup do not respond to immune checkpoint 
inhibitors. Therefore, we further investigated CMS1 MSS tumors (Additional file 1: 
Fig. S9, Additional file  6: Table  S5). Intriguingly, we found that CMS1 MSS tumor 
epithelial cells had similar pathway activation patterns as the MSI-H tumors, par-
ticularly with respect to immunological, PD1, and JAK-STAT pathways. This sug-
gests that at the tumor cell level, similar gene expression signatures define the CMS1 

Fig. 2  CMS Cell proportions, Gene set enrichment and trajectories of tumor cells. A Proportions of tumor 
cells classified as various CMS subtypes in various samples. Primary CRC datasets is labeled CAC and Lee et al. 
2020 [18] dataset labeled as SMC. Annotation of tumor cells is based on bulk CMS classification. B Gene set 
variation expression analyses of combined primary CRC data and Lee et al. 2020 [18], in the tumor epithelial 
cell compartment. C Trajectory analysis of primary CRC dataset colored by bulk CMS status. D Trajectory 
analysis of Lee et al. 2020 [18] (Korean cohort) CRC dataset colored by bulk CMS status. E Trajectory analysis of 
Lee et al. 2020 [18] (Belgian cohort) colored by bulk CMS status
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tumors independent of their relative microsatellite stability status. However, MSI-H 
CRC seemed to vary from MSS CRC based on CD8+ cytotoxic T cell infiltration 
patterns (see below).

Within tumor epithelial cells, multiple key pathways such as angiogenesis, inflam-
mation, WNT pathway activation were shared between the CMS subgroups, which we 
hypothesize may be due to intratumoral heterogeneity of cellular differentiation/plastic-
ity within the tumor (Fig.  2B). To verify our hypothesis, we applied two independent 
methods of trajectory analysis (Monocle 2 and Slingshot) to infer potential alignments 
or lineage relationships (CMS designation) (Fig. 2C, Additional file 1: Fig. S10) [40, 41]. 
These analyses also served as control for inter-patient heterogeneity and as orthogonal 
validation for confirming the transcriptomic patterns. Our analysis showed no correla-
tion with respect to CMS classification, underscoring that intratumoral CMS heteroge-
neity is prevalent among CRC tumors. Our results are contradictory to Lee et al. [18], 
who showed tumor epithelial cells align along a CMS subgroup trajectory. We re-ana-
lyzed their data (Korean cohort) using current best standard practices, and upon exclud-
ing low-quality cells, our analysis revealed no CMS alignments within the Lee et al. [18] 
data (Fig. 2D, Additional file 1: Fig. S10). We also utilized an independent Belgian cohort 
from the Lee et al. [18], dataset, which also concurred with our findings of intratumoral 
heterogeneity beyond the CMS classification. Thus, intratumoral CMS heterogene-
ity occurs across datasets and patients (Fig. 2E, Additional file 1: Fig. S10) [18]. Taken 
together, our results show that tumor epithelia recapitulated the individual CMS sub-
groups and added another level of complexity by displaying intratumoral CMS heteroge-
neity at the single-cell level.

CAFs in the tumor microenvironment exhibit diverse phenotypes

Recent studies have identified potential heterotypic interactions of cancer-associated 
fibroblasts (CAF) within the CRC microenvironment [18, 19, 27]. However, CAF het-
erogeneity and relationship to CMS have not been evaluated at the single-cell level. On 
re-clustering and analyzing high-quality fibroblasts, we identified and phenotypically 
classified CAFs into adhesion/wound healing/CAF-S1, perivascular/CAF-S4 subtypes in 
all four datasets (Fig. 3A and B, Additional file 7: Table S6) [42]. CAF-S1s were identi-
fied by the expression of fibroblast-specific markers (FAP, PDPN, PDGFRA). CAF-S1s 
were further divided into (a) myo-fibroblastic (myCAF) (enhanced expression of colla-
gen-related genes (COL1A1 and COL1A2) and fibroblast markers (FAP, PDPN) and (b) 
inflammatory (iCAF) subtypes (express chemokines such as CXCL12) (Additional file 1: 
Fig. S11) [36].

A recent study in breast cancer (BC) improved the resolution of CAF-S1 (myCAF, 
iCAF) by showing that CAF-S1 can be further subdivided into at least five subtypes [28]. 
To determine whether any of these five subtypes exist in CRC, we compared CRC CAF-
S1 cells with those in the BC cohort. Using a computational pipeline, we analyzed a large 
dataset of 18,296 CAF-S1 cells from the BC cohort and 4685 CRC CAF-S1 cells (Fig. 3C, 
Additional file  1: Figs. S12–S18) [44]. By comparing differentially expressed genes 
between matched BC and CRC clusters [28], we identified all five distinct CAF-S1 sub-
types in patients with CRC: ecm-myCAF (GJB; ANTXR1, and SDC1), wound-myCAF 
(SEMA3C; ANTXR1 and CD9), TGFß-myCAF (CST1; TGFß1; ANTXR1 and LAMP5), 
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IL-iCAF (SCARA5; DLK1), and detox-iCAF (ADH1B; GPC3) (Fig. 3C, Additional file 1: 
Figs. S12–S18). The ecm-myCAFs and TGFß-myCAFs are known to be enriched in 
tumors with high regulatory T lymphocytes (Tregs) and depleted CD8+ lymphocytes, 
which are considered to correlate with immunosuppressive conditions. Paradoxically, 

Fig. 3  Fibroblast clusters in colon and colorectal tumors. A t-SNE of fibroblasts colored by Normal, CAF-S1 
and CAF-S4 subtypes. B Dot plots showing the variable expression of fibroblast specific marker genes across 
CAF-S1 and CAF-S4. C Integration analysis of five CAFs subtypes from a breast cancer (BC) cohort to validate 
the existence of specific CAF subtypes in the CRC samples. D IHC representative images of CAF-S1 (FAP+, 
PDGFR-ß+) and CAF-S4 (RGS5+, MCAM+) in CRC sections from five independent patients. Asterisk (*) 
indicates tumor cells and arrows (>) indicate CAFs. Annotated by a board-certified GI pathologist. All images 
are × 20 magnification. High-resolution images are available on GitHub as source data [43]. E Boxplots 
show the distribution of cell types in two CRC bulk expression datasets, within tumors based on CMS status. 
The whiskers depict the 1.5 x IQR. The P-values for pairwise t-tests comparisons (with Benjamini-Hochberg 
correction) of cell abundance across CMS are shown in the figure. Note “NS”: P > 0.05, *P </=0.05, **P 
</=0.01, ***P </=0.001, ****P </=0.0001
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wound-myCAFs are not linked to an immunosuppressive environment, and are associ-
ated with a high level of T lymphocyte infiltration in tumors. Lastly, all three subtypes 
(ecm-myCAFs, TGFß-myCAFs, and wound-myCAF) are linked to primary immuno-
therapy resistance in melanoma and lung cancer [28].

