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deregulating IGFBP5 expression 
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Abstract 

Breast cancer is the most diagnosed malignancy and the second leading cause of cancer 

mortality in females (1). Previous association studies have identified variants on 2q35 

associated with the risk of breast cancer (2-5). To identify functional susceptibility loci 

for breast cancer, we interrogated the 2q35 gene desert for chromatin architecture and 

functional variation correlated with gene expression. We report an intergenic enhancer 

copy number variation (enCNV; deletion) located approximately 400Kb upstream to 

IGFBP5, which overlaps an intergenic ERα-bound enhancer that loops to the IGFBP5 

promoter. The enCNV is correlated with modified ERα binding and monoallelic-

repression of IGFBP5 following estrogen treatment. We investigated the association of 

enCNV genotype with breast cancer in 1,182 cases and 1,362 controls, and replicate our 

findings in an independent set of 62,533 cases and 60,966 controls from 41 case control 

studies and 11 GWAS. We report a dose-dependent inverse association of 2q35 enCNV 

genotype (percopy OR=0.68 95%CI 0.55‐0.83, P=0.0002; replication OR=0.77 95%CI 

0.73-0.82, P=2.1x10
-19

) and identify 13 additional linked variants (r
2
>0.8) in the 20Kb 

linkage block containing the enCNV (P=3.2x10
-15

 - 5.6x10
-17

). These associations were 

independent of previously reported 2q35 variants, rs13387042 and rs16857609, and were 

stronger for ER-positive than ER-negative disease. Together, these results suggest that 

2q35 breast cancer risk loci may be mediating their effect through IGFBP5.  
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Introduction 

The 2q35 risk locus falls within a 400Kb gene desert bounded by genes TNP1 

(MIM: 190231) and DIRC3 (MIM: 608262), nearby two members of the insulin growth 

factor binding protein family, IGFBP5 (MIM: 146734) and IGFBP2 (MIM: 146731). 

IGFBP5 plays a critical role in mammary development (6, 7) and has been consistently 

implicated in tumorigenesis (6-10).The neighboring intergenic region contains the 

previously identified breast cancer (MIM: 114480) risk loci, rs13387042 (3) (Genbank: 

NC_000002 g.217041109A>G), rs16857609 (2)(Genbank: NC_000002 

g.217431785C>T), and rs4442975(5) (Genbank: NC_000002 g.217920769G>T) as well 

as numerous intergenic enhancers, of which many whose function remains elusive.   

 We sought to identify intergenic variation that may affect the estrogen-mediated 

transcriptional regulation IGFBP5 and to contribute to the understanding of functional 

chromatin architecture at the 2q35 risk locus.  
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Results 

To evaluate the possibility that IGFBP5 transcription is regulated by a distal 

enhancer within the 2q35 gene desert, we investigated the chromatin interaction profile 

across the 2q35 gene desert with the IGFBP5 promoter using chromosome conformation 

capture (3C) (11) in the MCF7 breast cancer cell line. Results of this interaction analysis 

indicated strong physical proximity of the IGFBP5 promoter with a region containing an 

estrogen receptor (ERα)-bound enhancer element approximately 400Kb telomeric to the 

IGFBP5 promoter (Figure 1). Sequence analysis of this intergenic looping enhancer 

revealed a 1.3 Kb copy number variation (CNV; deletion) spanning the enhancer in 

MCF7 cells (Figure S1); however, the proximal estrogen response element (ERE) was 

not deleted (Figure 2A). We examined the implications of this enCNV on ERα binding 

activity using chromatin immunoprecipitation coupled with allele-specific qPCR (ChIP-

qPCR). Our data revealed enhanced binding activity on the variant allele (P<0.004; 

Figure 2B), both before and after treatment with estrogen.  

We hypothesized that differential allelic-binding of ERα at the 2q35 enCNV 

would affect allele-specific IGFBP5 transcription in response to estrogen signaling. We 

investigated the effect of the polymorphic enhancer on IGFBP5 expression by tracking a 

heterozygous IGFBP5 intronic SNP (rs7565131; Genbank: NM_000599 c.338A>C) as a 

marker of allele specific expression (Figure 2C). Prior to estrogen treatment, MCF7 cells 

robustly express IGFBP5, although a majority (>95%) of expression is from the A-allele. 

