A RTl C L E W) Check for updates

Estrogen receptor positive breast cancers have
patient specific hormone sensitivities and rely on
progesterone receptor
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Estrogen and progesterone receptor (ER, PR) signaling control breast development and
impinge on breast carcinogenesis. ER is an established driver of ER + disease but the role of
the PR, itself an ER target gene, is debated. We assess the issue in clinically relevant settings
by a genetic approach and inject ER + breast cancer cell lines and patient-derived tumor cells
to the milk ducts of immunocompromised mice. Such ER + xenografts were exposed to
physiologically relevant levels of 17-p-estradiol (E2) and progesterone (P4). We find that
independently both premenopausal E2 and P4 levels increase tumor growth and combined
treatment enhances metastatic spread. The proliferative responses are patient-specific with
MYC and androgen receptor (AR) signatures determining P4 response. PR is required for
tumor growth in patient samples and sufficient to drive tumor growth and metastasis in ER
signaling ablated tumor cells. Our findings suggest that endocrine therapy may need to be
personalized, and that abrogating PR expression can be a therapeutic option.
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reast cancer (BC) is the most frequently diagnosed cancer

worldwide!l. More than 70% of all BCs are classified as

ER + based on the detection of ER expression by immu-
nohistochemistry in at least 1% of the tumor cells. Reproductive
factors such as early menarche, late menopause, and late preg-
nancies are known to affect breast cancer risk through changing
exposures to the ovarian hormones, 17-f-estradiol (E2), and
progesterone (P4)2. Exposures to exogenous hormone receptor
agonists in the context of hormonal contraception and hormone
replacement therapy also impact risk># and have linked PR sig-
naling to BC risk>® and tumor progression’.

ER signaling is a key driver of ER + breast carcinogenesis and
inhibition of ER signaling is the mainstay of ER + BC therapy
and has substantially improved patient survival®. The use of PR
antagonists for patients with advanced BC has been unsuccessful,
largely due to severe side effects linked to the low specificity of the
antagonists’. While PR blockade was shown to have cytostatic
effects and, in some cases, led to tumor regression in combination
with tamoxifen!0-12, contrasting evidence has also been provided
that PR activation blocks estrogen-induced tumor growth!314,

Studies with BC cell line models have revealed important
crosstalk between ER and PR signaling, both at the genomic and
protein level!>16. Moreover, ligand-activated PR modulates ER
action by redirecting its genomic targeting resulting in decreased or
increased proliferation, increased EMT features, and changes in the
rate of translation!%1417-21_On the other hand, unliganded PR can
govern ESRI expression by regulating DNA methylation??. As PGR
is an ER target gene??, endocrine therapies targeting ER result in
loss of PR expression, precluding the analysis of the role of either
receptor independently.

A further obstacle to our understanding of the complex roles of
ER and PR signaling in BC has been the lack of adequate models.
Most current knowledge about ER and PR signaling stems from
in vitro experiments, in which hormone-sensitive cell lines are
first hormone-deprived and subsequently stimulated with either
one or both hormones. In vivo, however, hormone levels never
equal zero but fluctuate continuously at different levels. Although
ER -+ tumors represent the vast majority of BCs, there is a limited
number of ER + BC cell lines, most of which were established
from pleural effusions, i.e., very advanced disease?%. Out of these
ER + cell lines very few, like MCF7 and T47D cells can be
established as subcutaneous or mammary fat pad tumor xeno-
grafts, and this only under the condition that the host mouse is
supplemented with exogenous E2. This results in premenopausal
or even higher E2 levels in the animals when most ER + BCs arise
in postmenopausal women, who have barely detectable E2 levels.
As ER signaling is exquisitely dose-dependent, this creates
experimental conditions of reduced clinical relevance.

Patient-derived xenografts (PDXs) are increasingly used in cancer
research because they model more closely intra- and interpatient
heterogeneity than the widely used cell line models. However, they
were notoriously difficult to establish from ER 4 BCs with only 2.5%
efficiency and a bias for aggressive phenotypes2°. We and others have
recently shown the grafting of hormone-sensitive BC cells (both
established cell lines and patient-derived) into the milk ducts of adult
NOD.Cg-Prkdcsd 112rgm1Wil/Sz] (NSG) female mice enable high
take rates and in vivo growth without exogenous hormone
supplementation?6-30, In these xenograft models, micrometastases
develop in clinically-relevant organs, such as the brain, lungs, liver,
and bone3031, and biological features of the patient tumors?” and of
specific subtypes2? are retained.

Here, we show patient-specific responses of ER + BC cells to
physiologically relevant levels of E2 and progesterone (P4) and
dissect the role of PR genetically in vivo.