The CAF-S4 population expressed pericyte markers (RGS5, CSPG4, and PDGFRB), 
CD248 (endosialin) and EPAS1 (HIF2), implying that this CAF subtype is vessel-associ-
ated, with hypoxia likely contributing to invasion and metastasis as proposed by others 
(Fig.  3A-B, Additional file  7: Table  S6) [36]. To validate the markers of these CAFs at 
the protein level, we performed immunohistochemistry (IHC) on an independent CRC 
cohort and identified CAF-S1 and CAF-S4 subtypes (Fig. 3D).

To examine CAFs in the context of CMS categorization, we utilized two bulk gene 
expression (GSE39582  [45], GSE17536  [48]) datasets and performed deconvolution 
using two independent methods (See Methods) [35, 36, 45, 46]. We were able to predict 
gene signatures encompassing all five CAF-S1 subtypes and CAF-S4 (Fig. 3E, Additional 
file 1: Fig. S19A and B). Deconvolution predicted significant CAFs and endothelial cell 
enrichment in CMS4 patients, which is consistent with tumors that are highly vascu-
larized and inflammatory, and have high CAF content in their microenvironment [10]. 
CMS1 also had higher CAF enrichment than the CMS2 and CMS3 subtypes. A subset of 
CMS1 and CMS2 patients also had high levels of CAF infiltration, implying that CRCs 
are more heterogeneous than one would predict from bulk transcriptomics-based clas-
sifications. Taken together, these results indicate the relevance of CAFs to various sub-
types within the CRC microenvironment.

Tumor‑associated macrophages are tumor suppressive M2 polarized cells in colorectal 

tumors

To examine the myeloid compartment, we re-clustered these cells and identified CD1C+ 
dendritic cells, tumor-associated macrophages (C1Q+ TAMs, MRC1+), monocytes 
(S100A8+) and granulocyte clusters in all four datasets (Fig.  4A-C, Additional file  1: 
Figs. S20–S23, Additional file 8: Table S7). Monocytes revealed proinflammatory pheno-
types (1L1B, S100A8, S100A9), while TAMs showed anti-inflammatory (APOE, SEPP1, 
CD163) signatures [18]. TAM cells also exhibited signatures consistent with a C1Q+ 
phenotype which is known to be immunosuppressive (Fig. 4B) [47]. Finally, by interro-
gating bulk datasets, we examined whether C1Q+ TAMs were enriched in specific CMS 
groups (Fig.  4D, Additional file  1: Fig. S24A and B). Surprisingly, C1Q+ TAMs were 
enriched not only in CMS1, but also in CMS4, with no differences between CMS2 and 
CMS3 subtypes. Recently, C1Q+ TAMs have been reported to influence CD8+ T cell 
enrichment in tumors and Mettl14 or Ythdf2 deficiency in TAMs impedes tumor eradi-
cation by reducing cytotoxic T cell infiltration and encourage the accumulation of defec-
tive CD8+ T cells [47]. Interestingly, we noted lower CD8+ effector signatures in CMS4 
compared to CMS1 (Fig. 4E). Further, we found lower Ythdf2 gene expression in CMS4, 
which could potentially account for the lower CD8+ T effector signature observed in 
CMS4 (Fig.  4E). In conclusion, we found C1Q+ TAMs were enriched in CMS1 and 
CMS4, and CD8 T effectors were reduced in CMS4, most likely related to Ythdf2 defi-
ciency. Collectively, these findings suggest that targeting C1Q+ TAMs in CRC tumors 
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Fig. 4  Myeloid cell clusters in colon and colorectal tumors. A t-SNE of myeloid cells colored. by distinct cell 
types. B Heatmap showing the variable expression of myeloid specific marker genes across various myeloid 
cell types. C Identification of various myeloid cell subtypes based on expression of specified marker genes. D 
Boxplots show the distribution of cell types in two CRC bulk expression datasets, within tumors with varying 
CMS status [45, 48]. The whiskers depict the 1.5 x IQR. The P-values for pairwise t-tests comparisons (with 
Benjamini-Hochberg correction) of cell abundance across CMS are shown in the figure. E Box plot show TAMs 
infiltration and influence on CD8+ T cells in relation to CMS1 and CMS4. Note in GSE17536 Ythdf2 deficiency 
trended in CMS4 but did not reach the statistical significance. Note “NS”: P > 0.05, *P </=0.05, **P </=0.01, 
***P </=0.001, ****P </=0.0001
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exhibiting these signatures may enhance immunotherapies and possibly improve patient 
outcomes.

Distinct states of CD8+ and CD4+ T cells shape the CRC ecosystem

With the exception of MSI tumors (5%), CRC patients are immune cold or lack a sig-
nificant degree of immune cell infiltration, and immunotherapy in the form of immune 
checkpoint blockade has not improved survival in these patients [49]. Understanding 
how T cell diversity influences CRC TME will be crucial in designing effective treat-
ments. Analysis of T cells identified 11 CD4+ T cell and 10 CD8+ T cell clusters, each 
populated by cells from multiple samples, implying shared states in CRC. Additionally, 
we identified natural killer (NK cells) and innate lymphoid cell (ILC) clusters (Fig. 5A 
and B, Additional file 1: Fig. S25A and B, Additional file 9: Table S8). Within the CD4+ T 
cells, we identified multiple CD4+ cell states based on gene expression markers. FOXP3 
CD4+ Tregs expressing immune checkpoint markers (PD-1, LAG3, CTLA4) were 
among the most abundant T cells in the CRCTME compared to non-malignant tissue 
(Fig. 5A, Additional file 8: Table S7 and Additional file 10: S9). In addition, other CD4+ 
cell types were identified, including a) CD4+ memory cells expressing CCR7, SELL, 
TCF7; b) CD4+ resting cells expressing ANXA1, IL7R, LMNA; c) CXCL13 activated 
CD4+ cells (Fig. 5A, B, Additional file 9: Table S8) which have been linked to better out-
comes in MSI CRC, bladder, and stomach malignancies [50–52], but were also identified 
in normal tissue (perhaps attributable to sequencing issues); and d) Th17 CD4+ T cells 
that represent critical antitumor effector cells [51].