Following treatment with low dose estrogen, the abundance of IGFBP5 nuclear RNA 

(rs7565131-A) is markedly reduced at 1 hour, relative to vehicle treated cells (P=0.027). 
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This pattern of monoallelic repression is sustained at 24 hours of exposure to estrogen 

(P=0.014).  

To resolve the question of ERα binding at this site being repressive of IGFBP5-A 

versus merely upregulating IGFBP5-C, we utilized a transactivator-fused nuclease-

defective CRISPR system (13) to activate specific genomic sites in 2q35. We 

hypothesized that if ERα binding is repressive at this locus under normal conditions, 

when targeting a definitive transactivator molecule to this site, we would see the inverse 

transcriptional response (i.e. we expect to see an increase in IGFBP5-A relative to 

IGFBP5-C). Targeting of this construct to the IGFBP5 promoter showed no significant 

change in allelic balance (Figure S2; P=0.52 and 0.91). Targeting to the ERE at the 2q35 

enCNV shows a significant increase in IGFBP5-A expression (Figure S2; P=0.004). 

Given that the activator increases expression of IGFBP5-A and, conversely, E2-bound 

ERα acting here as a repressor decreases expression of the same IGFBP5-A allele, we 

conclude that in MCF7s the 2q35 enCNV variant allele is in cis with IGFBP5-A. 

Additionally, these findings confirm our assertion that ERα binding at this distal enhancer 

is repressive of IGFBP5 expression and suggests a functional mechanism for estrogen-

induced regulation of IGFBP5 transcription through this enhancer.  

 To investigate the hypothesis that variants, which influence IGFBP5 expression, 

may be associated with breast cancer risk, we examined the relationship of the 2q35 

enCNV with breast cancer in the Women’s Circle of Health Study (WCHS) (Table S1). 

We identified 2,134 homozygous wildtype, 368 heterozygous, and 42 homozygous 

deleted (variant) individuals with an overall genotyping rate of 92%. We observed an 

inverse association between the 2q35 enCNV and breast cancer risk overall (per copy 
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OR=0.68 95%CI 0.55‐0.83, P=0.0002; Table S2). The observed association was dose-

dependent based on number of deleted alleles in both European American (EA) (P=0.03) 

and African American (AA) women (P=0.004), with homozygous deletion carriers 

having approximately 80% decreased breast cancer risk (OR=0.22 95%CI 0.09-0.52, 

P=0.0005; Table S2). The association was consistent in both pre and post-menopausal 

women combined, however a stronger effect was observed in pre-menopausal women 

(pre-menopausal per copy OR=0.60 95%CI 0.45-0.80, P=0.001; post-menopausal per 

copy OR=0.72 95%CI 0.53-0.97, P=0.03; Table S2). Among cases with available ER 

status (74.8%), the protective effect was confined to ER-positive tumors among all 

women combined (per copy OR=0.74 95%CI 0.58-0.96, P=0.02; Table S3).  

To evaluate our association results in a larger, independent population, we 

replicated our findings in data from 46,785 cases and 42,892 controls from 41 case-

control studies genotyped with a custom array, participating in the Breast Cancer 

Association Consortium (iCOGS; 

http://ccge.medschl.cam.ac.uk/research/consortia/icogs/)(2), together with data from 11 

breast cancer GWAS, comprising 15,748 cases and 18,084 controls (2, 26) 

(http://gameon.dfci.harvard.edu/gameon/). All studies were of predominantly European 

origin and the 2q35 enCNV was not polymorphic in Asian populations in BCAC or 1000 

genomes. The 2q35 enCNV was not genotyped on the iCOGS array or in any of the 

GWAS, but the variant is present in the 1000 genomes dataset 

(http://www.1000genomes.org/). We therefore derived imputed genotypes for all variants 

across a 1Mb interval (Chr 2: 217,731,785-218,796,508; hg19) that encompassed the 

2q35 enCNV together with the flanking LD blocks containing the previously reported 

http://ccge.medschl.cam.ac.uk/research/consortia/icogs/
http://www.1000genomes.org/
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2q35 susceptibility loci, rs13387042/rs4442975  and rs16857609.  The 2q35 enCNV was 

reliably imputed in iCOGS (mean r
2
=0.74) and in eight of the GWAS (r

2
=0.54 to 0.73). 