Results
Physiologic hormone exposures promote ER -+ BC xenograft
growth. To determine the effects of physiologic E2 and P4
exposures as they occur in premenopausal women during men-
strual cycles on ER + breast carcinogenesis in vivo, we engrafted
immunocompromised NOD.Cg-Prkdcséid [12rgtmIWil/Sz] (NSG)
females by direct injections into the milk ducts with widely used
ER + BC cell lines and fresh patient tumor-derived cells, geneti-
cally labeled with a dual luciferase-RFP reporter (Fig. la). Suc-
cessful engraftment and subsequent growth were ascertained by
in vivo bioluminescence measurements. Several weeks later, when
the average luminescence per gland was >10E6, the mice were
randomized and implanted with slow-release pellets containing
different doses of E2 and P4 (Fig. 1b, c). Dosage of E2 plasma
levels in control pellet bearing NSG females showed values
comparing well to those observed in postmenopausal women
(7 £ 1.15 pg/ml) (Fig. 1b, shading)®?, while P4 levels varied from
0.1 to 20 ng/ml related to estrous cycle averaging 4 ng/ml when
postmenopausal levels are <3.2 ng/mI33 (Fig. 1c, shading). About
0.3 mg E2 pellets yielded plasma E2 and P4 levels approximating
those in premenopausal women in the follicular phase (Fig. 1b,
d)32 and combined E2 0.3 mg and P4 20 mg pellets yielded luteal
phase E2 and P4 levels (Fig. 1c, shading). All treated mice
remained in good health; the bodyweight of control and E2-
treated mice increased by 8% over the 45 days, whereas P4 and
E2 + P4 treated mice showed ~20% weight gain (Fig. le). E2
increased MCF7 xenograft growth (Fig. 1f) and metastatic load
(Fig. 1g) in a dose-dependent fashion across different organs
(Fig. 1h, i), validating that our in vivo approach is quantitative.
Next, we stimulated different cell lines derived from ER + BCs,
MCF7, and T47D, in which the PGR locus is amplified®4,
HCC1428, and the lobular MDA-MB-134-VTI cells with E2, P4,
and E2 + P4. The effects on in vivo growth were analyzed during
treatment and at the endpoint. The relative increase in tumor
growth in response to the different hormone treatments was cell
line-specific (Fig. 1j); MCF7 cells were exquisitely E2-sensitive
and had the highest growth rates while the lobular MDA-MB-
134-VTI cells only showed a proliferative response to P4.

Hormone exposures promote ER + BC growth in a patient-
specific fashion. To address whether the heterogeneous pro-
liferative response of the ER + cell lines reflects the properties of
ER + patient tumors, we generated xenografts with cells from nine
patients with either untreated primary tumors or pleural effusions
(Fig. 2 and Table 1). Freshly isolated patient-derived cells were
lentivirally transduced with RFP:Luc2. The resulting mixtures of
infected and uninfected cells were injected without selection via the
teats and serially propagated for one or two generations in vivo
over 20-36 months. When a sufficient amount of cells had grown,
experimental mice bearing a PDX in two or three of their mam-
mary glands were randomized for 60-day-hormone treatments.
Growth was analyzed by comparing the slopes of in vivo biolu-
minescence and the relative increase at endpoint. Two PDXs (T99
and T113), were exclusively stimulated by P4. One PDX, T110,
responded exclusively to E2, the remaining six all responded to
E2 stimulation but sometimes more or less than to P4 or to the
combined treatment (Fig. 2). At variance with the others, the PDX
T109 was actually inhibited by the combined treatment (Fig. 2).
Thus, each cell line and each individual PDX had distinct pro-
liferative responses to E2 versus P4 and E2 + P4. Overall, the extent
of the proliferative responses elicited by any of the hormone
treatments was lower in the PDXs than in the cell line-derived
xenograft models.

2 | (2022)13:3127 | https://doi.org/10.1038/s41467-022-30898-0 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30898-0

Mechanic and enzymatic /g; By &%
dissociation to single cells— < f Hormone 7 fé X‘\' u)] &
. %% Q d N % Treatments @/ 4 /ex vivo mets measurement
breast tumor & \ 2 “’/ / ®CTRL / \;Q oy EEDE >
> @ > j/ /&, > §E§+?f\ i%‘l L(\_‘;M? hormone:ﬂeejsurement
7 RFPIGFPLuc2 (. T \ \L i gf;y,fdg:
e‘?-;’r.p lentiviral transduction ) - /ﬂ£ | A \histological Analysis
il ol K :///" / gg 2 = RNA-Seq
breast cancer intraductal injection via teat in vivo imaging == ==
cell line
c d
o MensesFollicular phase Luteal phase
£ é P ; 3-20 ng/ml |
S Eo  20-443 pg/ml
g ge TR :
X g2 ‘
o = 2 ng/ %
5 = i : <20-241 pg/m .
» 1 14 (ovu a{|on) 28
Day
Breast: Quiescent phase Proliferative phase
e f & 10000 d 510000
[} = o 8 @
o & 1000 B s
S T 100 3 1000 ns 331 352
< ~ 12}
) [4) 10 ©
- o 100
2 © 0.1 0.3 Mg *xx Lé 10
R 2 0.6 mg s
© o —_
w [0} 1
0 10 20 30 40 50 o <
Days after treatment (SN,
<<,°/<<9’ <
h E2 E2 E2 E2 i
CTRL 0.01mg 0.15mg 0.3 mg =ICTRL
. S E2 0.01 mg
=E20.15 mg
=E2 0.3 mg
| =mE2 0.6 mg
4 3 2 1 Color Scale Brain Lungs Liver Bone
- —ieanins Min=1.5e5
x10 Max=4.50e6
j MCF7 T47D HCC1428 MDA-MB-134-VI
8 1000 1000 100 157 = E2+P4 +er
: e do | =ein
S 100 *r 100 T * 10
é 10 10 1 5
G 1 1 *
S
- 0.1 0.1 0.1 0
2 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Days after treatment

