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Infant high grade gliomas comprise multiple subgroups characterized 

by novel targetable gene fusions and favorable outcomes 
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Abstract  
 
Infant high grade gliomas appear clinically distinct from their counterparts in older 

children, indicating that histopathologic grading may not accurately reflect the biology 

of these tumors. We have collected 241 cases under 4 years of age, and carried out 

histological review, methylation profiling, custom panel and genome/exome 

sequencing. After excluding tumors representing other established entities or 

subgroups, we identified 130 cases to be part of an ‘intrinsic’ spectrum of disease 

specific to the infant population. These included those with targetable MAP-kinase 

alterations, and a large proportion of remaining cases harboring gene fusions 

targeting ALK (n=31), NTRK1/2/3 (n=21), ROS1 (n=9) and MET (n=4) as their driving 

alterations, with evidence of efficacy of targeted agents in the clinic. These data 

strongly supports the concept that infant gliomas require a change in diagnostic 

practice and management.  

 
 

Statement of Significance 
 
Infant high grade gliomas in the cerebral hemispheres comprise novel subgroups, 

with a prevalence of ALK, NTRK1-3, ROS1 and MET gene fusions. Kinase fusion-

positive tumors have better outcome and respond to targeted therapy clinically. Other 

subgroups have poor outcome, with fusion-negative cases possibly representing an 

epigenetically-driven pluripotent stem cell phenotype.  
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Introduction 

The prognosis of paediatric high grade gliomas (HGG) remains dismal, with a 5-year 

survival rate of only ~20% for children aged 0-14 years (1). They are strongly 

associated with unique location-dependent mutations in histone H3 variants H3.3 

(H3F3A) and H3.1 (HIST1H3B/C) including two recurrent amino acid substitutions 

(K27M and G34R/V) (2,3) which together account for nearly half of all paediatric 

HGG and identify robust biological subgroups (4,5). Histone wild-type cases are 

comprised of a highly diverse set of tumors, ranging from those with some of the 

highest somatic mutational burdens in human cancer (patients with biallelic mismatch 

repair deficiency syndrome) (6,7) to others seemingly driven by single genetic events, 

often gene fusions (8). The latter are particularly found in cases originally diagnosed 

as high grade glioma at an infant age (9).  

 

The definition of an infant used in paediatric neuro-oncology varies, but typically 

refers to children under 3-5 years (10); congenital cases are generally defined as 

being present at birth (11). The most frequent types of infant brain tumor are 

medulloblastoma, ependymomas and low grade gliomas (LGG) (12). The latter 

include the relatively common pilocytic astrocytomas, but also other rarer entities 

such as desmoplastic infantile ganglioglioma/astrocytoma (DIGG/DIA) (13). Tumors 

reported as HGG appear to be associated with significant differences in clinical 

outcome, with infant HGG (even with incomplete resection and without irradiation) 

showing a significantly improved survival compared to those in older children (8,14-

17), which may indicate the presence of a distinct, overlapping group of tumors 

where histopathologic grading may not be representative of clinical behavior.  

 

Treatment outcomes also reflect these differences; the Baby POG I study found four 

children under 3 years of age who were diagnosed with a malignant glioma and 

underwent 24 months of chemotherapy without radiation treatment, and did not 
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develop recurrent disease (10). A 5-year overall survival rate of 59% was reported in 

infants with HGG after prolonged chemotherapy treatment alone, and in another 

study, 16 patients diagnosed with HGG and treated with focal radiation therapy 

showed a 5-year overall survival rate of 66% (11). Five reported cases of congenital 

glioblastomas who survived surgery (with only one patient receiving a gross total 

resection) all showed a better outcome than expected (18), whilst two infant cases 

who both underwent subtotal resection of their tumors and did not receive any 

adjuvant therapy post-operatively saw regression of the residual tumors (19). The 

improved outcome both with chemotherapy and with surgery alone is particularly 

significant in this age group when considering the risk of declining cognition (13) and 

the development of leukoencephalopathy post radiation treatment (11). 

 

Previous studies have hinted at different histological features within infant high grade 

gliomas. High densities of ‘minigemistocytic shaped’ cells with abundant mitoses and 

absent necrosis were described (20), with others showing moderately hypercellular, 

mitotic and necrotic tumors with cellular monotony and a lack of significant 

pleomorphism, and some showing a more spindled appearance (18,19).  

 

Current molecular data is limited, but epidermal growth factor receptor (EGFR) and 

platelet-derived growth factor receptor A (PDGFRA) expression is reported as 

uniformly low in congenital glioblastomas (GBM), with a low level or absence of copy 

number alterations in these genes (18,21). TP53 and PTEN mutations, CDKN2A/B 

deletions, and other copy number alterations often seen in older children are also not 

typically found in infant HGG (22). Occasional BRAF V600E mutations are found, 

particularly in DIGG/DIA (23), while histone and IDH1 mutations are rare. Methylation 

profiling indicates that the infant group may display a more LGG-like methylation 

pattern, with a 2-year survival of 74% (8). The most common somatic alterations 

seen in infants appear to be gene fusion events, particularly NTRK1/2/3. Although 
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not specific to brain tumors (24), these were found to span both LGG and HGG in 

large-scale studies in children, with novel QKI-NTRK2 and NACC2-NTRK2 fusions 

found in pilocytic astrocytomas (25,26), and AGBL4:NTRK2, TPM3:NTRK1, and 

ETV6:NTRK3 fusions found in HGG patients aged less than 3 years (9). More 

recently, several case reports have identified additional receptor tyrosine kinase 

(RTK) gene fusions in infant glioma of differing histologies (17,27-35). 

 

In the present study, we collected the largest series of infant gliomas (exclusive of 

pilocytic astrocytomas) assembled to date and present a classification system based 

on integrated methylation profiling, fusion gene analysis, mutation detection, and 

histological review, with preclinical and clinical evidence of effective targeting of the 

driving alterations in these unique entities. 
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Results 

Refinement of an intrinsic set of infant hemispheric gliomas 

We collected a unique series of 241 gliomas, from patients under the age of four 

years at diagnosis from multiple centres around the world, with a view to exclude a 

priori pilocytic astrocytomas and other well characterised, low grade lesions with 

clear molecular markers (Figure 1A). To ensure this, we searched for pathognomonic 

structural variants using a variety of sequencing platforms including whole genome, 

exome, RNAseq and a novel custom capture panel (Figure 1B). We identified 28 

cases to be excluded, mostly due to presence of KIAA1549:BRAF fusions (n=22), the 

vast majority of which were collected as an otherwise unspecified cerebellar 

astrocytoma (Supplementary Table S1). We also identified three cases of FGFR1 

tandem duplication (including glioneuronal tumors), two MYB/MYBL1 fusions, and a 

case with MN1:BEND2 (representing the novel entity of HGNET-MN1 (36)). Of the 

remaining 213 cases, a further 13 were excluded based on clear Heidelberg 

classifier matches to other non-glioma CNS tumors from methylation array profiling 

data (Figure 1C). These included two ependymomas, two HGNET-BCORs, an ETMR 

and others (Supplementary Figure S1). A further 9 cases failed array QC and were 

excluded from further analysis. Finally, our series of 191 cases were projected onto a 

reference set of gliomas comprising multiple entities. Sixty-one of these infant 

samples most readily clustered with a known high or low grade subtype, leaving us 

130 infant gliomas for further analysis that we define as our ‘intrinsic set’ (Figure 1D), 

as they comprise a novel grouping of tumours with key clinical and molecular 

features in common, as we describe below. 

 

The infant glioma cases excluded on the basis of methylation profiling (n=61) were 

found to have arisen in anatomical areas of the CNS appropriate for the relative 

subgroup assignment, such as diffuse midline glioma K27M mutant cases in the 

pons, pilocytic astrocytoma-like cases in the cerebellum, and PXA-like cases in the 



 11 

cerebral hemispheres (Figure 1E), and were often accompanied by the expected 

genetic alteration. Interestingly, the remaining intrinsic set included the vast majority 

of those patients diagnosed under the age of 1 year (49/63, 78%; overall median of 

intrinsic set = 7.2 months). These cases scored most highly as two named subgroups 

in the current version (v11b4) of the methylation classifier – desmoplastic infantile 

ganglioglioma / astrocytoma (DIGG/DIA) and the poorly defined infant hemispheric 

glioma (IHG)  (Supplementary Table S2). The vast majority of these cases were 

found in the cortex, DIGG/DIAs particularly in the frontal lobe. These cases were 

found to have a significantly improved outcome compared to cases classified as high 

grade gliomas (HGG), with a median overall survival similar to those considered as 

low grade gliomas (LGG) (Figure 1F), with the important caveat that detailed 

treatment information was not available across the cohort. The HGG subtype 

exclusions were predominantly >1 year old and showed a tendency towards a worse 

outcome than the other infant tumors (p=0.0567, log-rank test). This remaining 

intrinsic group of tumors formed a continuum which clustered clearly apart from other 

glioma subgroups in a tSNE projection based upon methylation array data from the 

glioma reference set (n=1652) (Figure 1G). Many of these cases did not 

unequivocally classify as either IHG or DIGG/DIA despite their tight clustering, 

suggesting that the reference classes for these tumors likely needs expanding and 

updating.  