Fig. 5  T cell clusters in colon and colorectal tumors. A t-SNE of 22525 T cells colored by distinct clusters. 
B t-SNE plot showing the variable expression of T cell specific marker genes across various clusters. C 
Boxplots show the distribution of cell types in two CRC balk expression datasets, within tumors with 
varying CMS status. The whiskers depict the 1.5 x IQR. The P-values for pairwise t-tests comparisons (with 
Benjamini-Hochberg correction) of cell abundance across CMS are shown in the figure. Note “NS”: P > 0.05, *P 
</=0.05, **P </=0.01, ***P </=0.001, ****P </=0.0001
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Among the CD8+ T cell states, CD8+ GZMK, CD8+ GZMA, and CD8+ GZMB were 
identified as three distinct clusters of CD8+ cytotoxic cells (Fig. 5A, B, Additional files 
8 and 9: Tables S7 and S8). These cell states have been identified in various tumor types 
[50, 53–58]. CD8+GZMK and CD8+GZMB expressed granzymes (GZMA, GZMH), 
interferon-gamma (IFNG), perforin (PRF1 in CD8+GZMB), and CCL4, which have 
been shown to mediate effector functions [26, 50–52]. However, these two cell states 
also demonstrated intriguing distinctions. The CD8+ GZMB population accounted for 
77% of the total cells in both MSI-H CRC samples. This cell state displayed activation 
(CXCL13) and exhaustion (LAG3, HAVCR2, CD96) markers, which may account for 
their participation in the immune checkpoint inhibitor sensitivity of MSI-H colorectal 
cancers. CD8+GZMK cells, on the other hand, have been identified as pre-dysfunctional 
T cells that express pre-dysfunctional markers such as EOMES and KLRG1 [26, 50, 54]. 
To corroborate our findings, we examined the Pelka et al. [27] T cells (n = 72,209) and 
discovered that their T cells exhibit a similar level of cellular diversity as the primary 
CRC cohort (Additional file 1: Fig. S26). Additionally, CD8+ cytotoxic cells, specifically 
CD8+ GZMB, were shown to be overrepresented in MSI-H tumors, implying that these 
cell types play a role in the immune response to check point inhibitors (Additional file 1: 
Fig. S27).

Guided by these findings from the single-cell analysis, we interrogated bulk transcrip-
tomic data to examine the T cell enrichment in CMS groups (Fig. 5C, Additional file 1: 
Fig. S28). Tumors of immune (CMS1) and mesenchymal subtypes (CMS4) exhibited 
strong T cell infiltration, whereas CMS2 and CMS3 had low T cell enrichment, consist-
ent with previous data. CMS1 were predominantly enriched in NK cells and CD8+ TRM 
cells. Other CD4+ and CD8+ T cell types were poorly discriminative between CMS1 
and CMS4 in our datasets. Overall, our analysis, based on scRNAseq and bulk data, 
showed that CMS1/CMS4 were immune rich whereas CMS2 and CMS3 were immune 
deficient. Additionally, scRNAseq revealed a CD8+ GZMB population expressing an 
exhaustion phenotype that was enriched in CMS1 MSI tumors, which could account for 
responses to immunotherapy observed in patients harboring such tumors.

CRC patient transcriptomics distributed in a continuum, not discrete subtypes

The presence of stromal and immune cells across CMS subgroups and CMS heterogene-
ity within tumor epithelial cells implies that CRCs are more heterogeneous than origi-
nally recognized in bulk gene expression studies. We hypothesized that CRC exists in 
a continuum as opposed to distinct subtypes. We used a previously continuous score 
model developed by a member of our research group [59]. According to this model, con-
tinuous subtype scores outperformed the distinct CMS classification scheme in char-
acterizing clinical, biological and pathological variables that distinguish CRC tumors. 
Using a continuous score model, we applied single-cell signatures on two independent 
(n = 743) CRC samples (see Methods) [45, 48]. We discovered that all cell types encom-
passed in CRC tumors and CRC TMEs were present across the CMS groups (Fig. 6A, 
B, Additional file 1: Figs. S29 and S30, Additional files 10 and 11: Tables S9 and S10). 
Thus, CRC appears to exist in a transcriptomic continuum not only with respect to the 
tumor cells themselves, but also in terms of the other cell types that make up the TME. 
These aspects were not apparent on bulk transcriptomics analysis using continuous 
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score model. In sum, single-cell analysis offered novel insights into CRC heterogeneity 
beyond previous bulk transcriptomic analyses, confirming that the CRC ecosystem does 
not exhibit discrete subtypes but rather is more accurately represented in a transcrip-
tomic continuum.

CRC outcomes were defined by CAF and macrophage enrichment across CMS subgroups

Given the findings of the tumor immune stromal continuum, we next wondered which 
cell types impacted clinical outcomes in CRC. We analyzed two CRC patient datasets 
with available outcomes data and unbiasedly performed univariate Cox proportional 
hazard regression utilizing cell-specific expression signatures of all cellular pheno-
types of CRC (Table 1) [45, 48]. CAFs, endothelium cells (EC), and C1Q+TAMs were 
strongly associated with poor disease-free survival (DFS) rates (Fig. 7A, B, Additional 
file  12: Table  S11). To confirm these findings, we also performed multivariate Cox 
regression analysis and again demonstrated that CAFs and C1q+ TAMs were strong 
independent prognosticators of short DFS, adjusted by clinical features, pathologi-
cal stage, chemotherapy receipt, and common mutational status (Additional file  13: 
Table S12) (hazard ratio for tumor recurrence (HR) > 1, P < 0.05).

The CMS4 subtype demonstrated significant infiltration of CAFs and C1Q + TAMs, 
which is consistent with the CMS classification. We found that a subset of patient 
tumors in other CMS groups were also enriched with CAFs and TAMs, and such 
patients also had shorter DFS. Thus, CAF and TAM enrichment distinguish high-
risk patients not only in CMS4, but also across the other CMS groups, further strati-
fying CRC patients beyond the CMS classification (Fig.  7A, B). Our findings show 

Fig. 6  Continuous subtype scoring across cell type (GSE39582 [45], GSE1736 [48]). A, B Continuous scores 
reported by CMS classification across cell types show minimal separation in the top 2 principal components 
in GSE39582 and GSE17536 datasets respectively. All cell types are represented in CMS1-4 using PCSS1 and 
PCSS2 scores. Note that the cell types largely form a continuum along CMS status and are not clustered in 
discrete subtypes separate from one another. Cells and markers are colored by bulk CMS status accordingly 
to the tumor sample of origin. (PCSS1 = PC Cluster Subtype Scores1, PCSS2 = PC Cluster Subtype Scores1)
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that CAFs and C1Q+ TAMs contributed to a significant portion of the TME in all 
four CMS subgroups and which are linked with poor prognosis, implying that CRC 
pathology can transcend CMS classification in these cases.