*-CTRL =P4
A E2 #xxx F-E2+P4 xx

Days after treatment

< CTRL =P4
A ED wxk  ED+PL wrnn

Days after treatment

oCTRL -=P4
A wwx  F-ED4PLY wwnn

Days after treatment

- CTRL -#-P4»
4 E2+  FE2+P4 e

Hormone exposure increases metastatic spread. While early BC  metastatic load was increased by E2 and the combined E2 and P4
has an excellent prognosis, the disease becomes difficult to control  treatment in MCF7 and T47D xenografts (Fig. 3d-f). Individual
when metastasis has occurred. To assess the effect of hormone early passage PDXs showed different trends with regard to specific
exposures on the clinically important metastatic spread, ex vivo hormone-induced metastatic spread (Fig. 3g). Considering all
luminescence was measured on distant organs of xenografted mice ~PDXs combined, E2 resulted in a fourfold increase in brain
at sacrifice. E2 treatment significantly increased metastasis of —metastatic load (Fig. 3h). Overall, the metastatic load was increased
MCEF?7 cells to the lungs, as did the combined treatment (Fig. 3a).  2.5-fold by E2 and twofold by P4 (Fig. 3i). The combined E2 + P4
P4 potentiated the enhancing effect of E2 on brain metastasis in  treatment increased metastatic load 2.2-fold (Fig. 3i) when it did
T47D xenografts (Fig. 3b) and showed a trend to increase seeding not significantly affect tumor growth (Fig. 3j) indicating a
of HCC1428 xenografts to the bones (Fig. 3c). Overall, the

NATURE COMMUNICATIONS | (2022)13:3127 | https://doi.org/10.1038/s41467-022-30898-0 | www.nature.com/naturecommunications


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Fig. 1 Effects of physiologic E2 and P4 levels on ER + BC growth. a Experimental scheme. Cell line- and patient tumor-derived cells are infected with
lentivirus coding for luciferase-GFP or RFP and injected into the milk duct tree via the teats of NSG females (two to four glands per mouse). Tumor growth
is measured weekly by bioluminescence. Hormone pellets are implanted subcutaneously 1-16 weeks after injection. Forty-five days (for cell lines) or
60 days (for PDXs) after pellet implantation, host mice are sacrificed, mammary glands are harvested, metastases are analyzed by ex vivo
bioluminescence, blood is collected, and hormone levels are determined by LC-MS. b Bar plot showing E2 plasma levels at endpoint in hormonally treated
mice; the shade shows E2 levels in premenopausal women. Data represent mean + SEM. One-way ANOVA, mice n=50, 2, 3, 41, 3, 39, and 51. ¢ Bar plot
showing P4 plasma levels in treated mice at an endpoint, shade shows P4 levels during the luteal phase. Data represent mean + SEM. One-way ANOVA,
mice n= 63, 2, 3, 53, 3, 42, and 28. d Reference values of E2 and P4 levels during women’s menstrual cycle®>. e Bar graph displays percent bodyweight
gain during the 60-days of hormone treatment. Data represent mean + SEM. One-way ANOVA, n=20, 17, 17, and 17 mice. f MCF7 tumor growth as
assessed by bioluminescence, normalized to the measurement before the treatment with increasing doses of E2 (average + SEM). Two-way ANOVA,
followed by Dunnett’'s multiple comparison test, tumors n =43, 8, 11, 10, and 26. g Bar plot showing the relative metastatic burden of mice engrafted with
MCF7 cells under different E2 treatments. Ex vivo bioluminescent signal was normalized to the average signal of each organ in control mice,

average = SEM, dots represent individual organs. Kruskal-Wallis test followed by Dunn’s multiple comparison test, median glands n = 48, average n =45, n
of mice: CTRLn=15,E2 0.0lmgn=2, 0.15mgn=>5, E2 0.3mgn=15, E2 0.6 mg n= 3. h Ex vivo luminescence images of brains and lungs from MCF7
engrafted mice treated with different concentrations of E2. Scale bar, 1cm. i Relative ex vivo radiance in different organs of the same mice. Data represent
mean £ SEM. Two-way ANOVA, followed by Dunnett's multiple comparison test. Mice, CTRLn =15, E2 0.0lmgn=2,E2 0.15mgn=>5, E2 0.3 mgn=15,
E2 0.6 mg n = 3. j Radiance-based tumor growth curves for different ER + cell line xenografts upon treatment with E2 0.3 mg, P4 20 mg or the combination
of the two relative to controls. MCF7 tumors n = 31, 21, 49, and 29; T47D tumors n = 21,14, 29, and 24. HCC1428 tumors n=7, 8, 7, and 6; MDA-MB-134-

VI tumors n=38, 11, 8, and 6. Control (CTRL), Estradiol (E2), Progesterone (P4).

disconnect between primary tumor growth and metastatic spread
in response to hormone stimulation.

Transcriptional responses to E2 and P4. To gain insights into
the transcriptional responses to hormone stimulation, we
sequenced RNA from six early passage PDXs treated with E2, P4,
or CTRL (analysis of E2 4 P4 condition was precluded by too
little material) with three or four biological replicates for each
condition of each PDX. Unsupervised clustering separated indi-
vidual patient samples based on the 500 most variably expressed
genes. Within each tumor, samples clustered largely according to
hormone treatment (Fig. 4a). Across the six PDXs we identified
4097 E2-regulated genes (with adjusted p value cutoff of 0.05, out
of which 1113 have logFC <—0.5 or logFC >0.5) (Fig. 4b, c).
whereas only 489 genes were differentially expressed in response
to P4 (Fig. 4b, d). Gene set enrichment analysis (GSEA) for
hallmark pathways showed E2 and interferon o responses, as well
as apoptosis, were positively enriched and androgen response was
negatively enriched following E2 exposure (Fig. 4e). P4 decreased
the E2 response signature and resulted in positive enrichment of
MYC targets and oxidative phosphorylation as well as signatures
related to de-differentiation (Fig. 4f).