The 2q35 enCNV was similarly associated with a reduced breast cancer risk (per copy 

OR=0.78 95%CI 0.74-0.84, P=6.9x10
-16

 in iCOGS; P=2.1x10
-19

in iCOGS+GWAS 

combined). There was weak evidence for heterogeneity (I
2
=29.29, P=0.04; Figure S3) 

largely driven by one study and the association remained highly significant after 

removing this study (OR=0.78 95%CI 0.73-0.83, P=4.1x10
-16

). The OR for homozygous 

carriers of the deletion (OR=0.88 95%CI 0.56-1.38) did not differ significantly from that 

in heterozygous carriers (OR=0.77 95%CI 0.72-0.82), but a log-additive model could not 

be rejected. The association was stronger for ER-positive (OR =0.77 95%CI 0.71-0.82, 

P=3.1x10
-13

) than ER-negative disease (OR=0.90 95%CI 0.80-1.01, P=0.09; P-

diff=0.0079; Table S4), consistent with the effect observed in our initial study and 

previously for 2q35 loci.  

The 2q35 enCNV lies in a linkage disequilibrium (LD) block of ~20Kb and 

strong sites of recombination separate it from the LD blocks containing the previously 

reported 2q35 risk loci, rs13387042/rs4442975, rs16857609; the 2q35 enCNV is 

uncorrelated with either locus (r
2
<0.01) (Figure 3). In multiple regression analysis based 

on the iCOGS data, all three loci remain highly significantly associated with disease 

(Table S5).  Only one SNP in the LD block containing the 2q35 enCNV, rs16856925 

(Genbank: NC_000002 g.217096609A>G), was genotyped on the iCOGS array. This 

SNP was highly correlated with the 2q35 enCNV (r
2
=0.90) and hence largely determined 

the imputed genotypes; rs16856925 was slightly more strongly associated with disease 

than the 2q35 enCNV (iCOGS P=3.7x10
-16

; combined P=1.2x10
-20

; Figure S4 and 
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Table S4). The most strongly associated variant in this block was rs34005590 (Genbank: 

NC_000002 g.217098337C>A; r
2
=0.93; iCOGS P=5.6x10

-17
; iCOGS+GWAS combined 

P=7.4x10
-22

; Figure 3, Table S4). Fourteen variants in this block, including rs16856925 

and 2q35 enCNV, were correlated with rs34005590 at r
2
>0.8; however, none of these 

variants could be excluded as being causal at a likelihood ratio of 100:1(27). In 

conditional analyses, no additional SNPs were associated with disease after adjustment 

for rs34005590, 2q35 enCNV, or rs16856925; thus, the association results are consistent 

with a single causal variant within the 20Kb LD block containing the 2q35 enCNV.  

 

 

Discussion 

The understanding of factors affecting breast cancer risk has grown exponentially 

in recent years. IGFBP5 and 2q35 have both been consistently implicated in cancer, 

though little was known about the nature of their interaction. Molecular studies of 

IGFBP5 have revealed its essential role in normal mammary epithelial development (6, 7, 

28, 29), contributing to the documented involvement of the IGF signaling axis in 

mammary density as a risk factor for breast cancer (30-32). A recent contemporaneous 

study describes a neighboring 2q35 breast cancer-associated variant nearby the locus we 

describe. Their intriguing and independent findings implicate an intergenic SNP in 

modifying expression of IGFBP5, however, their work focused on a narrow genomic 

region investigated in high resolution on the iCOGS array and excludes our reported risk 

locus (5). Here we shed light on the complexity of IGFBP5 transcriptional control by 

estrogen and identify a polymorphic regulatory region ~400Kb upstream that 
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differentially regulates IGFBP5 upon exposure to estrogen. Further, we utilize a 

transactivator-fused CRISPR system to evaluate 2q35 allele linkage in MCF7 cell line 

and confirm the repressive nature of ERα binding at the 2q35 enCNV. Targeting the 

wildtype sequence of the non-deleted enCNV allele results in no significant shift in the 

allelic balance. When considering the allelic preference of ERα binding at the 2q35 

enCNV, these data suggest a model where the wildtype allele performs as a less efficient 

regulator of IGFBP5 regulation, and the bulk of expression comes from the efficiently 

regulated IGFBP5-A allele. Our findings are consistent with the current understanding of 

chromatin architecture (33-35) and suggest that previously under-studied (36) larger 

CNVs, particularly in intergenic enhancers, may play a striking role in the etiology of 

disease. 
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Materials and Methods 

Cell Culture and treatments 

Cells were maintained according to manufacturer recommendation (ATCC). 