 

Infant hemispheric gliomas are defined by presence or absence of receptor tyrosine 

kinase fusions 

Additional gene sequencing (panel, exome or genome) was available for 65 cases, 

including 41 of the intrinsic set, all of whom had fusion analysis by panel or RNAseq. 

Samples excluded as representing other glioma subtypes were found to harbor 

mutations consistent with such tumors, including IDH1 R132H, H3F3A and 

HIST1H3B K27M, as well as common co-segregating variants in TP53, NF1, PTEN, 
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PIK3CA and ACVR1, deletions of CDKN2A/B and amplification of PDGFRA (Figure 

2A). These were almost entirely absent from the intrinsic set. Instead, 25/41 cases 

(61%) harbored fusions in either ALK (n=10), NTRK1/2/3 (n=2, 2 and 8, respectively) 

ROS1 (n=2) or MET (n=1), usually in the absence of other alterations (Figure 2B). 

The fusion-positive cases were mostly classified as IHGs (n=21) or low-scoring 

DIGG/DIAs (n=4). Although ALK fusions were restricted to the intrinsic set, we 

observed NTRK fusions in other glioma subtypes (especially NTRK2, n=3). We 

additionally observed an FGFR1:TACC1 fusion in the IDH1 / TP53 case (Figure 2A). 

High-scoring DIGG/DIAs and ‘DIGG/DIA-like’ tumors were found with BRAF V600E 

(n=3) or PIK3R1 mutations and isolated mutations in bromodomain-containing genes 

(BRD8, BRD4, BRD2) and others (Figure 2B). A single case harbored amplifications 

in both MYC and MYCN, in addition to TP53 and PIK3CA mutations. Although a 

proportion (<25%) of tumors were found with whole-arm DNA copy number changes, 

the majority of intrinsic cases harbored few if any large-scale copy number 

alterations (Supplementary Figure S2A) (Supplementary Table S3).  

 

There were no differences in the number of copy number changes between fusion-

positive and fusion-negative cases (p=0.567, t-test) (Supplementary Figure S2B). 

Notably, the only significant focal differences were those marking common gene fusions 

at the ALK and NTRK3 loci (Supplementary Figure S2C). A novel and refined copy 

number analysis from the methylation array data identified such breakpoints in either 

intra-chromosomal (short gains or losses) or inter-chromosomal (imbalances) RTK 

fusion events in 53/71 (75%) cases across the whole cohort (Figure 3A-C). Across 

the intrinsic set as a whole, 65/130 (50%) cases were found to harbor structural 

variants targeting ALK, NTRK1/2/3, ROS1 or MET (46/80, 57.5% IHGs), compared 

with 18 of the other 111 cases in the original series (16%; p<0.0001, Fisher’s exact 

test) (Supplementary Figure S3A-C) (Supplementary Table S4). Where possible, 

these were validated through a combination of genome, RNA and/or Sanger 
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sequencing, and were frequently accompanied by detectable focal DNA copy 

number breakpoints within the fusion partners, as exemplified for ETV6:NTRK3 

(Figure 3D) and the novel ZC3H7A:ALK fusions (Figure 3E).  The most commonly 

targeted genes in the intrinsic set included NTRK1/2/3, predominantly ETV6:NTRK3, 

but also recurrent EML4:NTRK3 and TPM3:NTRK1 fusions (Figure 3F). NTRK2 was 

found with numerous novel partners (e.g. KCTD16:NTRK2 and AGBL4:NTRK2) but 

were largely seen in other glioma subtypes occuring in the appropriate anatomical 

locations (e.g. H3K27M in midline regions) (Supplementary Table S4), suggesting an 

important difference in NTRK2 compared to NTRK1/3 fusion-positive cases. ALK 

fusions were the most common (n=39), were largely restricted to the intrinsic set, and 

included both intra- and inter-chromosomal rearrangements (Figure 3G), including 

both previously reported (PPP1CB:ALK, EML4:ALK, HIP1:ALK, PRKAR2A:ALK, 

SPTBN1:ALK) and novel fusions (MAD1L1:ALK, MAP2:ALK, MSI2:ALK, 

SPECC1L1:ALK, SYNDIG1L:ALK, ZC3H7A:ALK, CLIP2A:ALK) (Supplementary 

Table S4). Within the intrinsic set, there was a trend towards the presence of any 

fusion conferring a longer overall survival compared to those without (p=0.0687, log-

rank test) (Figure 3H).  

 

With whole genome sequencing of fusion-negative cases failing to identify consistent 

genetic drivers of this subtype of the disease (Supplementary Figure S4), we turned 

to the methylation data in order to further explore the heterogeneity within infant 

HGG. Hierarchical clustering on the basis of differential probes associated with the 

most common genetic alterations found, resulting in the separation of distinct sets of 

IHG subgroups in addition to clear DIGG/DIA and ‘DIGG/DIA-like’ tumors 

(Supplementary Figure S5A). Despite the presence of recurrent NTRK fusions, these 

infant gliomas clustered apart from mesenchymal tumors harbouring ETV6:NTRK3, 

including infantile fibrosarcoma and congenital mesoblastic nephroma (37) 

(Supplementary Figure S5B). Running methylation-based gene ontology analysis on 
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the differentially methylated regions (Supplementary Table S5) highlighted little 

overlap between ALK fusion, NTRK fusion and fusion-negative cases (total 9.5%) 

(Supplementary Figure S5C). ALK fusion cases were significantly associated with 

dysregulation of genes associated with glutamate receptors, synapses, signal 

transduction and morphogenic stages of development (Figure 4A), whilst NTRK 

fusion cases were linked with genes controlling neuronal differentiation and the 

earliest stages of embryogenesis, as well as signalling via the JNK cascade (Figure 

4B). By contrast, fusion-negative cases were predominantly associated with the 

response to multiple endogenous stimuli, particularly the TGF pathway, and the 

regulation of stem cell pluripotency and cell fate (Figure 4C). Although only 

exploratory due to the small sample sizes, and needing independent validation in an 

independent cohort, as exemplars of the differential epigenetic regulation of key 

genes controlling these processes in the distinct subgroups, we observed consistent 

reduction in methylation at CpG sites governing expression of WNT5A in ALK fusion 

cases (Figure 4D), STAT1 in NTRK fusion cases (Figure 4E) and TP63 in fusion-

negative samples (Figure 4F) (Supplementary Table S5). This resulted in differential 

protein expression as assessed by multi-labeled immunofluorescence with antibodies 

directed against these targets, with representative examples shown for WNT5A and 

STAT1 in ALK-fusion (Figure 4G) and NTRK-fusion (Figure 4H) cases respectively. 

Using a NanoString assay for the 30 most differentially methylated genes between 

subgroups, we were able to distinguish ALK- / NTRK- fusion positive and -negative 

subgroups in a series of 21 infant HGG for which we had sufficient material (Figure 4I). 

Notably, we did not observe TP63 protein expression in any of our samples, although  

differential overexpression of the transcript was observed for fusion-negative cases. 

 

Histological examination of those tumors classified as IHG revealed highly cellular 

astrocytic tumors with cells arranged in uniform sheets throughout the section 

(Supplementary Figure S6A,B,C). Cytologically, spindled nuclei (Supplementary 
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Figure S6D), an occasional ganglion cell component (Supplementary Figure S6E), or 

gemistocyte-like cells (Supplementary Figure S6F) could be seen either focally or 

throughout the tumor. Tumors frequently showed a superficial hemispheric location 

often involving the meninges, and had a well-defined border with adjacent normal 

brain. Palisading necrosis (Supplementary Figure S6G), microvascular proliferation 

and mild-moderate nuclear pleomorphism were almost universally seen. In some 

cases, a more nodular architecture was observed (Supplementary Figure S6H,I). 