Low MYC and AR activity determine P4-induced tumor
growth. To identify mechanisms underlying the divergent
response to P4, we separated the tumors into those that pro-
liferated in response to P4 (T111, T113, and PL-015), called
responders, from those that were non (or partial)-responders
(T105, T110, and T109). The extent of P4-induced global gene
expression changes was larger in responders (Fig. 5a) than in
non-responders (Fig. 5b). GSEA for hallmark pathways showed
that both groups were positively enriched for MYC targets and
androgen response (Fig. 5¢, d). Epithelial to mesenchymal tran-
sition (EMT) and INFa response were positively enriched by
P4 stimulation in the non-responders while negatively enriched
in the responders (Fig. 5¢, d). While the EMT signature points to
a tumor cell-intrinsic cell cycle inhibitory mechanism, the INFa
response speaks to paracrine interactions and suggests that dif-
ferent cell types of the microenvironment, in particular macro-
phages, are a major source of this cytokine, also have a role in
suppressing tumor cell proliferation. To identify the factors that
determine the response to P4, we analyzed the genes differentially
expressed between responders and non-responders at baseline.

This comparison showed that responders had, paradoxically,
lower MYC targets, androgen response, and TNFa signaling as
well as increased INFa response (Fig. 5e). Thus, low MYC targets
and androgen response3”, two transcriptional signatures, which
themselves may reflect low PR signaling activity, are associated
with an increased transcriptional and proliferative response upon
P4 stimulation suggesting that increased, PR signaling activity
renders cells insensitive to the ligand. The differential enrichment
of the immunomodulatory pathways, TNFa and INFa signaling
suggest close crosstalk between the pregnancy hormone and the
innate immune response as reported recently3%-37,

PR function in ER + BC cells in vivo. To disentangle the con-
tributions of ER and PR to tumor growth and metastatic spread,
we recurred to using the particularly E2-sensitive and readily
manipulatable MCF7 cells and lentivirally transduced them with
shCTRL or shRNAs targeting either ESRI or PGR. Following drug
selection, some cells were seeded for in vitro colony formation,
and others xenografted intraductally. Where possible, immuno-
blotting was performed and ER and PR protein levels decreased
below the detection limit with the knockdown (Fig. 6a). As
expected, MCF7:shESRI cells failed to form colonies (Fig. 6b, c).
However, even MCF7:shPGR cells showed a 75% decrease in
colony formation efficiency (Fig. 6b, ¢). On day 1 after intraductal
injection, radiance emanating from engrafted glands was com-
parable for all three infectants (Fig. 6d). By day 90, the shESRI
and shPGR expressing MCF7 cells grew respectively 75 and 60%
less than the control cells (Fig. 4e), although MCF7 cells were not
growth-stimulated by P4 (Fig. le). The findings extended to
in vivo proliferation of T47D cells (Fig. 6e). In HCC1428, shESRI
had the same effect, while shPGR affected growth only marginally
(Fig. 6e). In four different PDXs, expression of a bi-cistronic
vector shESRI:luc-GFP decreased cell proliferation by 90% and
shPGR:luc-GFP had a similar effect, except for one PDX (T110)
(Fig. 6f). Thus, downmodulation of PR expression independently
of ER expression abrogates tumor growth in a majority of ER +
BC xenografts indicating that PR is widely required in ER 4+ BC
cells for tumor growth. The patient-derived BC cells are more
sensitive to receptor downmodulation than the cell lines are.

Role of PR in endocrine resistance. PGR is an ER target, and ER
signaling inhibition results in decreased PR expression. To assess
whether sustained PR expression may contribute to endocrine
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Fig. 2 Hormone exposures and in vivo growth of ER + patient tumors. Line charts showing in vivo growth of the different patient-derived tumor cells
expressing luciferase:GFP as measured by radiance after implantation of either control or different hormone-containing pellets. Points show means of fold
change of radiance in individual glands +SEM. Statistical significance was tested by fitting a linear (or smoothing-spline when necessary) mixed effects
model to the log10 transformed data. All comparisons are relative to the control group (CTRL). Legends with treatment code and asterisks are below the
graphs; Median number of glands per sample T84: CTRLn=2,E2n=2,E2+P4n=4,P4n=2.T99E2n=2,E2+P4n=4,P4n=2.TIO5E2n=2,
E2+P4n=4,PAn=2.TIO9OE2n=2,E2+P4n=4,P4n=2TNOE2n=2,E24+P4n=4,PAn=2.TME2n=2,E24+P4dn=4,P4n=2 TN3 E2
n=2,E24+P4n=4PAn=2.TNE2n=2,E24+P4n=4,P4n=2.PL-0O15E2n=2, E2+ P4 n=4, P4 n=2. For two-sample comparisons at endpoint,
Wilcoxon rank-sum test was used on log-transformed fold change values, followed by p value adjustment for multiple comparisons. For statistically
significant comparisons, asterisks are on the right side of graphs. Color codes for treatment: black: CTRL, red: E2, blue: P4, orange: E2 + P4.

Table 1 Characteristics of patient tumors.