CAFs and TAMs modulate immune suppression in CRC​

Given the discovery CAFs and TAMs are associated with a poor prognosis in CRC, we 
postulated that these cellular phenotypes govern CRC pathobiology. While single-cell 
analysis cannot conclusively establish cell-to-cell signaling, cell-specific receptor and 
ligand expression patterns can be hypothesis generating as shown in previous studies [18, 
26, 32, 60]. Using cellphoneDB [61], a manually curated database of receptors, ligands, 
and their interactions, we found that CAF and C1q+ TAM interactions resulted in sig-
natures that are associated with T cell dysfunction and M2-like polarization (Fig.  8A, 
B, Supplementary Fig. S31A-B) [60]. These ligand/receptor-mediated effects primarily 
involved immunological checkpoints (CD40LG:CD40, TIGIT: NECTIN2, CD74: COPA, 

Table 1  Clinical data, demographics, stage, chemotherapy, and key mutational status in GSE39582 
[45] and GSE17536 [48] datasets

N Number of samples, NA Not available, M Mutated, WT Wild type, MD Moderately differentiated, PD Poorly differentiated, 
WD Well differentiated

Characteristic GSE39582 (N = 502) GSE17536 (N = 138)

Age at diagnosis
  Median (IQR) 69 (59–76.9) 67 (57–75)

Gender
  Male 276 (45%) 71 (51%)

  Female 226 (55%) 67 (49%)

Tumor stage
  1 33 (6.6%) 24 (17%)

  2 264 (52.6%) 57 (41%)

  3 205 (40.8%) 57 (41%)

KRAS
  M 184 (38%) –

  WT 297 (62%) –

  NA 21 –

BRAF
  M 45 (10%) –

  WT 403 (90%) –

  NA 54 –

TP53
  M 169 (53%) –

  WT 147 (47%) –

  NA 186 –

Chemotherapy
  Y 203 (41%)

  N 297 (59%)

  NA 2

Grade
  WD – 15 (11%)

  MD – 106 (77%)

  PD – 17 (12%)
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CD28:CD86, SIRPA:CD47, and CD86:CTLA4) [60]. CTLA4-mediated trans-endocytosis 
of the co-stimulatory molecule CD86 from antigen-presenting cells (APCs) diminishes 
APCs’ ability to co-stimulate T cells [32, 62]. TAM-T cell interaction via TIGIT-NECTIN2 
has been linked to immunosuppression in hepatocellular carcinoma [63]. Recent studies 
further demonstrate that the CD44-SPP1 signal confers resistance in glioma patients, and 
is associated with increased macrophage infiltration and poor overall survival [64]. CD8+ 
T cells expressed M2-like polarization-inducing genes (CD74:MIF, SIRPA:CD47) [60]. 
Our findings suggest a substantial bidirectional inhibitory crosstalk between CD8+ and 
C1q+TAM cells, as previously described in renal cancer, and which likely contributes to 
the immunosuppressive microenvironment in CRC [60].

Next, we investigated how different stromal subtypes may interact with TAMs and 
CD8+ T cells. We observed that both distinct and common immune checkpoint inter-
actions exist between CAF subtypes and various CD8+ T cells (Fig. 8C, D). The TIGIT-
NECTIN2 relationship, for example, was shared across CAFS1 subtypes and CD8+ T 
cells, but the T cell ligand- receptor inhibitory signal (LGASL9-HAVCR2) was specific to 
the ecm-myCAF and CD8+ GZMB pair which was abundant in our MSI-H CRC data-
set. CAF-S1 and TAM interactions were mediated by CAF-S1-expressed C3 and CSF1 
molecules and the TAMs receptors C3AR1, CXCR4, and SIRPA [65]. Notably, CAF-
TAM interaction via MIF-CD74 increases CD44 binding in CAFs, leading to ERK1/2 
activation, which promotes proliferation and inhibits apoptosis (Fig.  8E, F) [66]. Of 
note, others have reported that in melanoma MIF-CD74 interactions lead to myeloid-
derived suppressor cell-mediated immunosuppression [67]. In addition, we found that 

Fig. 7  Survival analysis of two independent bulk dataset. The relationship between relative cell abundance 
and disease-free survival (DFS) in the GSE39582 [45] (A) and GSE17536 [48] (B) (COX regression analysis). 
Kaplan Meier curves depicting DFS in GSE39582 [45] (A) and GSE17536 [48] (B). Note, in addition to CMS4, 
CMS1-3 subgroups (good prognosis subtypes) with high CAF and C1Q+ TAMs signatures were associated 
with poor DFS. CAF’s and C1Q+ TAMs stratified all CMS subgroups into high and low-poor survival subgroups 
beyond CMS categorization. HR and P values are indicated
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ecm myCAFs can interact with TAMs via TGFB1-TGFBR1/2 pairings, which have been 
shown to promote cancer progression [68]. Taken together, our cell-cell interaction anal-
ysis suggests that CAFs and TAMs play a significant immunosuppressive role in CRC.

Discussion
Using independent cohorts and unbiased single-cell profiling of CRC tumors and their 
associated microenvironment, our work provides a high-resolution depiction of cellular 
diversification and heterogeneity within the tumor, immune, and stromal compartments 

Fig. 8  CAF, TAM and CD8+ T-cell interactions in the CRC microenviroment. A Dotplot showing cell-cell 
interaction between CD8+ T cells and TAMs. B Circle plot directed ligand receptor interactions in CD8+ T 
cells and TAMs for better visualization. C Dotplot showing cell-cell interaction between CD8+ T cells and 
CAFs. D Circle plot directed ligand receptor interactions in CD8+ T cells and CAFs for better visualization. E 
Dotplot demonstrating cell-cell interaction between TAMs and CAFs. F Circle plot directed ligand receptor 
interactions in TAMs and CAFs for better visualization
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of CRC within the broader CMS context that cannot be described by bulk-level subtyp-
ing. We unearthed distinct cellular phenotypic and biological states of fibroblasts, T 
cells, and the myeloid compartment within the CRC CMS classification scheme. One 
critical finding of our work is that despite significant heterogeneity among CRC patients 
beyond that of the CMS classification, a dichotomy with respect to TME composition 
exists, with patients having higher CAF and C1Q+ TAM enrichments across the dif-
ferent CMS groups exhibiting relatively poorer outcomes. Thus, the status of CAFs and 
C1Q+ TAMs at time of diagnosis may predict clinical outcomes of CRC patients.