Briefly, MCF7 cells (passage 14-28) were maintained in complete DMEM (10%FBS, 

5mg/mL insulin, 0.4% penicillin-streptomycin) at 37°C in humidified chamber with 5% 

CO2. Cells were hormone starved prior to treatment for at least 48 hours in phenol red 

free media supplemented with 10% charcoal/dextran stripped FBS (Life Technologies, 

Carlsbad, CA).  Cells were treated with vehicle (DMSO) or 17β-estradiol (10nM; Sigma-

Aldrich, St. Louis, MO) for the indicated duration. 

Chromatin Conformation Capture 

Chromatin conformation capture was conducted as previously published with 

subtle modifications (11). Briefly, nuclei from 5 x 10
6
 cells were isolated and crosslinked 

in 1% formaldehyde for 10 minutes at room temperature. Washed nuclei were 

resuspended in 1x restriction enzyme buffer and digested overnight with 400U of 

restriction enzyme (HindIII; New England Biolabs Inc., Ipswich, MA). Digested nuclei 

were disrupted and diluted to a final volume of 8 mL for ligation for 2-4 hours at 16°C. 

Ligated DNA was purified and resuspended in TE (Invitrogen Inc., Carlsbad, CA). Site-

specific interactions with the “anchor” region (IGFBP5 promoter) were assayed by 

realtime quantitative PCR with 100ng 3C DNA per reaction and normalized to a 3C 

positive control library prepared as previously described (11). All experiments were 

conducted in biological triplicates and qPCR reactions as technical duplicates. BACs 

(3096A13, 2565O2, 2505P8; Invitrogen Inc., Carlsbad, CA) were grown according to 
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manufacturer recommendations and purified (PureLink HiPure; Invitrogen Inc., Carlsbad, 

CA). Primer sequences are listed in the supplementary data. 

Chromatin Immunoprecipitation 

Experiments were performed as previously described according to manufacturer 

recommendation (Upstate Biotechnologies/EMD Millipore, Billerica, MA). Briefly, 

vehicle or estrogen (10nM in DMSO, 45 minutes) treated cells were crosslinked with 1% 

formaldehyde and washed. Cells were lysed and chromatin/protein complexes sheared by 

sonication. IgG or ERα (HC-20; Santa Cruz Biotechnology Inc., Dallas, TX) was 

immunoprecipitated overnight and complexes collected with protein A/G beads for one 

hour (Dynabeads; Invitrogen Inc., Carlsbad, CA). Eluted DNAs were decrosslinked and 

purified by ethanol precipitation. Experiments were conducted in biological triplicate and 

qPCR reactions in technical duplicate. Binding activity was calculated relative to input. 

Primer sequences are listed in the supplementary data. 

Expression analysis 

Nuclei from estrogen (10nM, DMSO) or vehicle (DMSO) treated cells were 

isolated (Nuclear extraction buffer: 100mM Tris, 100mM NaCl, 0.5% NP-40) and 

nuclear-enriched RNA was extracted with Trizol (Invitrogen Inc., Carlsbad, CA). 

Residual DNA contaminants were removed by DNAse treatment (Promega Inc., 

Madison, WI) and cDNA was synthesized per manufacturers recommendation 

(FirstStrand Synthesis Kit; Invitrogen Inc., Carlsbad, CA). Expression of total IGFBP5 

was quantified by RT-qPCR with primers targeting the 3’ UTR and normalized to actin 

(Integrated DNA Technologies, Coralville, IA). Reactions performed at 95°C, 3min; and 

cycled 40x at 95°C, 15s; 61°C, 15s; 72°C, 15s, followed by melting curve analysis 



 23 

(CFX96, Bio-Rad Laboratories, Hercules, CA).  Allelic expression of IGFBP5 was 

determined by 20-cycle pre-amplification of a 700bp fragment surrounding heterozygous 

intronic rs7565131 A/C (95°C, 5min; cycled 20x 95°C, 30s; 61°C, 30s; 72°C, 30s, 

followed by a 10 min extension at 72°C). Amplified sequences were column purified 

(QIAamp PCR cleanup kit, Qiagen Inc., Valencia, CA) and detection was conducted 

using a modified RT-MAMA-qPCR with allele specific primers (12). All experiments 

were conducted in biological triplicates and qPCR reactions as technical duplicates. 

Primer sequences are listed in the supplementary data. 