Sample Age of patient ER% PR% Her2 Ki67% Sample type Histological tumor type
(years)

T84 57 80 80 Negative 10 Primary, untreated Mixed lobular/NST

T99 57 100 70 Negative 20 Primary, untreated NST

T105 59 80 100  Negative 20 Primary, untreated Lobular

T109 44 100 100 10 Primary, untreated NST

T1O 51 80 10 Negative 25 Primary, untreated NST

TmM 44 100 100 10 Primary, untreated Mixed NST/lobular

™3 70 NA NA NA NA Primary, untreated NA

™ 50 NA NA NA NA Primary, untreated NST

PL-015 59 90 100 Negative NA Ascites, treated: chemo, aromatase inhibitors, NST

fulvestrant

The table displays characteristics of patient tumors used in this study; the last column shows the response to P4 as MIND PDX.
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Fig. 3 Hormone exposure increases metastatic spread. a-c Relative ex vivo radiance in different organs of mice engrafted with a MCF7 median n=15.
b T47D median n=6. ¢ HCC1428 median n= 2 after 45-day-hormone treatment. Bar graphs indicate average + SEM; two-way ANOVA with Dunnett’s
multiple comparison test. d-f Bar graphs showing relative metastatic burden in different organs of MCF7, T47D, and HCC1428 xenograft-bearing mice
treated with E2, P4, or E2 4 P4 average + SEM. Kruskal-Wallis test, followed by Dunn's multiple comparison test. d CTRL n=59, E2 n=60, P4 n= 44,
E2+P4An=56.e CTRLNn=24,E2n=24,P4n=24,E24+P4n=24.fCTRLn=8,E2n=8, P4 n=8, E2+ P4 n=12. g Heatmap showing relative
metastatic load in mice xenografted with different patients’ tumors. Data represent mean fold change radiance compared to CTRL for each PDX. Friedman
test, followed by Dunn’s multiple comparison test. T99, CTRLn=3,E2n=6,P4n=4,E2+P4=6.T105, CTRLn=5,E2n=4,P4n=4,E2+P4=5.
T109, CTRLn=3,E2n=6,P4n=4,E2+P4=4.T10, CTRLn=4,E2n=2,P4n=4,E24+P4=3.T111,CTRLn=3,E2n=3,P4n=3,E2+ P4 =2.
TN3,CTRLn=3,E2n=2,P4n=2,E2+P4=1.PL-011,CTRLn=3,E2n=2,P4n=3,E2 4+ P4=2.PL-015,CTRLn=4,E2n=4,P4n=4,E2 + P4 =3.
h Bar graph of relative metastatic burden per organ in mice engrafted via teats with different PDXs after 60-day-hormone treatment. Data represent
mean £ SEM. CTRLn =24, E2 n=21, P4 n= 22, E2 + P4 n =21, mixed effects analysis, and post hoc multiple comparisons. i Bar plot of relative metastatic
burden in PDXs bearing mice under hormone treatment. Data represent mean + SEM. CTRL n=96, E2, P4, E2 + P4 n = 84. Holm-Sidak's multiple
comparisons test. j Bar graph of relative growth at endpoint in mice engrafted with PDXs. Data represent mean = SEM. CTRL n=24, E2 n=21, P4 n=22,
E2 + P4 n= 21, mixed effects analysis, and post hoc multiple comparisons.
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Fig. 4 Transcriptional response of patient-derived tumor cells to E2 and to P4. a Heatmap showing unsupervised hierarchical clustering of the 500

most variable genes across six PDX samples treated with E2 or P4 or untreated. Normalized expression levels were scaled to Z-scores for each gene,

n=69. b Bar plot showing the number of genes differentially expressed across six different PDXs in response to E2 or P4, adjusted p value cutoff of 0.05,
logFC < —0.5 or logfFC >0.5. ¢, d Volcano plot showing differentially expressed genes in response to E2 (¢) or P4 (d) across six different PDXs, each 3-4
biological replicates, n = 69. All highlighted genes have p values <0.05 according to the limma model used for differential expression analysis. Genes with
log2(FC) >0.5 in red and log2(FC) <0.5 in blue. Names of selected genes are indicated. e, f GSEA showing enrichment of pathways differentially regulated
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Fig. 6 PR is necessary for tumor cell proliferation. a ER and PR immunoblots of different MCF7 cell strains. b Representative pictures of colony formation
assays of CTRL, shESRT, and shPGR MCF7 cells 10 days after plating 1000 cells ¢ Bar plot of respective quantification. Data represent mean + SEM.
CTRL =6, sh ESR1= 6, sh PGR = 3. One-way ANOVA followed by Dunnett's multiple comparison test. d Radiance from glands injected with MCF7 cells, in
which either ESRT or PGR were silenced, on day 1 after intervention. Data represent mean = SEM. CTRL = 74, sh ESRT= 34, sh PGR = 24. Two-way ANOVA
followed by Dunnett's multiple comparison test. e Relative tumor growth at endpoint of three ER + BC cell lines expressing shESRT, shPGR or CTRL 90 days
after injection. Data represent mean + SEM. Two-way ANOVA followed by Dunnett's multiple comparison test. MCF7 CTRL n = 60, shESRT n = 40, shPGR
n=29; HCC1428 CTRL n=5, shESRT n=4; shPGR n=5; T47D CTRL n=9, shESR1 n=17; shPGR n = 8. f Bar plot showing relative tumor growth at
endpoint of four PDXs expressing shESRT or shPGR 140 days after injection. Data represent mean = SEM. Two-way ANOVA followed by Dunnett’'s multiple
comparison test. T99 n =8 each; T109 CTRL n =5, shESRTn=4; shPGRn=15; T80 CTRL n =10, shESRTn=7; T110 CTRL n =6, shESRTn =7, shPGRn=6.

resistance, we stably expressed PGR in MCF7 cells (MCF7:PGR)
and concomitantly interfered with ER signaling. We did so either
genetically using shESRI (Fig. 7a, b) or by mimicking clinical
scenarios either pharmacologically by administration of fulves-
trant, a selective ER degrader38, or surgically by ovariectomy to
simulate treatment with aromatase inhibitors. In vitro, ectopic
PGR expression increased colony formation 1.5-fold under basal
conditions but failed to rescue the loss of the colony-forming
ability of shESRI cells (Fig. 7c). In vivo, MCF7:PGR cells grew
5-fold more than the control cells (Fig. 7d). While MCF7:shESRI
cells showed decreased growth, shESRI-PGR cells grew like the
control cells (Fig. 7d). At the endpoint, the Ki67 index was
around 10% in the control tumors and increased to >60% in the
MCF7:PGR even in the presence of coexpressed shESRI (Fig. 7e).
IHC further showed that shESRI expression reduced the pro-
portion of ER+ (Fig. 7f) and PR+ cells (Fig. 7g) whereas the
ectopic PGR expression increased the PR index from 20 to >90%
(Fig. 7g).