Our findings indicate that CRCs are intricately linked to the stroma, suggesting stro-
mal-targeted combinatorial approaches may be a potential treatment strategy. Targeting 
CAFs in solid tumors has been explored in multiple clinical trials with variable results 
[69]. CAF heterogeneity, lack of patient stratification based on CAF signatures (thus 
not biomarker-driven), and their intricate interactions with the other cells in the TME 
are largely unaddressed in such studies. The CAF landscape in CRC remains largely 
unknown, and the prognostic role of stromal signatures in CRC was demonstrated using 
bulk transcriptomics, which lacked the resolution to clearly identify the cellular origins 
of CAFs [7, 11]. In the present report, we analyzed the entire ecosystem and discovered 
that stromal and TAM signatures, among other cellular phenotypes, predict poor out-
comes in CRC.

More recently, a small study identified two CAF subtypes using only 26 single cells (17 
CAF and 9 normal fibroblasts) and rely on the expression of a few marker genes, result-
ing in considerable classification uncertainty [36, 70]. Another recent study focused pri-
marily on the myofibroblast component of CAFs without comparing them to established 
nomenclature utilized in other studies [18, 24, 28, 42, 71, 72]. We comprehensively ana-
lyzed and dissected a large number of CAF populations using comparative analysis in 
four independent datasets, illustrating and confirming the detailed complexity of CAF 
subtypes known to date and uncovering at least five CAF-S1 subtypes with clinical and 
therapeutic relevance. Among these, ecm-myCAF, TGFß-myCAF, and wound-myCAF 
subtypes are known drivers of immunosuppressive environments and immunotherapy 
resistance [28]. Stratifying patients based on CAF subtype signatures and targeting these 
subtypes may mark a critical next step in developing combinatorial immunotherapies for 
CRC tumors. These findings are crucial because responses to immunotherapy in micro-
satellite stable (MSS) CRC are lacking [4, 49], and MSS tumors account for nearly 95% of 
metastatic CRC. We speculate that using small molecules, biologics, or even cell-based 
therapies to target the ecm-myCAF, TGFß-myCAF and wound-myCAF subtypes could 
improve upon the current checkpoint blockade strategies against CRC [28, 56].

Tumor-associated macrophages (TAMs) promote cancer growth and metastasis while 
also contributing to an immune-suppressive microenvironment [73–75]. TAMs are also 
antagonistic to newer immunotherapies targeting PD-1/PD-1 L and the CTLA-4 axis 
[76–78]. We found C1Q+ M2 polarized immunosuppressive TAMs were enriched in 
CMS1 and CMS4. Furthermore, we observed lower Ythdf2 gene expression in the CMS4 
subtype, which resulted in lower CD8+ T effector infiltration and an immunosuppres-
sive TME within this subgroup. Conceivably, depleting C1Q+ M2 TAM cells may be 
therapeutically useful in CRC.
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We investigated for the first time whether intrinsic characteristics of tumor cells con-
tribute to stromal and immune infiltration in CMS subgroups at the single-cell resolu-
tion level. In spite the fact that CMS group reproducibility was demonstrated in primary 
CRC tumor cells, our single-cell analysis adds another level of complexity and shows 
that CMS subgroups shared several pathways, reflecting intra-tumoral CMS heteroge-
neity more consistent with a continuum than discrete subtypes. These findings contra-
dict the findings of Lee et al. [18], who reported that tumor epithelial cells aligned along 
their transcriptional CMS features. However, on reanalyzing their data by applying cur-
rent best practices and retaining only high-quality cellular phenotypes, we found their 
data aligned perfectly with our observations showing intra-tumoral CMS heterogene-
ity beyond that described by bulk-level CMS subtyping (Additional file 1: Figs. S2–S5). 
Our results illustrate and clarify why cancers with diverse clonal populations respond 
in unpredictable ways to monolithic treatment strategies based on bulk sequencing that 
“target” average expression profiles. Developing precision CRC therapeutics targeting 
sub-clonal transcriptome programs is likely to be more effective.

Another interesting finding of our study was the similar pathway activation profiles 
at the tumor epithelial level among MSI-H and MSS CRCs within the CMS1 subgroup. 
The differences between these tumors lie in MSI-H CRCs’ decreased DNA repair ability, 
resulting in the generation of tumor-related neoantigens that attract CD8+ cytotoxic T 
cells in their TME, thus accounting for the response of MSI-H CRC tumors to immuno-
therapy [27, 79, 80].

Our study has some noteworthy limitations. Despite validating the clinical relevance 
of CAF subtypes and C1Q+ TAMs using large bulk transcriptomics data, we believe that 
other cell types may also play roles in CRC biology. However, bulk transcriptomics has 
inherent limitations such as stromal confounding and the presence of varied cell-type 
mixtures. In addition, using a modest number of samples and single biopsies for each 
sample might have understated the heterogeneity in our results. Future studies should 
be designed to use a broader and larger cohort of multiregional CRC biopsies for single-
cell studies, as well as spatial transcriptomics, to further the understanding of CAFs and 
other cellular subtypes that appear to be omnipresent in CRC.

Conclusions
In conclusion, this work explored and addressed a fundamental question as to what 
drives poor CRC prognosis via CAF subtypes and M2 polarized C1Q+ TAMs. Our 
findings provide rationale to discover therapeutic targets against CAFs, especially 
ecm-myCAF, TGFß-myCAF and wound-myCAF, in combination with anti-angiogenic 
agents, myeloid targeted therapies and immune checkpoint inhibitors. Highlighting the 
importance of CRC heterogeneity, we suggest the term “tumor stromal immune tran-
scriptomic continuum” to denote the inherent non-discrete nature of this disease pro-
cess. We have made available this comprehensive high quality cellular and molecular 
ontology of CRC CAFs, which should help promote the development of novel drugs and 
more accurate clinical biomarkers.