CRISPR-aided analysis of allele linkage  

Briefly, MCF7 cells were grown in complete media and transfected with pAC154-

dual-dCas9VP160-sgExpression (13) (Addgene, Cambridge, MA) containing appropriate 

guide RNAs by nucleofection, per manufacturer’s recommendation (Nucleofector, Lonza 

Ltd, Basel, Switzerland). Constructs were validated by sequencing at our core facility. 

Guide RNAs targeted either IGFBP5 promoter sites (Promoter site 1: 

CTACAAACTGGCTGGCAGCC; Promoter site 2: GTTTGTACTGCAAAGCTCCT), 

the ERE nearest the 2q35 enCNV (ERE: CTGAACTGTCCTCAAGTTCT), or the 

wildtype sequence within the deleted region (enCNV site 1: 

TAGATGGATCCCTCAGAAAT; enCNV site 2: CCATAGACAGGTCTTTTTTG). 

RNA was extracted for expression analysis as described above. Data represent technical 

and biological duplicates.  

Women’s Circle of Health Study 

Study Population 
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The study was conducted using samples and data from the Women’s Circle of 

Health Study (WCHS), a case-control study designed to examine risk factors for 

early/aggressive breast cancer among African American (AA) women compared to 

American women of European descent (EA). Details of the study design, inclusion 

criteria, and collection of survey data and biospecimens have been previously described 

(14, 15). Briefly, incident breast cancer cases were identified in four boroughs of 

metropolitan New York City using hospital-based case ascertainment, and in seven 

counties in New Jersey (NJ) using population-based case ascertainment through the NJ 

State Cancer Registry, a participant of the National Cancer Institute’s Surveillance, 

Epidemiology, and End Results (SEER) program. Cases were women recently diagnosed 

with primary, histologically confirmed breast cancer with no previous history of cancer 

except for non-melanoma skin cancer who self-identified as AA or EA, 20-75 years of 

age, and were English speaking. Controls were frequency matched to cases by self-

reported race and 5-year age groups and were recruited from the same target population 

as cases by using random digit dialing in the same residential area as cases. AA controls 

in NJ were supplemented by community recruitment efforts to assemble a control sample 

more representative of the general population (16). A total of 1,369 EAs (680 cases, 689 

controls) and 1,403 AAs (628 cases, 775 controls) women were included in the study. 

The study was approved by the institutional review boards at Roswell Park Cancer 

Institute (RPCI), the Cancer Institute of New Jersey (CINJ), Mount Sinai School of 

Medicine (MSSM; now the Icahn School of Medicine at Mount Sinai), and all 

participating hospitals in New York.  

Survey Data, DNA Collection, and Genotyping 
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Detailed survey data were collected by in-person interviews and included 

demographic and lifestyle information, family history of cancer, and medical history. 

Anthropometric measurements and biospecimen collections were obtained by trained 

interviewers. Pathology data were collected and abstracted by trained study staff from 

patient medical records and included information on tumor grade and stage, and ER 

status. 

Genomic DNA for study participants was initially extracted from blood samples 

using the using the FlexiGene
TM

 DNA isolation kits (Qiagen Inc., Valencia, CA) and 

subsequently from Oragene
TM

 kits following the manufacturer’s protocols, with the 

majority of DNA samples derived from saliva samples collected using Oragene
TM

 kits 

(DNA Genotek Inc., Kanata, Ontario, Canada).  Genomic DNA was evaluated and 

quantitated by Nanodrop UV-spectrometer (Thermo Fisher Scientific Inc., Wilmington, 

DE) and PicoGreen-based fluorometric assay (Molecular Probes, Invitrogen Inc., 

Carlsbad, CA), and stored at -80°C until analysis.  

Of 2,772 blinded samples initially included in the study, 228 samples could not be 

amplified leaving a total N=2,544 (EA: 613 cases, 630 controls; AA: 569 cases, 732 

controls) in the study. Blinded samples were genotyped by a custom designed semi-

automated multiplex fluorescent-coupled PCR in 96-well format followed by fragment 

length analysis. PCR reaction conditions were conducted per manufacturer 

recommendations (HotstarTaq Plus MasterMix, Qiagen Inc., Valencia, CA; 10ng DNA, 

initial activation of 95°C, 5min; and cycled 30x at 95°C, 30s; 57°C, 90s; 72°C, 30s, 

followed by a final 10min extension at 72°C). Amplified samples were diluted 4x and 

loaded for FLA by the Molecular Biology Core Facility at Dartmouth College. Genotypes 
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were assigned with a peak-calling algorithm in a 4bp window surrounding the expected 

amplicon size utilizing GeneMapper 4.0 software (Applied Biosystems). Briefly, calls 

were made by peak calling within 4bp bins centered on predicted sizes of 152 and 292bp. 