Rarely, some showed less cellularity (Supplementary Figure S6J), and mineralisation, 

calcification or xanthomatous change could be observed (Supplementary Figure 

S6K). Consistent with these features, 67/80 (84%) of IHG cases were originally 

diagnosed as a high-grade glioma, although a variety of other diagnoses were 

included in the original pathology reports (Supplementary Figure S6L). A summary of 

the histological findings is given in Supplementary Table S6, with no statistically 

significant difference of features assessed between fusion-positive and-negative 

subgroups. The number of mitoses observed was highly variable, and proliferation as 

assessed by Ki67 staining highlighted cases presenting with both frequent 

(Supplementary Figure S6M) and sparsely positive nuclei (Supplementary Figure 

S6N). There was a significantly elevated Ki67 index in NTRK fusion-positive 

compared to fusion-negative IHG cases (p=0.0479, t-test), though not for ALK 

(p=0.3622, t-test) (Supplementary Figure S6O). Notably, the NTRK (median=22.5) 

and ALK (median=15.6) fusion-positive indices are at the upper end of values 

reported (38) for older patients with grade IV (median=15.8) and grade III 

(median=11.8) glioblastomas and anaplastic astrocytomas, with fusion-negative 

cases (median=5.6) closer to grade II astrocytomas (median=3.0).  

 

Generation and pre-clinical testing of an ALK fusion-driven in vivo model 

To assess the tumorigenic potential of the most commonly detected ALK gene fusion 

variant (PPP1CB:ALK) in a model system, we attempted to generate an in vivo 
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model using two complementary somatic gene transfer-based methods (RCAS/Ntv-a 

viral gene transfer and in utero electroporation (IUE)) (Figure 5A). When using the 

RCAS approach with injection of cells producing PPP1CB:ALK-containing virus at p0 

on a Cdkn2a null background, tumor formation was rare (2/19 mice), and only after 

300 days. By contrast, in utero electroporation at E14.5 with PPP1CB:ALK alone was 

able to generate consistent tumour formation with 100% penetrance, albeit with a 

relatively long latency of more than 250 days. Although not commonly found in the 

human disease, when combined with CRISPR/Cas9-mediated knockout of either 

Trp53 or Cdkn2a for practical purposes, we observed highly efficient tumor formation 

with a median survival of 32 and 52 days, respectively (Figure 5B). PPP1CB:ALK 

mice +/- Cdkn2a-ko gave rise to tumors which reflected the human setting, including 

the typical foci of palisading necrosis, mitotic activity, glial cytology and/or clear 

astrocytic differentiation (Supplementary Figure S7A). All tumors would be classified 

as high-grade astrocytomas or glioblastomas. Staining for the HA epitope tag 

included at the C-terminus of the ALK fusion protein in the IUE/Cdkn2a-ko setting 

indicated widespread expression of the fusion protein, with invasion of individual 

tumor cells into the brain parenchyma (Supplementary Figure S7B).   

 

To test the potential efficacy of targeted ALK inhibition in the context of this tumor 

model, we first dissociated tissue from a murine tumor into a single-cell suspension 

for growth in neurosphere (serum-free, non-adherent) conditions. Four different ALK 

inhibitors were then tested for in vitro growth inhibitory effects (crizotinib, ceritinib, 

alectinib, lorlatinib), representing different generations of inhibitor either approved for 

clinical use or currently in trials. Whilst all inhibitors showed a significant growth 

inhibitory effect at nanomolar concentrations (17) (Supplementary Figure S7C), there 

were differences in potency between the different compounds (Supplementary Table 

S7).  
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Due to its clear in vitro efficacy and reportedly good blood-brain barrier penetration 

(an important consideration for clinical translation for brain tumors), lorlatinib was 

chosen as the primary candidate for in vivo testing in our preclinical ALK fusion 

model. For this purpose, adult CD1 mice were allografted with short-term in vitro-

cultured PPP1CB:ALK;Cdkn2a-/- cells and monitored for tumor growth using 

bioluminescence imaging (BLI). At the start of treatment (14 days after injection), 

mice were stratified into temozolomide (standard chemotherapy), vehicle control or 

lorlatinib arms, based on consecutive ranking (highest BLI signal to lorlatinib, 2nd 

highest to control, 3rd highest to temozolomide and so on). Whilst temozolomide was 

found to slow tumor growth in comparison with vehicle control, all tumors in these 

two treatment arms continued to grow. In contrast, all but one lorlatinib-treated 

animal displayed a significant reduction in BLI signal compared with the pre-

treatment baseline (Figure 5C,D). This imaging response corresponded with a 

significant increase in survival in the lorlatinib-treated group compared with the two 

control arms (p<0.0001; although all tumors re-grew after stopping treatment after 28 

days, with all mice ultimately needing to be sacrificed due to onset of tumor 

symptoms) (Figure 5E). No significant difference in body weight was observed 

between mice on the different treatment arms (data not shown), and the compounds 

were generally well tolerated. A similar experiment was performed using lorlatinib 

versus temozolomide in mice transplanted with cells from an ALK fusion-only mouse 

tumor. This also revealed a significant tumour regression (Supplementary Figure 

S7D) and survival increase with lorlatinib (p=0.004, log-rank test), with one animal 

showing prolonged survival at last follow-up, 8 months post injection (~6 months after 

end of treatment) (Supplementary Figure S7E). Overall, these findings provide a 

strong pre-clinical rationale for the potential use of targeted ALK inhibition in a clinical 

setting. For one of the cases in our study, DKFZ_INF_307, we have been able to 

demonstrate this directly. Here, a 1 month old boy underwent a left craniotomy with 

gross total resection, and was diagnosed as glioblastoma (WHO grade IV). He 
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underwent successive rounds of HIT SKK / ACNS and temozolomide chemotherapy, 

eventually showing progressive disease after both. He was found to have a 

MAD1L1:ALK fusion and was started on ceritinib, resulting in stable residual disease 

for nearly two years to date (Figure 5F). 

 

Patient-derived models and clinical experience with NTRK inhibitors 

Finally, we explored the utility of treating RTK fusion-positive infant gliomas with 

targeted inhibitors. We established two primary patient-derived cell cultures from 

infant glioma specimens with either TPM3:NTRK1 or ETV6:NTRK3 fusions (Figure 

6A) and compared their in vitro sensitivities to three small molecule inhibitors of 

TrkA/B/C with two fusion-negative paediatric glioma cultures (Figure 6B). NTRK 

fusion-positive cells were more sensitive to entrectinib, crizotinib and milciclib, with 

differential sensitivities ranging from 2-9 fold over fusion-negative cells (p=0.0253, 

crizotinib; p=0.0786, entrectinib; p=0.0141, milciclib) (Supplementary Table S7), and 

reduction in downstream signalling via phospho-Akt and phospho-Erk 

(Supplementary Figure S7F). The infant glioma models were not tumorigenic after 

multiple orthotopic implantation experiments in immunodeficient mice, precluding in 

vivo assessment (data not shown).  

 

Clinical treatment with Trk inhibitors was given to two patients in our cohort with 

ETV6:NTRK3 fusions. The first case, OPBG_INF_035 was a girl diagnosed with a 

large frontal mass at 36 weeks’ gestation (Figure 6C). It was a large, heterogenous 

mass with solid, cystic and haemorrhagic components. A biopsy was performed after 

birth and it was diagnosed histologically as a glioblastoma (WHO grade IV). The child 

subsequently received chemotherapy (methotrexate, vincristine, etoposide, 

cyclophosphamide, thiotepa) before undergoing a subtotal resection 3 months later. 

An ETV6:NTRK3 fusion was identified in the DNA from both the biopsy and resection 

specimens, and four months post-surgery, the child was commenced on crizotinib. 
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An MRI scan performed after 9 months of treatment with crizotinib showed a 56% 

reduction in the size of the remaining solid component of the tumor compared to the 

post-surgery MRI scan (RANO criteria size reduction of >50% and stable). After an 

additional 3 months treatment with larotrectinib, the remaining solid component 

showed a further reduction in size now reaching 73% (Supplementary Figure S8A). 

Clinically, the child remains well. The second patient, MSKC_INF_006, presented 

with a generalized seizure aged 11 months (Figure 6D). An MRI scan revealed a 

pontine mass with central haemorrhage. The child underwent surgery and a gross 

total resection was achieved. Histologically the tumor was diagnosed as a low grade 

neuroepithelial neoplasm. The child developed a recurrence, at which point 

vincristine and carboplatin were commenced and a complete response was achieved. 

However, the tumor progressed two years after the original resection; a further gross 

total resection was achieved and the child treated with larotrectinib after an 

ETV6:NTRK3 fusion was identified, with the aim of preventing further recurrence. To 

date, the child remains well with no evidence of recurrence after 12 months of 

treatment.  

 

Notably, the patients from whose tumors our primary cell lines were derived have 

both only received surgery to date, and remain well. QCTB_INF_R077 was 

diagnosed with a tumor in the left fronto-parietal lobe in utero and underwent biopsy 

and subsequent resection shortly after birth . Histologically, the tumor was reported 

as a primary neuro-epithelial tumor. The child was not treated with any adjuvant 

therapy. At 5.5 years old, there has been no progression or relapse and the child has 

stable disease (Supplementary Figure S8B). The second patient, QCTB_INF_R102 

aged 8 months, presented with a tumor in the left temporal lobe aged 8 months. He 

subsequently received a gross-total resection, with the tumor diagnosed as a 

ganglioglioma (WHO grade I). He also did not receive any adjuvant therapy post 
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resection and is currently 4 years old and remains stable under regular surveillance 

(Supplementary Figure S8C). 