We hope our observations and dataset serve as a starting point for further dissection 
of CRC tumor biology and stratification of patients for precision medicine.
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Methods
Experimental model and subject details

Collection and processing of patient tumor samples

Patients with resectable untreated CRC who underwent curative colon resection at Rush 
University Medical Center (Chicago, IL, USA) were included in this Institutional Review 
Board (IRB)-approved study. CRC specimens from 16 patients, including nine Cauca-
sian, six African American, and one Asian patient with corresponding 8 adjacent normal 
tissue samples, were processed immediately after collection at Rush University Medical 
Center Biorepository and sent for scRNA-seq. Thus, our scRNA-seq atlas represents a 
diverse patient population. The study was conducted in accordance with ethical stand-
ards and all patients provided written informed consent.

Method details

Droplet based scRNA‑seq ‑ 10× library preparation and sequencing

Single-cell RNA sequencing (scRNA-seq) was performed using 10X Genomics Sin-
gle Cell 5’ Platform. Tumors and normal colon samples were enzymatically dissociated 
(Miltenyi), filtered through a 70-micron cell strainer, pelleted after centrifugation at 300 
xg and resuspended in DAPI-FACS buffer (PBS, 0.04% BSA). Samples were sorted and 
viable singlets were gated on the basis of scatter properties and DAPI exclusion. Approx-
imately 3000 cells were pelleted and resuspended in PBS, and cells underwent single cell 
droplet-based capture on 10X Chromium instruments according to the 10X Genomics 
Single Cell 5′ Platform protocol. Transcriptome libraries were prepared post-fragmen-
tation, end-repair, and A-tailing double-sided size selection, and subsequent adaptor 
ligation as per the manufacturer’s protocol. Illumina NextSeq 550 was used for library 
sequencing and data were mapped and counted using Cellranger-v3.1.0 (GRCh38/hg38).

scRNA‑seq data quality control, gene‑expression quantification, dimensionality reduction, 

and identification of cell clusters

Cell Ranger was utilized to process the raw gene expression matrices per sample and 
all samples from multiple patients were combined in R package (v3.6.3 2020-02-29] – 
“Holding the Windsock”). Seurat package (v3.2.2) was used in this integrative multimodal 
analysis [21]. Genes detected in fewer than three cells and cells expressing less than 200 
detected genes were filtered out and excluded from analysis. In addition, cells expressing 
> 25% mitochondria were removed. Cell cycle scoring was performed, (for the S phase 
and the G2M phase) and the predicted cell cycle phases were calculated. Doublet detec-
tion and any higher-order multiplets that were not dissociated during sample prepara-
tion were removed via the DoubletFinder (v2.0.2) package using default settings [81]. 
Following quality control, one normal colon sample (B-cac13) was discarded due to poor 
data quality. Finally, 49,859 cells remained and were utilized for downstream analysis.

We adopted the general protocol described in Stuart et al. [44] to group single cells 
into different cell subsets. We employed the following steps: clustering the cells within 
each compartment (including the selection of variable genes for each dataset based on 
a variance stabilizing transformation [VST]), canonical correlation analysis (CCA) to 
remove batch effects among the samples, reduction of dimensionality, and projection of 
cells onto graphs [82, 83]. Principal component analysis (PCA) was carried out on the 
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scaled data of highly variable genes [84] The first 30 principal components (PCs) were 
used to cluster the cells and to perform a subtype analysis by nonlinear dimensional-
ity reduction (t-SNE) [85, 86]. We identified cell clusters under the optimal resolution 
by a shared nearest neighbor (SNN) modularity optimization-based clustering method. 
We implemented the FindClusters function of the Seurat package, which first calculated 
k-nearest neighbors and constructed the SNN graph. We implemented the original Lou-
vain algorithm (algorithm = 1) for modularity optimization. Additionally, we utilized 
Clustree (v0.4.3) and manual review for identifying the best clustering resolution [87].

Major cell type detection and data visualization

To identify all major cell types, we evaluated differentially expressed markers in each 
identity cell group by comparing them to other clusters using the Seurat FindAllMarkers 
function. We used positively expressed genes with an average expression of >/= 2-fold 
higher in that subcluster than the average expression in the rest of the other subclusters. 
We utilized known marker genes, which have the highest fold expression in that cluster 
with respect to the other clusters. Additionally, we utilized SingleR (v0.99.10, R Package) 
and Bioturing, which leverage large transcriptomic datasets of well-annotated cell types 
and manual annotation for cell-type identification [25, 53, 88, 89]. Depending on the 
presence of known marker genes the clusters were grouped as: epithelial cells (EPCAM, 
KRT8, and KRT18), fibroblasts (COL1A1, DCN, COL1A2, and C1R), endothelial cells 
(CD31+), myeloid cells (LYZ, MARCO, CD68, and FCGR3A), CD4 T cells (CD4), CD8 
T cells (CD8A and CD8B), and B cells (MZB1) [25, 36, 89–94]. The cells were eventually 
assembled into DGE matrices within each compartment, containing all six cell types.

Major‑cell type subclustering and data visualization

Each major cell type, including epithelial cells, endothelial cells, T cells, B cells, myeloid 
cells, and fibroblasts, was reclustered and reanalyzed to study each compartment at a 
higher resolution to detect granular cellular heterogeneity in CRC. Clustree (v0.4.3) and 
manual review were utilized for optimal cluster detection. For cell annotation of each 
cell type, we utilized published literature gene expression signatures and manual review 
of differential genes among clusters [25, 26, 47, 51, 58, 95]. Additionally, we again uti-
lized SingleR (v0.99.10) and BioTuring for unbiased cell annotation. We utilized t-SNE 
for visualization purposes. The cells expressing hybrid markers were removed for down-
stream analysis. For validation, we analyzed 65,362 cells from 23 patients and applied 
the similar quality control metrics as outlined above, retaining 31,383 high-quality single 
cells for further analysis [96]. For validation, we analyzed additional datasets of 15,964 
cells from Zhou et al. [19], 370,115 cells from Pelka et al. [27], and report 119,554 cells 
comprising of TME from this data in our study. We also analyzed 2212 tumor epithelial 
cells   from the Belgian cohort of Lee et  al.  for trajectory analysis [18] (see Trajectory 
analysis methods below) (Additional file 1: Figs. S1–S7).