A threshold of 1,000 RFU was used to eliminate rare instances of signal bleed from 

neighboring overloaded wells (due to initial DNA concentration inconsistencies). 

Infrequent size calling software abnormalities were resolved manually using the same 

criteria as above. Quality control was conducted by secondary FLA of entire plates (N=4 

x 96-well) and randomly selected individual samples (n=85).   

To account for population admixture in the analysis, all samples were also 

genotyped at the Genomics Core Facility at Roswell Park Cancer Institute using the 

Illumina GoldenGate Assay (Illumina Inc., San Diego, CA) for a panel of 100 ancestry 

informative markers (AIMs) that were previously validated in the Black Women’s Health 

Study Ruiz-Narváez, Rosenberg, Wise, Reich and Palmer (17). As a quality control 

measure, five percent duplicates and two sets of in-house trio samples were included 

across all plates. Proportions of European and African ancestry for each woman were 

computed using the Bayesian Markov Chain Monte Carlo clustering algorithm 

implemented in STRUCTURE (18). Since the sum of two ancestral proportions in each 

individual is always one, we used only the proportion of European Ancestry in all 

analyses. 

Statistical Analysis 

Continuous and categorical descriptive variables were compared between cases 

and controls using t-tests and chi-square tests for proportion, respectively. Odd ratios 

(OR) and 95% confidence intervals (CIs) for associations between 2q35 enCNV 
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genotype and breast cancer risk were estimated using unconditional logistic regression 

among all women, and stratified by self-reported race.  Additional analyses were 

conducted to examine associations by menopausal and ER status. All analyses were 

adjusted for age, proportion of European ancestry, attained education, family history of 

breast cancer, smoking status, parity, use of hormone replacement therapy use, and study 

site (New York, New Jersey). Women with missing covariate data on smoking history 

(n=1), use of hormone replacement therapy (n=3), and family history of breast cancer 

(n=11), were considered to be non-smokers, non-users of hormone replacement therapy, 

and not to have a family history of breast cancer, respectively. For 4 women without 

ancestry data, race-specific median values for proportion of European ancestry were 

used.  For analyses with pre- and post-menopausal women combined, menopausal status 

was also included in the model. For analyses combining EA and AA women together, 

self-reported race was also included in the model in addition to proportion of European 

ancestry estimates. Co-dominant models were analyzed and additive genotyping coding 

based on the number of rare alleles was used as an ordinal variable to determine P-values 

associated with each copy of the variant allele (p test for linear trend). Case-case 

unconditional logistic regression analysis was also performed to examine associations 

between 2q35 enCNV genotype and odds of being diagnosed with ER-negative versus 

ER-positive tumors. All analyses were conducted using SAS V9.3 (SAS Institute, Cary, 

CA). All tests were two-sided and considered statistically significant at P=0.05.  

Breast Cancer Association Consortium 

Genotype data for replication were derived from 11 breast cancer GWAS based 

on populations of European ancestry, together with 41 additional case-control studies 
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from populations of European ancestry participating in the Breast Cancer Association 

Consortium(2). The 11 GWAS were genotyped with using a variety of different 

platforms, while the 41 additional case-control studies were genotyped using a custom 

array (iCOGS). After quality control exclusions, data were available for 15,748 cases and 

18,084 controls from the GWAS and 46,785 cases and 42,882 controls genotyped using 

the iCOGS array (after excluding samples overlapping with any GWAS; see Michailidou, 

2013 for details).  All studies were approved by the relevant local ethics review 

committee and subjects gave informed consent. 

The GWAS genotype data were used to estimate genotypes for other common 

variants across the region in the study subjects by imputation, with IMPUTE v.2.2 (19) 

and the March 2012 release of the 1000 Genomes Project as reference panel, after 

prephasing using SHAPEIT (20) with the exception of three GWAS - BCFR, BPC3 and 

TNBCC - for which imputation was performed using MACH (21) and Minimac (22). 