 

In summary, diffuse infant gliomas represent distinct disease entities marked by 

characteristic  clinicopathological profiles and in most cases clinically actionable 

gene fusions (Figure 7).  
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Discussion 

Malignant glioma presenting in infancy represents a specific clinical challenge, 

involving diagnostic uncertainty and a hesitancy to aggressively treat given the 

reported superior outcomes compared with older children, coupled with the high risk 

of neurocognitive deficits (39). This is compounded by a lack of biological 

understanding due to the rarity of these tumors. The present international 

collaborative study brings together the largest collection of tumors originally reported 

as high grade or diffuse gliomas in this age group, by contrast with another recent 

multi-institutional study which was predominantly comprised of low grade tumours 

(17). Our study uniquely includes methylation and gene expression data, and allows 

for refinement of subgroups within the malignant spectrum of disease with important 

clinical management implications; we also present experience of clinical responses 

with targeted agents even after progression on standard chemotherapies. 

 

A first key finding relates to the difficulty of differential diagnoses in these very young 

children, with ~10% cases unequivocally classifying as other tumor entities on the 

basis of methylation profiling (40) or the presence of pathognomonic gene fusions 

(36), even after discounting mis-diagnosed or mis-assigned pilocytic astrocytomas. 

Often this uncertainty is reflected in the original pathology report, with atypical 

features highlighted. However, the highly heterogeneous nature of high grade glial 

tumors provides for a broadly inclusive category in the current WHO classification, 

which in many cases may result in what is considered to be a relatively 

uncontroversial histological diagnosis despite widely varying morphologies. Similarly, 

combined genetic and epigenetic analyses reveal a third of remaining cases to be 

biologically identical to known high or low grade glioma subtypes, with substantially 

different prognoses reflective of the known clinical course of the relevant tumor 

categories. Together, these data make the important points that histopathologic 

evaluation alone is insufficient to predict outcome, and that high grade gliomas 
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predominantly occuring in older childhood may also present in the infant population 

with little survival benefit from standard treatment protocols.  

 

After these exclusions, there remains what we define as an intrinsic set of infant 

gliomas, which are largely restricted to the cerebral hemispheres and occur in the 

youngest patients, usually under 12 months old. These patients, despite more than 

three-quarters unequivocally reported as WHO grade III or IV astrocytoma, have an 

overall survival more akin to lower grade tumors, yet lack the key molecular features 

of both HGG and LGG. They appear to form a biological continuum of disease 

between the recognized MAPK-driven desmoplastic lesions (DIGG/DIA), which may 

respond clinically to targeted BRAF V600E inhibitors, even after previous 

chemotherapy (41), and a novel assignation of diffuse infant hemispheric glioma. 

This latter end of the spectrum is strikingly defined by nearly two-thirds of tumors 

harboring fusions in genes encoding the receptor tyrosine kinases ALK, NRTK1/2/3, 

ROS1 and MET. Although structural variants involving these genes within the age 

group have been described in case reports (27-35) and a recent larger study (n=29) 

(17), the current report represents a uniquely powerful study of these rare tumors, by 

accumulating a series of 82 infant cases with RTK fusions with full methylation 

profiles. 

 

Molecularly, these events included interstitial microdeletions such as those at 

chromosome 2p23 resulting in the fusion of CCDC88A or PPP1CB  and ALK (17,34) 

and at 6q21 fusing ROS1 and GOPC (previously known as FIG, and originally 

described in an adult GBM cell line (42)); additional focal DNA copy number losses 

targeted MET at 7q31 (43). There were multiple instances of inter-chromosomal copy 

number gains fusing ALK to a series of novel partners, including MAD1L1 (7p22), 

ZC3H7A (16p13), MSI2 (17q22), SYNDIG1 (20p11) and SPECC1L (22q11), as well 

as the intra-chromosomal EML4:ALK fusion that is well-characterized in non-small 
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cell lung cancer and others (44). The NTRK genes had a variety of inter-

chromosomal partners, with around half of cases marked by a DNA copy imbalance 

at either locus. Notably, NTRK2 fusions (also described in LGG (25,26,45)) were 

largely found in tumors classifying as other glioma subtypes, as were the previously 

described FGFR:TACC fusions (46).  

 

Histopathologically, within the context of HGGs, certain common features of the 

intrinsic infant hemispheric gliomas could be recognized. Cases tended to have a 

relatively uniform architecture, with marked pleomorphism. There was an enrichment 

of gemistocytic-like cells, as has been reported for a case with ZCCHC8:ROS1 

fusion (29); a predominance of spindle cell differentiation, reminiscent of 

mesenchymal tumors with NTRK fusions (47), and also described in an 

ETV6:NTRK3 infant glioma (35). Our NTRK fusion cases in the present study 

clustered distinctly from ETV:NTRK3-positive infantile fibrosarcoma and congenital 

mesoblastic nephroma, however, suggesting a distinct origin. Several cases also had 

ependymal differentiation, consistent with two cases with ALK fusions (KTN1:ALK 

and CCDC88A:ALK) reported as not easily fitting the established WHO brain tumor 

entities (34). Notably, CCDC88A:ALK cases have been reported clinically as both 

low- and high- grade glioma, however the same study found tumours generated by 

overexpressing the fusion in xenografted immortalized human astrocytes to have a 

high proliferative index, glial marker expression and pseudopallisading necrosis (17), 

suggestive of high grade lesions in common with our in utero electroporation 

modelling approach. A further case report described a KIF5B:ALK fusion in an infant 

with microglial proliferation, spindle cells with scattered mitotic figures, and a mixed 

inflammatory infiltrate of scattered lymphocytes, plasma cells and eosinophils, 

indicating potential microglioma or gliofibroma (31). The recognition of tumors in this 

series that biologically resemble DIGG/DIA (WHO grade I) is compatible with their 

histology, in that some cases have been described as presenting with a poorly 
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differentiated component (39). The case with ZCCHC8:ROS1 fusion was also 

described to display a cellular element within a fusocellular desmoplastic component 

(29), and we noted focal ganglion cells in our series. However, despite these 

differences, it is still not possible at the present time to define clear histology-only 

criteria which can reliably distinguish between these molecularly-defined intrinsic 

infant tumors and other glioma subtypes in the same age group. 

 

The presence of recurrent ALK/NTRK/ROS1/MET fusions represent clearly 

targetable alterations, in common with subgroups of adult epithelial tumors (48,49), 

and their identification through screening approaches and routine diagnostic 

sequencing panels (50-53) makes them amenable to selection for clinical trials 

despite their rarity. The distinct morphological variants, the restricted spatial and 

temporal patterns of presentation, and the specificity of oncogenic events largely in 

the absence of other mutations or large-scale chromosomal rearrangements 

suggests an exquisite developmental susceptibility for transformation which would 

account for this rare subgroup of tumors. 

 

Multiple ALK partners are associated with synapse formation and activity (CCDC88A, 

HIP1, SYNDIG1), neuronal cytoskeletal reorganisation (CCDC88A, SPECC1L) and 

microtubule assembly (MAP2, PRKAR2A, EML4), as well as PI3K/MAPK signalling 

(PPP1CB, CCDC88A, SPECC1L) and cell cycle progression (MAD1L1) (54-62). 

Thus in addition to the activated kinase activity of the ALK receptor itself, these 

fusions likely disrupt key regulatory processes in neurodevelopment, as exemplified 

by the differential methylation of genes controlling these processes we observed. 

The most common ALK fusion, PPP1CB:ALK, was found to be tumorigenic when 

introduced in prenatal, though largely not postnatal mice, further demonstrating the 

importance of developmental context associated with the oncogenicity of these 

alterations.  
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ALK fusion-positive tumors were found to be sensitive to targeted ALK inhibition in 

vitro and in vivo, resulting in tumor shrinkage and extension of survival in the latter in 

contrast to the standard chemotherapeutic agent temozolomide. Excitingly, this 

experience was mirrored in the clinic, whereby a child diagnosed at 1 month old 

experienced stable disease for nearly two years on targeted therapy after 

progressing on two successive chemotherapy protocols, including temozolomide.  