Next, we treated mice engrafted with MCF7:control or
MCF7:PGR cells with the widely used selective ER degrader,
fulvestrant, for 70 days. MCF7:PGR injected glands developed
palpable tumors. At the endpoint, mammary glands from
untreated control mice showed invasive foci, whereas in
fulvestrant-treated control mice most tumor growth was limited
to the in situ stages (Fig. 8a, b). The MCF7:PGR cells invaded
extensively, independent of fulvestrant treatment (Fig. 8a, b). IHC
revealed an expected decrease in ER and PR expression by
fulvestrant (Fig. 8b, ¢) and confirmed high PR expression in the
MCEF7:PGR cells (Fig. 8b, c). Fulvestrant decreased radiance at the
endpoint of MCF7:control xenografts but not of MCF7:PGR
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xenografts that grew twofold more than the MCF7:control
xenografts (Fig. 8d). PGR overexpression increased metastatic
load, both with and without fulvestrant treatment, 8 and 25-fold,
respectively (Fig. 8e).

Next, mice injected with either MCF7:control or MCF7:PGR
cells were ovariectomized to mimic the effect of clinical aromatase
inhibition. In the absence of ovarian hormones, the growth of
MCF7:control cells but not of the MCF7:PGR cells was decreased
(Fig. 8f-h). IHC showed abrogation of PGR expression by
ovariectomy (Fig. 8g, h). MCF7:PGR cells showed a trend for
increased metastasis in the hormonally-ablated hosts (Fig. 8i) and
increased metastasis to the brain (Fig. 8j). Thus, PR is sufficient to
induce tumor cell proliferation, invasion, and metastasis when ER
signaling is abrogated, making it an attractive potential target for
therapeutic intervention, particularly in endocrine-resistant
diseases.

Discussion

Since G.T. Beatson discovered in 1895 that oophorectomy
improved BC outcome’, the role of ovaries in BC pathogenesis
has attracted attention. Here, we provide new insights into the
respective contributions of the two major ovarian hormones, E2
and P4, using highly disease-relevant models. We build on the
recent demonstration that mouse intraductal (MIND)
xenografting?® enables the in vivo growth of ER + BC cells by
providing the right microenvironment??. The tumor cells grow
without the exogenous hormone supplementation required in the
traditional subcutaneous fat grafts. As a result, the endocrine
milieu in the host animals is clinically more relevant than in
previous models because endogenous E2 levels compare to those
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Fig. 7 Ectopic PR expression overcomes ER abrogation. a ER and PR immunoblot of CTRL MCF7 cells, or MCF7 cells upon PGR overexpression and ESR1
silencing combined with PGR overexpression. b Quantification of ER, PR-A, and PR-B protein levels in MCF7 strains shown in a, n = 2 for all conditions. Data
represent mean + SEM. ¢ Bar plots showing colony formation efficiency of shESR1, shESRT + PGR, and PGR-overexpressing MCF7 cells, n = 6 for all samples.
Data represent mean = SEM. d Relative in vivo growth at the endpoint of different MCF7 strains. Data represent mean £+ SEM. CTRL n=15, shESRTn=18,
ShESRT-PGR n =19, PGR n=10. Brown-Forsythe and Welch ANOVA tests with Dunnett's multiple comparisons. e-g Quantification of protein levels
measured by immunohistochemistry of Ki67, ER, and PR, respectively, in MCF7 strains grown in vivo intraductally. One-way ANOVA with Holm-Sidak's
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found in postmenopausal women, in whom most BCs occur. We
find that experimental exposures to E2 and P4, at levels observed
during menstrual cycles, promote ER + BC progression. This is in
line both with the clinical observations that BC is more aggressive
in pre- than in postmenopausal patients and with epidemiological
studies correlating the number of menstrual cycles women
experience during their lifetime with their BC risk?,

The altered immune function of the NSG host mice, which lack
B- and T-cells and have reduced NK cell function is a major
limitation of the model in light of the important role of the
immune system in carcinogenesis and cancer therapy. However,
we find that various inflammatory and immune pathways are
modulated in the xenografts by E2 and P4 consistent with, in
particular P4, having an immune suppressive role during preg-
nancy when it protects from the immune rejection of the fetus
bearing paternal antigens. These observations highlight that
innate immune functions in the NSG hosts persist and that they
are hormonally controlled and may be functionally important.
This is surprising because we selectively analyzed the human
RNA sequence recovered from the xenografted glands. Although
not formally excluded in the present study, it is unlikely that
human immune cells contained in the patient-derived tumor cell
graft persist over the 15 months after the initial injection. This
suggests that the pathways are downmodulated in the human
carcinoma cells as a result of paracrine interactions with mouse
immune cells in the ductal microenvironment. Hence, tissue
macrophages and dendritic cells from the NSG host may func-
tionally interact with the human grafts and this crosstalk is under
endocrine control. Furthermore, the absence of the T cell
response may not be of major importance for preclinical studies
with ER + xenografts because of this subtype has a low antigenic
load, and in fact, clinical trials with checkpoint inhibitors had

10

negative outcomes*?#l. The progress made in humanizing the
mouse*? provides the possibility to ultimately validate findings in
the present models in immune intact hosts.