The InferCNV (v1.2.1) package was used with default parameters to identify somatic 
large-scale chromosomal copy number alterations in epithelial cells (EPCAM+, KRT8+, 
KRT18+) [97]. Normal epithelial cells were used as the control group (Additional file 1: 
Fig. S32).
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Trajectory analysis

We used Monocle v.2 (v2.14.0), a reverse graph embedding method to reconstruct sin-
gle-cell trajectories in tumor and normal epithelium [40]. In brief, we used UMI count 
matrices and the negbinomial.size() parameter to create a CellDataSet object in the 
default setting. We grouped projected cells on t-SNE in default settings for visualization 
of monocle results. We defined the cumulative duration of the trajectory to show the 
average amount of transcriptional transition that a cell undergoes as it passes from the 
starting state to the end state. We also used slingshot R package which uses minimum 
spanning tree designed for multiple branching lineages for trajectory analysis. We per-
formed slighshot wrapper function with the UMAP dimensionality reduction and clus-
ter labels as in Seurat object objects to identify the trajectory in our study [41].

Pathway‑gene set variation analysis (GSVA)

Pathway analysis was performed on the customized collection of 51 CRC-related 
gene sets listed in Additional file 13: Table S12. We used GSVA (v1.34.0), a non-par-
ametric, unsupervised method to estimate the gene set variations and evaluation of 
pathway enrichment, and pathway scores were calculated for each cell using standard 
settings [98, 99].

Comparative analysis

Integration of the breast cancer (Kieffer et  al.) and CRC dataset (Our CRC data and 
Zhou et al.) scRNA-seq with our dataset was carried out using standard Seurat functions 
[19, 28]. Datasets were normalized and variable features were identified using FindVari-
ableFeatures() function. Features were selected based on their repeated variable datasets 
for integration and anchors were identified using FindIntegrationAnchors() function. 
The identified anchors were used to integrate the datasets together with IntegrateData() 
function. 30 principal components (PC) were used in the weighting procedure. Data 
were scaled using ScaleData() function. we Computed k.param nearest neighbors and 
constructed a shared nearest neighbor graph by calculating the neighborhood overlap 
(Jaccard index) between every cell and its k.param nearest neighbors using FindNeigh-
bors() function. The FindClusters() function was used to identify clusters of cells using 
a shared nearest neighbor (SNN) modularity optimization based clustering algorithm 
with a resolution parameter of 0.5. For regression, the variables “nUMI” and “percent.
mt” were used.

DNA and bulk RNA library construction

DNA and bulk RNA sequencing was performed as previously described [100]. One 
hundred nanograms of DNA from each tumor was mechanically sheared to an average 
size of 200 bp. Using the KAPA Hyper Prep Pack, DNA libraries were packed, hybrid-
ized into the xT probe package, and amplified with the KAPA HiFi HotStart ReadyMix. 
For uniformity, each sample needed to have 95% of all targeted base pairs sequenced 
to a minimum depth of 300x. One hundred nanograms of RNA per tumor sample 
was heat fragmented to a mean size of 200 base pairs in the presence of magnesium. 
Using random primers, the RNA was used for first-strand cDNA synthesis, followed 
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by second-strand synthesis and A-tailing, adapter ligation, bead-based cleanup, and 
amplification of the library. After library planning, the IDT xGEN Exome Test Panel was 
hybridized with samples. Streptavidin-coated beads and target recovery were carried 
out, accompanied by amplification using the KAPA HiFi library amplification package. 
The RNA libraries were sequenced on an Illumina HiSeq 4000 using patterned flow cell 
technology to achieve at least 50 million reads.

Detection of somatic variation on DNA sequencing data

The tumor and normal FASTQ files were paired. For quality management measurement, 
FASTQ files were evaluated using FASTQC and matched with Novoalign (Novocraft, 
Inc.) [100, 101]. SAM files were generated and converted to BAM files. The BAM files 
were sorted, and duplicates were marked. Single nucleotide variations (SNVs) were 
called after alignment and sorting. For discovery of copy number alterations, the de-
duplicated BAM files and the VCF generated from the variant calling pipeline were pro-
cessed to computate read depth and variance of heterozygous germline SNVs between 
the tumor sample and normal sample. Binary circular segmentation was introduced and 
segments with strongly differential log2 ratios between the tumor and its comparator 
were chosen. From a combination of differential coverage in segmented regions and esti-
mation of stromal admixture provided by analysis of heterozygous germline SNVs, an 
estimated integer copy number was determined.

Microsatellite instability status

Probes for 43 microsatellite regions were developed using Tempus xT assay [100]. Tumors 
were categorized into three groups by the MSI classification algorithm as described by 
Tempus: microsatellite instability-high (MSI-H), microsatellite stable (MSS) or micro-
satellite equivocal (MSE). MSI screening for paired tumor-normal patients used reads 
mapped to the microsatellite loci with at least 5 bps flanking the microsatellite. The sam-
ple was graded as MSI-H if there was a > 70% chance of MSI-H classification. If the like-
lihood of MSI-H status was 30–70%, the test findings were too ambiguous to interpret 
and those samples were listed as MSE. If there was a < 30% chance of MSI-H status, the 
sample was called MSS. Additionally, IHC results were used to classify tumors into MSS 
or MSI molecular subtypes. Both of these modalities were concordant and produced the 
same results.

Bulk RNA‑seq and microarray analysis

We downloaded gene expression datasets GSE17536 [48] and GSE39582 [45] to validate 
our findings from the single cell compartments by deconvoluting the bulk gene expres-
sion profiles into pseudo single-cell resolutions. We used Affy (v1.64.0) for the data anal-
ysis and for exploration of Affymetrix oligonucleotide array probe level data [102]. Batch 
correction was carried out using the removeBatchEffect (v3.42.2) function of the LIMMA 
program and CMScaller for the CMS classification (see below) [103]. To identify the top 
correlated marker genes for each cell types (all subtypes of B cells, Endothelial, Epithe-
lial, Fibroblast, Myeloid, and T cells) in the bulk gene data sets, the marker genes with an 
average log2 FC > = 0.5 and adjusted P < 0.05 obtained from the SC analysis of each cell 



Page 23 of 30Khaliq et al. Genome Biology          (2022) 23:113 	

type were separately intersected with the bulk gene expression sets individually. Genes 
that have an average Spearman correlation score greater than 0.5 with others were kept 
as the cell signatures of the corresponding cell type within the bulk gene expression. 
Afterwards, we removed the highly correlated genes from the cell signature gene lists, 
if they exist in more than one cell type to make the lists mutually exclusive. Thereby, we 
obtained the marker gene list that is unique for each cell type.