Critically, NTRK fusion cases were also found to respond to targeted inhibitors in 

patient-derived models in vitro as well as in children treated clinically, in common 

with isolated reported cases (35), whereby for example a 3-year-old girl who had 

failed multiple therapies including chemotherapy and radiotherapy showed near total 

resolution of primary and metastatic lesions after treatment with larotrectinib. If 

validated in larger trials, such agents may represent attractive options in order to 

spare the long-term sequalae of chemotherapy and radiotherapy, whilst maintaining 

the generally good prognosis of these patients (27,30,33).  

 

Despite the frequency of alterations identified, not all of the intrinsic infant gliomas 

were found to harbor RTK fusions. These fusion-negative cases (at least on the 

basis of the platforms used in this study) had a lower proliferation index compared to 

NTRK-positive cases, but a worse prognosis under standard treatment. Although we 

could identify no apparent recurrent genetic driver of this subgroup, even with whole 

genome sequencing of a subset of cases, there were clear epigenetic differences 

compared to fusion-positive cases, with dysregulated gene networks associated with 

the regulation of stem cell pluripotency, plausibly suggesting an immature progenitor 

cell phenotype for these genetically bland lesions. By contrast, NTRK-fusion cases 

were associated with an embryonic, neuronal developmental programme, and ALK-

fusion cases with later AMPA-receptor synaptic plasticity signatures.  
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Further work is needed to explore all intrinsic infant glioma subgroups, in particular 

the fusion-negative cases. However, it is clear that these tumors harbor unique 

biology with associated clinicopathological differences, and should no longer be 

diagnosed or treated in the same way as their older counterparts. Maximal safe 

surgical resection remains the aim of treatment, regardless of subtype (17). However, 

our study has shown that RTK fusions can be found across all subgroups (although 

more frequently seen in the IHG group) and so screening (initially via copy number 

profiling with subsequent validation) will help to identify patients who may be eligible 

for targeted therapy or clinical trials. 
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Methods 

 

Cases 

All patient samples included were classified as gliomas (WHO grade II, III or IV) aged 

<4 years old (including congenital cases) from all CNS locations (including spinal 

tumors). Cases were excluded if they had been diagnosed as a pilocytic astrocytoma 

with a known BRAF fusion or mutation. Ependymal, embryonal, mesenchymal and 

germ cell tumors were also excluded. Samples were received from national (Great 

Ormond Street Hospital, London, n=33; King’s College Hospital, London, n=21; 

University Hospitals Bristol, n=9; Newcastle Royal Infirmary, n=6; St George’s 

Hospital, London, n=4) and international collaborators (German Cancer Research 

Center (DKFZ), n=86; Ospedale Pediatrico Bambino Gesù, n=37; St Jude Children’s 

Research Hospital, Memphis, n=17; Memorial Sloan Kettering Cancer Center, New 

York, n=6; Queensland Children’s Tumor Bank, Brisbane, n=5; Universitätsklinikum 

Hamburg-Eppendorf, n=5; Children’s Cancer Institute, Sydney, n=2; Children’s 

Hospital of Wisconsin, n=2; Emory University Hospital, Atlanta, n=1; St. Petersburg 

Hospital No. 6, n=1; Wake Forest School of Medicine, Winston-Salem, n=1; The 

Chinese University of Hong Kong, n=1; Children’s National Medical Centre, 

Washington DC, n=1; Chaim Sheba Medical Center, Tel Aviv, n=1; Oregon Health & 

Science University, Portland, n=1; University of Ljubljana, n=1). Where possible an 

H&E slide, 10 unstained sections, formalin-fixed paraffin-embedded (FFPE) tissue 

rolls, or frozen tissue was provided for each case. In some cases, data alone was 

provided. A total of 241 cases were entered into the study. Eight cases from King’s 

College and St George’s Hospital London (8), and ten cases from St Jude Children’s 

Hospital Memphis (9) have been previously published. All patient samples were 

collected under full Research Ethics Committee approval at each participating centre. 
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Nucleic acid extraction 

DNA was extracted from frozen tissue by homogenisation prior to following the 

DNeasy Blood & Tissue kit protocol (QIAGEN, Hilden, Germany). DNA was extracted 

from formalin-fixed, paraffin-embedded (FFPE) pathology blocks after manual 

macrodissection using the QIAamp DNA FFPE tissue kit protocol (QIAGEN). 

Concentrations were measured using a Qubit fluorometer (Life Technologies, Paisley, 

UK). RNA was extracted by following the RNeasy Mini Kit protocol (QIAGEN), and 

quantified using a Nanodrop 2000 Spectrophotomer (Thermo Scientific). 

 

Methylation profiling 

The quantity and quality of DNA varied between cases with FFPE samples yielding 

less (range for FFPE: 11.0 – 2960.0ng, range for fresh frozen: 211.0 - 5358.0ng). 

Methylation analysis was performed when >150ng of DNA was extracted, using 

either Illumina 450K or EPIC BeadArrays at DKFZ (Heidelberg), University College 

London (UCL) Great Ormond Street Institute of Child Health or St. Jude Children’s 

Research Hospital. Data from Illumina 450k or EPIC arrays was pre-processed using 

the minfi package in R (v11b4). DNA copy number was recovered from combined 

intensities using the conumee package. The Heidelberg brain tumor classifier 

(molecularneuropathology.org) (40) was used to assign a calibrated score to each 

case, associating it with one of the 91 tumor entities which feature within the current 

classifier (v4). Clustering of beta values from methylation arrays was performed 

based upon correlation distance using a ward algorithm. DNA copy number was 

derived from combined log2 intensity data based upon an internal median processed 

using the R packages minfi and conumee to call copy number in 15,431 bins across 

the genome. Gene ontology analysis of differentially methylated regions was carried 

out using methylGSA (rdrr.io/bioc/methylGSA/), adjusting the number of CpGs for 

each gene by weighted resampling and Wallenius non-
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central hypergeometric approximation in methylgometh (63). Ontology networks were 

constructed using ShinyGO (bioinformatics.sdstate.edu/go/). 

 

 

Fusion panel 

A custom fusion panel consisting of 22 genes associated with fusions in paediatric 

brain tumors (ALK, BCOR, BRAF, c11orf95, C19MC, CIC, ETV6, FGFR1-3, FOXR2, 

KIAA1549, MET, MN1, MYB, MYBL1, NTRK1-3, RAF, RELA, TPM3 and YAP1) was 

designed with a library of probes to ensure adequate coverage of the specified 

regions (Roche Sequencing Solutions) (64). Where available, 100-200ng of DNA 

was used for library preparation using KAPA Hyper and HyperPlus Kit (Kapa 

Biosystems) and SeqCap EZ adaptors (Roche). Following fragmentation, DNA was 

end-repaired, A-tailed and indexed adaptors ligated. DNA was amplified, multiplexed 

and hybridized using 1ug of the total pre-capture library DNA. After hybridisation, 

capture libraries were amplified and sequencing was performed on a MiSeq and 

NextSeq (Illumina). Quality control (QC), variant annotation, deduplication and 

metrics were generated for each sample. The raw list of candidates provided by 

Manta (https://github.com/Illumina/manta) were filtered for more than 2 reads 

covering both genes, common false positive base pairs (bp) positions/fusions outside 

of the capture set at both ends, common breakpoint/false positives within 10 bp, 

common false positive gene pairs, fusions within the same gene and homologous 

sequences greater than 10bp. Breakdancer was used to confirm all the breakpoints 

in all samples. Sequences either side of the break points were annotated to look for 

repetitive elements. A BLAT score was obtained to remove loci which were not 

uniquely mapped. Integrative Genomics Viewer (IGV) was used to view the fusions.  
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DNA and RNA sequencing 

DNA was sequenced either as whole genome or captured using Agilent SureSelect 

whole exome v6 or a custom panel of 329 genes known to present in an unselected 

series of paediatric high grade glioma (8). Library preparation was performed using 

50-200 ng of genomic DNA. Following fragmentation, DNA was end-repaired, A-

tailed and indexed adapters ligated. DNA was amplified, multiplexed and hybridized 

using 1 µg of total pre-capture library. After hybridization, capture libraries were 

amplified and sequencing was performed on a NextSeq500 (Illumina) with 2 x 150bp, 

paired-end reads following manufacturer’s instructions. Ribosomal RNA was 

depleted from 500-2000 ng of total RNA from FF and FFPE using NEBNext rRNA 

Depletion Kit. Following First strand synthesis and directional second strand 

synthesis resulting cDNAs were used for library preparation using NEBNext Ultra II 

Directional RNA library prep kit for Illumina performed as per the manufacturers 

recommendations. Exome capture reads were aligned to the hg19 build of the 

human genome using bwa v0.7.12 (bio-bwa.sourceforge.net), and PCR duplicates 

removed with PicardTools 1.94 (pcard.sourceforge.net). Single nucleotide variants 

were called using the Genome Analysis Tool Kit v3.4-46 based upon current Best 

Practices using local re-alignment around InDels, downsampling and base 

recalibration with variants called by the Unified Genotyper (broadinstitute.org/gatk/). 