Hurdles to the widespread use of MIND ER + PDXs remain.
There are logistic challenges to setting up and maintaining a
clinical pipeline. Furthermore, the size of the tissue samples that
can be obtained from ER + tumors without interfering with the
diagnostic process is an issue. Pathologists can frequently spare
less than 1 cm? and often <2 million cells are obtained following
tissue dissociation. The proportions of carcinoma versus stromal
and normal breast epithelial cells in the sample is uncertain. To
obtain enough tumor cells for experimentation with multiple
replicates, the initial grafts need to be amplified over 2 to 3 suc-
cessive transplant generations, which can take up to 2 years
because of long doubling times. As up to four glands can readily
be engrafted, multiple data points on primary tumor growth can
be collected per mouse. For the analysis of metastasis, only one
data point per animal can be obtained. For this reason, we were
unable to conclude on patient tumor-specific metastatic patterns
in the present study.

Furthermore, growth rates differ from one patient sample to
the next; hence experimental plans need to be individualized. For
all these reasons, the faster-growing and more readily manip-
ulatable cell line xenografts remain helpful in the initial testing of
hypotheses. Moreover, the four cell lines included here were more
sensitive to hormone stimulation than the patient-derived cells
making it easier to discern biological responses. The increased
amplitude of the hormone response may be a result of adaptation
to culture and/or reflect a higher tumor cell homogeneity due to
the selection of cell subpopulations when it is likely that in the
early passage of patient-derived samples, multiple subclones exist,
which have different responses to the hormones.
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Interestingly, the most widely used MCF?7 cells stand out from
the other cell line models in that they grow faster and are
exquisitely sensitive to E2. Their proliferative response to E2 is
strikingly inhibited by co-administration of P4, whereas in T47D,
HCC1428, and MDA-MB134-VI cells, the two hormones syner-
gize in stimulating tumor cell proliferation. This urges caution in
extrapolating findings in the most commonly used MCF7 cells to
ER + BC in general.

While most ER + cell line models are derived from pleural
effusions, i.e., late-stage disease the present study is largely based
on patient-derived tumor cells mostly from untreated primary
tumors. We find surprising heterogeneity in the sensitivity of
individual patients’ cells to E2 and P4 and the combination of the
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two hormones. In light of the long disease development and the
heterogeneity of driver and oncogenic mutations, the genomic
and epigenomic level and signaling context are likely patient-
specific and result in patient-specific biological outcomes that
may ultimately require tailored endocrine therapy.

Albeit to a different absolute and relative extent, in most
patient samples, E2 elicits increased cell proliferation. In response
to P4 just over half of the patient samples show a pronounced
transcriptional response and proliferate. These patient-specific
effects of P4 stimulation may account for some of the conflicting
views about the role of the hormone in tumor progression. Two
transcriptional signatures, which predict a lack of response to P4
in a PDX are high MYC activity and AR response both of which
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Fig. 8 Ectopic PR expression bestows resistance to endocrine therapy. a Representative stereomicrograph images of mammary glands injected with
MCF7 CTRL or PGR-overexpressing cells treated with vehicle or fulvestrant, scale bar: Tcm. Arrowheads point to invasive areas. b Representative
micrographs of IHC for ER, PR, and Ki67 MCF7 control and constitutive PGR expressing xenografts treated with either vehicle or fulvestrant. ¢ Heatmap
showing relative indices of marker positivity. Data represent fold change cell positivity compared to CTRL. n =3 for all groups. Two-way ANOVA was
followed by Tukey's multiple comparison test. For values printed in bold, P < 0.05. d Bar plots showing a relative change in radiance measured by
bioluminescence imaging at the endpoint of MCF7 CTRL and MCF7 PGR-overexpressing cells in control and fulvestrant-treated mice. Two-way ANOVA
with Tukey's multiple comparison test, median n=7, average n=7. [VEH CTRL n=9, FULV CTRL n=7, VEH PGR n=5, FULV PGR n=7. e Relative
metastatic burden in mice engrafted with MCF7 CTRL and MCF7 PGR-overexpressing cells, treated with vehicle or fulvestrant. Mann-Whitney test, median
n=11.5, average n =11.5. f Bar plots showing a relative change in radiance measured by bioluminescence imaging at the endpoint of MCF7 CTRL and
MCF7 PGR-overexpressing cells in control and ovariectomized (ov'xed) mice, n =38, 43, 34, and 36. Data represent mean = SEM. Two-way ANOVA with
Tukey's multiple comparison test. g Representative micrographs of IHC for ER, PR, and Ki67 MCF7 control and constitutive PGR expressing xenografts in
intact or ovariectomize host mice. h heatmap showing relative indices of marker positivity. Data represent fold change cell positivity compared to CTRL.
n =5 for all groups. Two-way ANOVA was followed by Tukey's multiple comparison test. For values printed in bold, P < 0.05. i Relative metastatic burden
measured by bioluminescence imaging at the endpoint, n =44, 47, 47, and 50. Data represent mean + SEM. j Relative metastatic spread to different organs
was measured by bioluminescence imaging at the endpoint. Bars are colored according to the groups specified in g, h. Data represent mean + SEM. Two-

way ANOVA with Tukey's multiple comparison test. n=11, 43, 12, and 13 mice.

can be induced by P4 and may hence be a consequence of high
PR signaling activity in these tumors that precludes further
activation by progesterone. The effect on MYC may be direct*? or
indirect, mediated f.i. by increased Wnt signaling downstream of
progesterone-induced Wnt signaling4, which in turn induces
MYC expression. In either case, the baseline PR signaling activity
is independent of the level of the ligand, the levels of which
fluctuate in all the host mice. This is in line with PR having
ligand-independent scaffolding actions in signaling and tran-
scriptional complexes with ER and PELP!> and MAP kinase
activation enabling PR engagement with accessible genomic
sites?. Further experiments with more ER + PDXs will need to
address whether MYC activity also determines the metastatic
potential of the tumor cells and whether the observed differences
in response to P4 stimulation also translate into different sensi-
tivities to PR signaling abrogation.