Per-allele odds ratios (ORs) and standard errors for individual studies were generated 

using SNPTEST (23) and ProbABEL (24). For the iCOGS samples the imputation was 

performed in one step without pre-phasing using IMPUTE.v2 and the March 2012 release 

of the 1000 genomes as reference, analysis for the iCOGS samples was done using 

logistic regression in R. Estimated ORs for the combined analysis were generated using a 

fixed-effect meta-analysis adjusting for genomic control, using METAL (25). Data for 

SNPs with an imputation accuracy r2>0.3 in a given study were included in the combined 

analysis. For the combined analysis of the GWAS and iCOGS, we reanalyzed the iCOGS 

data to remove samples also included in a GWAS, to generate independent datasets.  For 

the iCOGS data we adjusted for study and used nine principal components to adjust for 
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potential population stratification. GWAS were adjusted for differing sets of principal 

components as previously described (2). The iCOGS data were similarly used to estimate 

per-allele ORs separately for ER-positive and ER-negative disease (27,078 and 7,333 

cases, respectively).     

To evaluate the evidence for association between the 2q35 enCNV and other 

association SNPs on 2q35, we performed multiple logistic regression in the iCOGS 

dataset, including all SNPs together with study and principal component as covariates. 

The P value for each SNP, after adjustment for all other SNPs, was determined by a Wald 

test.  
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Legends to Figures 

Figure 1: Epigenetic and chromatin interaction profiles of the 2q35 gene desert 

upstream of IGFBP5. ChIP-seq read density was plotted for estrogen receptor (ERα) 

(37), H3K27Ac, H3K27me3, and ENCODE layered H3K27Ac (33) for breast cancer cell 

line MCF7 (upper panels, as labeled). Relative interaction frequency was investigated 

with Chromosome Conformation Capture (3C) (11) for the IGFBP5 promoter (Anchor) 

in breast cancer cell line MCF7 (lower panel). Primer locations for 3C are indicated, and 

average profile (red line) and standard deviation (shaded region) for biological triplicates 

are plotted. The browser graphic was modified from the UCSC genome browser 

(http://genome.ucsc.edu/index.html) (38).  

 

Figure 2: Analysis of allelic binding and effects on allelic expression of IGFBP5. 

ChIP-seq read density for a 3Kb region overlapping the ERα-bound looping enhancer 

was plotted for ERα (37), H3K27Ac, H3K27me3, and ENCODE layered H3K27Ac (33) 

(panels as labeled).  The blue bar indicates the location of the intergenic enhancer copy 

number variation. ERα binding activity at the ERE (orange bar) was assayed by 

Chromatin Immunoprecipitation (ChIP)-qPCR for the variant (red) and wildtype (blue) 

alleles, and a negative control region (in ACTB, purple), in heterozygous MCF7 cells with 

estrogen treatment (vehicle and estrogen indicated in light and dark shades for each site, 

respectively). Allelic detection primers were designed as indicated on inset map. Error 

bars represent SD of biological triplicates. *P<0.004; **P<0.002. Investigation of allele-

specific expression of IGFBP5 was conducted by allelic amplification of intronic marker 

SNP, rs7565131. Briefly, nuclear RNA from estrogen or vehicle treated cells was 
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isolated. Total IGFBP5 nuclear RNA was determined by detection of 3’UTR sequence 

(total bar height; error bars represent SD of biological triplicates). Allelic expression was 

evaluated by detection of allele-specific products by a modified MAMA(12)-qPCR. 

Relative abundance (total signal %) indicated by color (rs7565131-A and C as red and 

blue, respectively). Error bars with hats represent SD of biological triplicates. 

***P=0.027; ****P=0.014  

 

Figure 3: Regional plots of the three independent 2q35 breast cancer risk loci in 41 

case control studies and 11 GWAS (n=123,499). For imputed variation within a 500Kb 

region including the 2q35 enCNV, -log10 P-values are plotted against genomic position 

(human reference sequence, hg19). The most strongly associated SNP in the 20Kb 

linkage block containing the enCNV, rs34005590, is represented by a purple diamond. 

The 13 additional variants in high LD (r
2
>0.8) cluster tightly around ~218,000,000 

(Table S4). Previously identified independent loci, rs13387042/rs4442975 and 

rs16857609 lie in centromeric and telomeric peaks, respectively.  Image drawn with 

LocusZoom (http://csg.sph.umich.edu/locuszoom/). 
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