Variants were annotated using the Ensembl Variant Effect Predictor v74 

(ensembl.org/info/docs/variation/vep) incorporating SIFT (sift.jcvi.org) and PolyPhen 

(genetics.bwh.harvard.edu/pph2) predictions, COSMIC v64 (sanger.ac.uk/ 

genetics/CGP/cosmic/), dbSNP build 137 (ncbi.nlm.nih.gov/sites/SNP), ExAc and 

ANNOVAR annotations. RNA sequences were aligned to hg19 and organized into 

de-novo spliced alignments using bowtie2 and TopHat version 2.1.0 

(ccb.jhu.edu/software/tophat). Fusion transcripts were detected using chimerascan 

version 0.4.5a filtered to remove common false positives.  
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PCR / Sanger sequencing validation 

PCR to validate fusion breakpoints was carried out using primers obtained from 

Integrated DNA Technologies (Illinois, USA). PCR products were cleaned using the 

ExoProStar S 20 (Sigma-Aldrich) and were sent for Sanger sequencing (DNA 

Sequencing and Services, University of Dundee, UK). Sequences were analysed 

manually with 4Peaks (Nucleobytes, Aalsmeer, Netherlands). 

 

NanoString gene expression analysis 

The top 30 genes with the most differentially methylated regions between ALK-fusion, 

NTRK-fusion and fusion negative cases were selected for an mRNA expression 

analysis using a custom nCounter platform and nDesign (NanoString, Seattle, WA, 

USA).  Specimen RNA was mixed in hybridization buffer with CodeSets and 

hybridized  overnight at 65°C. Samples wash reagents and imaging cartridge were 

processed on the nCounter Prep Station and imaged on the nCounter Digital 

Analyzer according to the manufacturer’s instructions. Data were normalised with 

NanostringNorm v1.2.1 using variance stabilizing normalization (VSN). Heatmaps 

were made by clustering the median centred expression values or a correlation 

matrix based on Euclidean distance using a Ward D2 algorithm.  

 

Immunofluorescence 

Paraffin-embedded tissue sections were deparaffinized in three changes of xylene 

and ethanol. Heat-mediated antigen retrieval was performed (Dako S1699, pH 6.0) 

and tissue slides were permeabilized with 0.5% Triton X-100 solution for 10 min at 

room temperature and then blocked with appropriate serum according to the species 

of secondary antibody for 1 h at room temperature. For STAT1 staining (AHO0832, 

Invitrogen, 1:800), Alexa Fluor 488 Tyramide Super Boost Kit was used (B40941, 

Invitrogen) and antibody was incubated at 37 °C for 30 min. For WNT5A (MA5-
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15502, Invitrogen, 1:800) and TP63 (39692, Cell signalling, 1:900) staining, samples 

were incubated at 37 °C for 30 min. Sample slides were then washed in PBS three 

times and incubated with DyLight 649 (DI-2649, Vector, 1:100) and Alexa Fluor 555 

(A31572, Invitrogen, 1:300) -conjugated secondary antibodies for an hour at room 

temperature. Nuclei were counterstained with DAPI and samples mounted with 

Vectashield (H1000, Vector Laboratories) and examined using Zeiss Axio Scan.Z1 

automated Fluorescence slide scanner.  

 

 

Histology and immunohistochemistry 

Histological review was undertaken according to the WHO Classification of Tumors 

of the Central Nervous System (2016) (65). Each case was reviewed blinded to the 

molecular features with a predetermined set of criteria to assess for the presence of 

histological features characteristic of gliomas such as necrosis, mitotic figures, 

stromal and astrocytic morphology. Any unusual features not previously associated 

with these tumors, including unusual nuclear morphology was noted. These features 

were then re-reviewed in the context of any molecular results identified. 

Immunohistochemistry for Ki67 (M7240, DAKO, 1:100) was carried out using 

pressure-mediated antigen retrieval and the EnvisionTM detection system (DAKO 

K5007). Slides were mounted using Leica CV Ultra mounting medium, imaged using 

the high throughput-scanning microscope AxioScan Z1 and quantified using 

Definiens software. 

 

Novel ALK fusion mouse model 

A PPP1CB:ALK fusion construct was cloned into either an RCAS or a pT2K vector 

using RNA from a human glioma sample as template. After cDNA synthesis and 

PCR amplification, the ends of the product were cut with EcoRI and XhoI (for cloning 

into pT2K) or NotI and ClaI (for RCAS) and ligated into the target vector using the 
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Takara Ligation mixture (Clontech). Bacterial amplification and QIAprep® Spin 

Miniprep kit (QIAGEN) were performed according to manufacturer’s instructions to 

isolate the cloned plasmid. The DNA was sequenced using Sanger Sequencing at 

GATC Biotech (Heidelberg, Germany) and protein expression was confirmed on 

Western Blot after transfection of DF-1 cells with the vector. 

 

In utero electroporation: After confirming that the expression vector contained the 

right inserts, embryos of CD1 mice were injected with plasmid into the fourth ventricle 

and electroporated in utero at E14.5. The PPP1CB:ALK fusion plasmid was used 

alone or in combination with CRISPR guide RNAs against Cdkn2a. Due to the 

incorporated IRES-Luciferase reporter on the pT2K vector, mice with successful 

integration of the transgene could be assessed at postnatal day 3 using 

bioluminescence imaging on an IVIS imager (PerkinElmer). Mice were sacrificed 

upon first signs of tumor-related symptoms according to humane endpoint criteria. 

H&E and IHC staining was performed according to standard protocols on 3µm 

sections. 

 

RCAS: Four days before the calculated birth date, early passage DF-1 fibroblasts for 

virus production were plated at 2-3x105 cells/ T25 flask in 5ml DMEM with 10% FCS 

+ 1% Penicillin/Streptomycin (P/S) + 1% Glutamax at 5% CO2 at 39°C. One day after, 

the cells were transfected with the RCAS construct as follows: 4µg of the RCAS 

plasmid was incubated in 200µl of room-temperature Optimem and 10µl FuGene 

transfection reagent. After a 15-minute incubation time, this mixture was slowly 

added to the settled DF-1 cells, mixed well by gently moving the flask and placed 

back in the incubator. An RCAS-GFP plasmid was always run in parallel in a 

separate flask to check for transfection success. On the day of birth, the transfected 

DF-1 cells were harvested using 10x Trypsin-EDTA and counted using the 

automated cell counter TC20™. 4x105 cells in 1µl were used for injection into 
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newborn Ntv-a;Cdkn2a-/-;Ptenfl/fl pups at p0. The required amount of cells, depending 

on the size of the litter, was eluted in DMEM culture medium. The pups were taken 

out of the cage in a sterile hood and injected into the striatum with 1µl of the DF-1 

cell solution using a 10µl Hamilton syringe. Mice were sacrificed upon first signs of 

tumor-related symptoms according to humane endpoint criteria. All animal protocols 

were approved by the relevant authority (Regierungspräsidium Karlsruhe) under 

registration numbers G-212/16 and G-168/17.  

 

In vitro culture and compound testing of murine tumor cells 

Murine ALK fusion-positive tumors were dissected immediately post mortem, 

mechanically dissociated and then filtered through a 40µm cell strainer. Cells were 

then plated in vitro in 10cm dishes and grown as spheres in a 1:1 mix of Neurobasal-

A and DMEM/F-12 media containing 1% 1M HEPES buffer solution, 1% 100mM 

sodium pyruvate MEM, 1% 10mM MEM non-essential amino acids solution, 1% 

GlutaMAX and 1% antibiotic-antimycotic supplemented with 2% B27, 2µg/ml heparin 

solution, 10ng/ml H-PDGF-AA, 20ng/ml recombinant human bFGF and 20ng/ml 

recombinant human EGF. For splitting, cells were dissociated with Accumax at 37°C 

for 5 minutes. 

 

For in vitro drug testing, primary sphere culture cells were plated at 1x104 cells/well in 

80µl growth factor-containing medium/well in 96-well plates. Triplicates per drug 

concentration (20µl total volume for each) were added 24 hours after seeding the 

cells. The drug concentrations ranged between 1nM and 30µM. Corresponding 

DMSO concentrations were plated as controls, to which the treated wells were 

normalized. The ALK inhibitors crizotinib, alectinib, ceritinib and lorlatinib were used. 