We also used CIBERSORTx v1 to estimate composition of various cell populations 
in GSE39582 [45] and GSE17536 [48]. Signature gene matrices were created using 
the expression profiles of cells as the reference single cell profile. We ran the “hires” 
module with default parameters except for the “rmbatchBmode,” and the bulk-
mode batch correction argument was set to true. After the deconvolution process, 
we normalized the gene expressions according to the cell fractions in each sample 
and calculated each gene’s Z-transformed expression values. The average normal-
ized expression of each cell type across all samples was plotted with the heatmap.3 R 
function of the GMD package (v0.3.3) [19]. A signature matrix highlighting marker 
genes of the different cell types was prepared with a heatmap.2 R function of ggplot 
(v3.1.1).

Pseudo‑bulk differential expression

We used a pseudo-bulk approach to perform differential gene expression (DGE) analy-
sis. We used DESeq2 to normalize the count data to account for differences in library 
sizes and RNA composition between CMS types [104]. The normalized counts were 
used for QC at the gene and CMS level. Normalization and log2-transformed counts 
were used for unsupervised distances/clustering. We have used median of ratios 
method for count normalization and a regularized log transform (rlog) of the normal-
ized counts for CMS-level QC as it moderates the variance across the mean, improving 
the clustering. DESeq2 was used to model the raw counts, using normalization factors 
(size factors) to account for differences in library depth. Then, we have estimated the 
gene-wise dispersions to generate more accurate estimates of dispersion to model the 
counts to fit the negative binomial model and perform hypothesis testing using the 
Wald test.

Batch‑effect correction for malignant cells

We merged tumor cells from the Lee et al. [18]. (n = 23) and our CRC (n = 15) sam-
ples (N = 7,530 cells) and used canonical correlation analysis (CCA) to perform 
batch correction [96]. We reduced the dimensionality of the data and captured 
the most correlated data features, which allowed us to align the data batches. The 
cell mappings across datasets were then found and the data was reconstructed in 
a shared space using the mutual closest neighbors (MNNs) approach [105]. The 
Pseudobulk expression counts were calculated using the adjusted anchors from the 
pooled data. In addition, we used the Limma function removeBatchEffect [103] to 
remove the batch effect from the Pseudobulk expression counts (Additional file  1: 
Supplementary Fig. S35).
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Consensus molecular subtyping of colorectal cancer (CMS classification)

We used R package CMScaller (v0.9.2), a nearest template prediction (NTP) algorithm, 
for the classification of gene expression datasets [106]. We set the permutation number 
to 1000 to predict the CMS classes of the samples in the GEO datasets with a P-value 
< 0.05. We ran CMScaller with default parameters.

Dissecting the cell‑cell communications using CellPhoneDB

For cell-to-cell interaction study, we retrieved ligand and receptor information 
from the CellPhoneDB repository (https://​www.​cellp​honedb.​org) [61]. Among the 
ligands and receptors discovered in our datasets, we only kept the ones that were 
expressed at least in 10% of the cells from each patient. We performed a permuta-
tion test for each cell at 1000 times to compute the significance of each pair. The 
threshold for screening was P value 0.05. P-values and log2 mean expression was 
calculated and expressed on dotplots using ktplots [107].Adapted from “Single-
Cell Sequencing” and “Icon Pack - Tumor Types(Colon cancer)”, by BioRender.com. 
Retrieved from https://​app.​biore​nder.​com/​biore​nder-​templ​ates.  CAF, TAMs and 
CD8+ T-cell   images (Icon Pack - Immunology) in Fig.  8 were downloaded from 
BioRender.com

Statistics and reproducibility

All statistical analyses and graphs were created in R (v3.6.3) and using a Python-based 
computational analysis tool. Schematic representations were made using the Inkscape 
(https://​inksc​ape.​org/) software. Dim plots, bar plots and box plots were generated using 
the dittoSeq (v1.1.7) package with default parameters [108]. Violin plots were gener-
ated using the patchwork (v1.1.0) package and ggplot2 (v3.3.2) package in R with default 
parameters. Heatmaps were generated using Morpheus.R with default parameters [109]. 
To compare the normalized expression profiles of the marker genes across the CMS 
classes, ANOVA, and the pair-wised t-tests were performed in R using ggpubr R (v0.4.0) 
package [110]. The box plots were generated using boxplot function in R base package 
with default parameters. The mean value of the normalized expression levels of the sam-
ples in each CMS group was demonstrated with a horizontal straight line within each 
box. Length of a boxplot corresponds to the interquartile range (IQR), which is defined 
as the range between the first and third quartiles (Q1 and Q3), whereas the whiskers are 
the upper and lower extreme values of the data (either data’s extremum values, or the 
Q3+1.5*IQR and Q1–1.5*IQR values, whichever is less extreme) [111].

Immunohistochemistry

A board-certified GI Pathologist selected the CRC cases. IHC analysis was carried out 
in accordance with our previously reported methods [111, 112]. The immunostained 
tissue parts were examined using an EpiNIKON microscope, and images were taken 
using an attached camera. GI Pathologist reviewed final images for confirming fibro-
blast staining. The following antibodies were used to detect specific proteins: FAP 
Monoclonal Antibody(F11-24), eBioscience Cat# BMS 169, PDGFRA-ß: SC-19995, 
RGS5(B-4): SC-514184, CD146(MCAM) Mouse Monoclonal Antibody [Clone ID: 
UMAB154] CAT#UM800051CF.

https://www.cellphonedb.org
https://app.biorender.com/biorender-templates
https://inkscape.org/
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Survival analysis

Survival curves were obtained by using the Kaplan-Meier method from the R package 
survfit (v3.2-7). The differences between the survival distributions were assessed by Log-
rank test. The patients were divided into two groups (high and low) according to the 
median expression values of the corresponding marker gene(s) (survminer (v0.4.8)).

The proportional hazard assumption was tested to examine the fit of the model for 
the survival of the samples in two GEO datasets GSE17536 [48] and GSE39582 [45] 
with respect to the normalized mRNA expression levels. The relationship between 
normalized mRNA expression values of each cell and disease-free survival outcome in 
GSE17536 dataset was assessed using multivariable Cox proportional hazard regres-
sion adjusted by age, stage, race, gender, and grade. The relationship between nor-
malized mRNA expression values of each cell and disease-free survival outcome in 
GSE39582 dataset was assessed using multivariable Cox proportional hazard regres-
sion adjusted by age, stage, gender, BRAF mutation status, KRAS mutation status, 
and TP53 mutation status. Statistical significance level was set to be 0.05 and P-values 
were two-sided. The multivariable Cox proportional hazard regression was performed 
in R (4.0.5) using “survival” package.
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