All compounds were purchased from Selleck Chemicals and initially diluted in DMSO 

to either a 10mM or 1mM stock, which were stored at -80°C. A CellTiter-Glo assay 

(Promega) was used as a readout of compound efficacy. This assay was conducted 
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72 hours after drugs were added to the cells. For this purpose, 50µl of CellTiter-Glo 

substrate were added to each well using a multichannel pipette, and plates were 

incubated for 15 minutes whilst shaking in the dark. After that time, the luminescence 

signal per well was measured using a Mithras LB940 microplate reader. The 

respective DMSO control value was subtracted from the drug’s value to normalize 

the readout. The GI50 curves show the mean ± SD of the triplicates per condition 

measured. Representative results from duplicate experiments are shown. 

 

Western blot analysis 

Cells were incubated in complete media with vehicle or increasing concentrations of 

Entrectinib (0.1, 1, 10 µM) and protein was collected 4h post-treatment. Samples 

were lysed by using lysis buffer (CST) containing phosphatase inhibitor cocktail 

(Sigma, Poole, UK) and protease inhibitor cocktail (Roche Diagnostics, Burgess Hill, 

UK). Following quantification using Pierce BCA Protein Assay Kit (Thermo Fisher), 

cell extracts were loaded for Western blot analysis. Membranes were incubated with 

primary antibody (1:1000) overnight at 4 °C, and horseradish peroxidase secondary 

antibody (Amersham Bioscience, Amersham, UK) for 1 h at room temperature. Signal 

was detected with ECL Prime western blotting detection agent (Amersham 

Biosciences), visualised using Hyperfilm ECL (Amersham Biosciences) and analysed 

using an X-ray film processor in accordance with standard protocols. Primary 

antibodies used were phospho-AKT (Ser473) (CST# 4060), phospho-p44/42 

(Thr202/Tyr204) (CST#4370), AKT (CST#9272), p44/42 (CST#9102), GAPDH 

(CST#2118), all Cell Signalling (Danvers, MA, USA). 

 

In vivo compound testing 

To test the effectiveness of ALK inhibition in vivo, 6 week old CD1 mice were 

intracranially allografted with 5x 105 mouse PPP1CB:ALK tumor cells (see above) in 

order to give a more standardized latency of tumor formation and to ensure avoid 
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having to administer treatment to very young animals. The chosen inhibitor was 

lorlatinib based on the in vitro results, as well as HCl and temozolomide as vehicle 

control and standard-of-care, respectively. Dosing and treatment schedules were as 

previously described (66). Tumor growth was monitored using bioluminescence 

imaging on an IVIS imager (PerkinElmer). The tumors were allowed to develop for 

two weeks before animals were stratified into three treatment groups based on their 

luciferase signal (rank 1, 4, 7 etc. being assigned to lorlatinib, rank 2, 5, 8 etc. to 

temozolomide, and rank 3, 6, 9 etc. to vehicle control). Animals were monitored daily 

for symptoms or abnormal behavior and weighed three times a week, and were 

sacrificed upon first signs of tumor-related symptoms according to humane endpoint 

criteria. 

 

Novel patient-derived NTRK fusion models 

Each cell culture was initiated using the following method; tissue was first minced 

using a sterile scalpel followed by enzymatic dissociation with LiberaseTL for 10 min 

at 37°C. Cells were grown under stem cell conditions, as two-dimensional (2D) 

adherent cultures on laminin and laminin/fibronectin. Cells were cultured in a serum-

free medium, Tumor Stem Media (TSM) consisting of 1:1 Neurobasal(-A), and 

DMEM:F12 supplemented with HEPES, NEAA, Glutamaxx, sodium pyruvate and 

B27(-A), human bFGF (20ng/mL), human-EGF (20ng/mL), human PDGF-AA 

(10ng/mL) and PDGF-BB (10ng/mL) and heparin (2ng/mL). Control lines QCTB-

R006 (9.5 years, male, frontal lobe GBM, wildtype) and QCTB-R059 (10.4 years, 

female, thalamic, H3F3AK27M mutant) were also grown as adherent cultures 

(laminin and laminin-fibronectin). Cells were dissociated enzymatically with accutase 

and counted using a Beckman-Coulter ViCell cell viability analyser.  

 

For intracranial implantation, all experiments were performed in accordance with the 

local ethical review panel, the UK Home Office Animals (Scientific Procedures) Act 
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1986, the United Kingdom National Cancer Research Institute guidelines for the 

welfare of animals in cancer research and the ARRIVE (Animal Research: Reporting 

In Vivo Experiments) guidelines (67,68). Single cell suspensions were obtained 

immediately prior to implantation in NOD.Cg-Prkdcscid Il2rgtm1WjI/SzJ (NSG) mice 

(Charles River, UK). Animals were anesthetized with intraperitoneal ketamine 

(100mg/kg)/xylazine(16mg/kg) and maintained under 1% isoflurane (0.5L/min). 

Animals were depilated at the incision site and Emla cream 5%(lidocaine/prilocaine) 

was applied on the skin. A subcutaneous injection of buprenorphine (0.03mg/Kg) 

was given for general analgesia. The cranium was exposed via midline incision 

under aseptic conditions, and a 31-gauge burr hole drilled above the injection site. 

Mice were then placed on a stereotactic apparatus for orthotopic implantation. The 

coordinates used for the cortex were  x=-2.0, z=+1.0, y=-2.5mm from bregma. 

300,000 cells in 5µL were stereotactically implanted using a 25-gauge SGE standard 

fixed needle syringe (SGE™ 005000) at a rate of 2μl/min using a digital pump 

(HA1100, Pico Plus Elite, Harvard Apparatus, Holliston, MA, USA). At the completion 

of infusion, the syringe needle was allowed to remain in place for at least 3 minutes, 

and then manually withdrawn slowly to minimize backflow of the injected cell 

suspension. An intraperitoneal (IP) injection of the reversing agent atipamezole 

(1mg/kg) diluted in Hartmann’s solution for rehydration was administered. Mice were 

monitored until fully recovered from surgery and given Carprofen (analgesia) in a gel 

diet for 48 hours post-surgery. Mice were weighed twice a week and imaged by 1H 

magnetic resonance imaging (MRI) on a horizontal bore Bruker Biospec 70/20 

system (Ettlingen, Germany) equipped with physiological monitoring equipment (SA 

Instruments, Stony Brook, NY, USA) using a 2cm x 2cm mouse brain array coil. 

Anaesthesia was induced using 3% isoflurane delivered in oxygen (1l/min) and 

maintained at 1-2%. Core body temperature was maintained using a thermo-

regulated water-heated blanket.  
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In vitro compound testing of patient-derived cells 

Cells were seeded (3000-5000 cells per well) into laminin or laminin-fibronectin 

coated 96-well plates and treated with different Trk inhibitors at concentration ranging 

from 0 to 20uM for 8 days. The drugs used were entrectinib (RXDX-101, 

Selleckchem), crizotinib (PF-02341066, Selleckchem) and milciclib (PHA-848125, 

Selleckchem). Each assay was performed in three independent biological replicates 

of three technical replicates each. Cell viability was assessed with Cell Titer-Glo 

using a FLUOstar Omega plate reader (BMG, LABTECH). Data was analysed and 

IC50 values were calculated using GraphPad Prism software. 

 

Statistics 

Statistical analysis was carried out using R 3.5.0 (www.r-project.org) and GraphPad 

Prism 7. Categorical comparisons of counts were carried out using Fishers exact test, 

comparisons between groups of continuous variables employed Student’s t-test or 

ANOVA. Univariate differences in survival were analysed by the Kaplan-Meier 

method and significance determined by the log-rank test. All tests were two-sided 

and a p value of less than 0.05 was considered significant. 

 

Data availability 

All newly generated data have been deposited in the European Genome-phenome 

Archive (www.ebi.ac.uk/ega) with accession number EGAS00001003532 

(sequencing) or ArrayExpress (www.ebi.ac.uk/arrayexpress/) with accession 

numbers E-MTAB-7802 and E-MTAB-7804 (methylation arrays). Curated gene-level 

copy number, mutation data and RNAseq data are provided as part of the paediatric-

specific implementation of the cBioPortal genomic data visualization portal 

(pedcbioportal.org).   
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Legends for Figures 

 

Figure 1 – Defining an intrinsic set of infant gliomas. (A) Flow diagram providing an 

overview of the inclusion and exclusion criteria for the assembled cohort of 241 

samples from patients under the age of 4 years. (B) Fusion gene analysis by a 

variety of means allowed for the identification of 28 fusions marking clearly defined 

entities that were subsequently excluded from further analysis. (C) Methylation array 

profiling and analysis by the Heidelberg classifier excluded a further 12 cases closely 

resembling non-glioma entities or failing quality control (n=9). (D) t-statistic based 

stochastic neighbor embedding (tSNE) projection of the remaining cases highlighted 

61 samples which clustered with previously reported high or low grade glioma 

subtypes, leaving an intrinsic set of 130 infant gliomas for further characterisation by 

more histopathological assessment and in-depth sequencing. (E) Anatomical location 

of infant gliomas after exclusion of pathognomonic fusions and non-glioma entities by 

methylation profiling (n=130). Left – sagittal section showing internal structures; right 

– external view highlighting cerebral lobes. Each circle represents a single case and 

is colored by the glioma subgroup it most closely clusters with, defined by the key 

below. (F) Kaplan-Meier plot of overall survival of cases separated by methylation 

subgroups DIGG (desmoplastic infantile ganglioglioma / astrocytoma), IHG (infant 

hemispheric glioma), LGG (other low grade glioma subgroups) and HGG (other high 

grade glioma subgroups) (n=102).  P value is calculated by the log-rank test 

(p=0.0566 for HGG versus rest). (G) t-statistic based stochastic neighbor embedding 

(t-SNE) projection of a combined methylation dataset comprising the intrinsic set of 

the present study (n=130, circled) plus a reference set of glioma subtypes (n=1652). 

The first two projections are plotted on the x and y axes, with samples represented 

by dots colored by subtype according to the key provided.  
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Figure 2 – Mutations in infant gliomas. (A) Oncoprint representation of an integrated 

annotation of single nucleotide variants, DNA copy number changes and structural 

variants for infant gliomas excluded as other subgroups (n=24). (B)  Oncoprint 

representation of an integrated annotation of single nucleotide variants, DNA copy 

number changes and structural variants for infant gliomas in the intrinsic set (n=41).  

Samples are arranged in columns with genes labelled along rows. 

Clinicopathological and molecular annotations are provided as bars according to the 

included key.  

 

Figure 3 - Copy number-associated fusion genes in infant gliomas. (A) Segmented 

DNA copy number heatmap for ALK breakpoint cases, plotted according to 

chromosomal location. Pink, gain; blue, loss. (B) Segmented DNA copy number 

heatmap for ROS1 breakpoint cases, plotted according to chromosomal location. 

Pink, gain; blue, loss. (C) Segmented DNA copy number heatmap for MET 

breakpoint cases, plotted according to chromosomal location. Pink, gain; blue, loss. 

(D) ETV6:NTRK3. Cartoon representation of the fusion structure, with reads on either 

side of the breakpoint colored by gene partner and taken from an Integrated Genome 

Viewer (IGV) snapshot. Below this is a Sanger sequencing trace spanning the 

breakpoint. Underneath are copy number plots (log2 ratio, y axis) for chromosomal 

regions spanning the breakpoints (x axis). Points are colored red for copy number 

gain, blue for loss, and grey for no change. The smoothed values are overlaid by the 

purple line. (E) ZC3H7A:ALK. Cartoon representation of the fusion structure, with 

reads on either side of the breakpoint colored by gene partner and taken from an 

Integrated Genome Viewer snapshot. Below this is a Sanger sequencing trace 

spanning the breakpoint. Underneath are copy number plots (log2 ratio, y axis) for 

chromosomal regions spanning the breakpoints (x axis). Points are colored red for 

copy number gain, blue for loss, and grey for no change. The smoothed values are 

overlaid by the purple line. (F) Circos plot of gene fusions targeting NTRK1 (light 
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orange), NTRK2 (orange) and NTRK3 (dark orange). Lines link fusion gene partners 

according to chromosomal location, represented by ideograms arranged around the 

circle. (G) Circos plot of gene fusions targeting ALK (dark blue). Lines link fusion 

gene partners according to chromosomal location, represented by ideograms 

arranged around the circle. (H) Kaplan-Meier plot of overall survival of cases 

separated by fusion event (n=63).  P value is calculated by the log-rank test (p=0.085 

for any fusion versus None).  

 

Figure 4 – Epigenetic alterations in fusion-positive and -negative infant gliomas. (A) 

Differential methylation-based gene ontology analysis for ALK-fusion cases, 

represented in barplots of -log10 p value for labelled highest scoring categories (top) 

and aggregated ontology networks (bottom). (B) Differential methylation-based gene 

ontology analysis for NTRK-fusion cases, represented in barplots of -log10 p value 

for labelled highest scoring categories (top) and aggregated ontology networks 

(bottom). (C) Differential methylation-based gene ontology analysis for fusion-

negative cases, represented in barplots of -log10 p value for labelled highest scoring 

categories (top) and aggregated ontology networks (bottom). Node size is 

proportional to the number of genes, shading represents -log10 p value (darker is 

higher). Thickness of connecting lines reflects the percentage of overlapping genes. 

(D) Genome browser view of the WNT5A locus, with lower methylation, provided as 

barplots, in selected ALK-fusion (blue) cases compared to NTRK-fusion (orange) and 

fusion-negative (grey) cases. (E) Genome browser view of the STAT1 locus, with 

lower methylation, provided as barplots, in selected NTRK-fusion (orange) cases 

compared to ALK-fusion (blue) and fusion-negative (grey) cases. (F) Genome 

browser view of the TP63 locus, with lower methylation, provided as barplots, in 

selected fusion-negative (grey) cases compared to ALK-fusion (blue) and NTRK-

fusion (orange) cases. Chromosomal ideograms are provided with the red bar 

indicating the cytoband in which the locus is found. Differentially methylated probes 
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are highlighted by the red box. (G) Immunofluorescent staining of an antibody 

directed against WNT5A (white) in an EML4:ALK fusion infant glioma case, 

UOLP_INF_001. DAPI is used as a counterstain. Scale bar = 200µM. (H) 

Immunofluorescent staining of an antibody directed against WNT5A (green) in an 

ETV6:NTRK3 fusion infant glioma case, GOSH_INF_007. DAPI is used as a 

counterstain. Scale bar = 200µM. (I) Heatmap representing gene expression values 

from a NanoString assay of 30 most differentially methylated genes between ALK-

fusion (blue), NTRK-fusion (orange) and fusion-negative (grey) cases. Expression 

values are colored according to the scale provided.  

 

Figure 5 - Pre-clinical modelling of ALK-fused glioma. (A) Schematic representation 

of the in vivo modelling workflow. IUE, in utero electroporation; KD, kinase domain. 

(B) Kaplan-Meier curve of injected animals using IUE and p0-RCAS method – 

PPP1CB:ALK only IUE, PPP1CB:ALK + Trp53-ko IUE, PPP1CB:ALK + Cdkn2a-ko 

IUE and PPP1CB:ALK p0-RCAS only. *, p<0.05, **, p<0.01 (C, D) Effect of targeted 

ALK inhibition on growth of allografted PPP1CB:ALK + Cdkn2a-ko mouse tumor cells 

in vivo. p.i., post injection. (E) Targeted inhibition significantly prolonged the survival 

of PPP1CB:ALK + Cdkn2a-ko allografted mice compared with temozolomide or 

vehicle controls. Two mice in the lorlatinib group were sacrificed due to technical 

complications with drug delivery, with no tumor being evident upon dissection of the 

brain. ***, p<0.001. (F) Clinical history of DKFZ_INF_307, with confirmed 

MAD1L1:ALK fusion. Timeline of clinical interventions is provided below, with 

treatment shaded in grey. Axial T2 MRI scans from diagnosis and successive 

surgeries and chemotherapeutic regimens are provided, in addition to treatment with 

the ALK inhibitor ceritinib, with tumor circled in red. 
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Figure 6 – Preclinical and clinical experience with Trk inhibitors in fusion-positive 

infant glioma. (A) Light microscopy image of two patient-derived infant glioma cell 

cultures, harboring either TPM3:NTRK1 (QCTB-R102, light orange) or ETV6:NTRK3 

(QCTB-R077, dark red) fusions. (B) Concentration-response curves for three Trk 

inhibitors tested against two NTRK fusion-positive infant glioma cell cultures (QCTB-

R102, TPM3:NTRK1, light orange; QCTB-R077, ETV6:NTRK3, dark red) and two 

fusion-negative glioma cultures (QCTB-R006, light grey; QCTB-R059, dark grey). 

Concentration of compound is plotted on a log scale (x axis) against cell viability (y 

axis). Mean plus standard error are plotted from at least n=3 experiments. (C) 

Clinical history of OPBG_INF_035, with confirmed ETV6-NTRK3 fusion. Timeline of 

clinical interventions is provided below, with Trk inhibitor treatment shaded in grey. 

Diagnosis, post-biopsy, pre/post-surgery, post-crizotinib and post-larotrectinib axial 

T2 MRI scans are provided, with tumor circled in red. (D) Clinical history of 

MSKC_INF_006, with confirmed ETV6:NTRK3 fusion. Timeline of clinical 

interventions is provided below, with Trk inhibitor treatment shaded in grey. 

Diagnosis and post-larotrectinib post-contrast axial T1 MRI scans are provided, with 

tumor circled in red.   

 

Figure 7 – Summary of infant HGG subgroups.  
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