Our finding that non-responders show increased TNFa sig-
naling upon P4 exposure raises the intriguing possibility that
macrophages, a major source of TNFa, are more active in the
non-responders and may have a role in suppressing ER 4+ tumor
cell proliferation. The observation that a transcriptional signature
of EMT, which is itself controlled by global histone3K36
methylation*¢ is downmodulated in P4 responders and upregu-
lated in non-responders argues that epigenetic factors may
determine, at least this aspect of P4 response. As breast cancers
develop over decades and acquire multiple divergent drivers and
passenger mutations each tumor likely has a different signaling
and epigenetic context both of which can affect the outcome of
hormone receptor signaling and contribute to the patient-specific
responses to E2 and P4.

The combined E2 and P4 treatment failed to increase PDX
growth at the primary sites but resulted in an increased metastatic
burden. This highlights a disconnect that has important impli-
cations for preclinical studies; these are mostly based on mea-
suring tumor volume when it is ultimately the metastatic disease
that makes cancer incurable and often lethal.

The metastasis-promoting effects of E2 and P4 treatment, the
increased invasiveness of PR overexpressing tumors together with
the genetic evidence that PR is required independently of ER for
in vivo tumor growth of patient-derived cells argues that PR may
be an important protein to target in ER 4+ BC. The observation
that ectopic PR expression is sufficient to drive tumor growth and
even metastasis when ER signaling is genetically or pharmaco-
logically abrogated in MCF?7 cells points to the possibility that this
may also apply in the context of endocrine resistance, in parti-
cular in tumors with ESRI mutations, which as a result of over-
activated ER signaling show high PR expression levels. As most of

the clinically tested selective PR modulators lack specificity and
show activity in particular versus the glucocorticoid and androgen
receptor with substantial side effects, drugs targeting PR for
degradation, such as PROTACs*, may provide an attractive
alternative. The intraductal xenografting approach offers new
opportunities to test these hypotheses.

Methods

Cell culture. MCF7 and T47D cells were cultured in DMEM 10% FBS, HCC1428
in RPMI 10% FBS, penicillin-streptomycin 1%. Cells were spin infected at

2250 rpm for 2.5h and incubated with the lentivirus overnight. Cell lines were
selected with 2 pg/ml puromycin for silencing experiments, while hPGR over-
expressing cells were selected with blasticidin (2 ug/ml). Positive control of selec-
tion efficiency was always carried out in parallel on non-infected cells. Colony
formation assays were performed in six-well-plates, seeding 1000 cells/well in a
phenol red-containing medium. Ten days later, colonies were fixed with 4% PFA
and stained with 0.5% crystal violet. For sg and sh plasmids see Supplementary
Table 1.

Clinical samples. The Commission cantonale d’éthique de la recherche sur I'étre
humain approved the studies (45-05 and 72-04), and informed consent was
obtained from all subjects. Tumor or tissue was obtained from the pathologist,
mechanically and enzymatically dissociated?®, and dissociated cells were trans-
duced with ffLuc2/eGEP lentivirus under control of the cytomegalovirus promoter
at 25°C for 2.5h at 2500 rpm*8,

Animals. NOD.Cg-Prkdcsid [12rgt™IWjl/Sz] mice were purchased from Charles
River. All animal experiments were performed in accordance with protocols
approved by the Service de la Consommation et des Affaires Vétérinaires of Canton
de Vaud, Switzerland (VD 1865.3, 1865.4, and 1865.5). Mice were maintained and
handled according to Swiss guidelines for animal safety with a 12-h-light-12-h-dark
cycle, controlled temperature and food and water in polysulfone bottles ad libitum
in SPF conditions, cages enriched with nesting material, cardboard, and wood
tunnels, 12 h light cycle, 7 am. to 7 p.m. Animals are housed in IVC polysulfone
cages—Green line—from Tecniplast®, type II long. Bedding is provided by Aspen
Tapvei® (little squares about 4 mm x 4 mm x 1 mm). Water is acidified (pH
between 2.5 to 3) on a resin column (Prominent” CH system). Diet from Provimi-
Kliba® (cat# 3242, irradiated). Housing room temperature is 22 + 2 °C, humidity
55 +10%.

Xenograft procedures. Eight to 12-week-old NSG females were anesthetized by
intraperitoneal injection with 10 mg/kg xylazine and 90 mg/kg ketamine (Graeub)
and injected into the cleaved teat with a blunt end Hamilton syringe (cat. no.
HAMIB0508), specifications: 50 ul 705 N, gauge 30/13 mm/pst3) with 100,000 cells
for cell lines and 250,000 cells for patient-derived cells, and 400,000 for MDA-MB-
134-VI cells. Dafalgan was administered intraperitoneally Temgesic® (Buprenor-
phinum) at 100 mg/kg when needed. Live imaging was performed from the day
after injection with Xenogen IVIS Imaging System 200 (Caliper Life Sciences) upon
intraperitoneal injection of 100 ul of luciferin (15 mg/ml) (Biosynth, cat# L-8220).
Eight minutes after injection, mice were anesthetized with oxygen combined with
2% isoflurane, bioluminescence was measured from 12 min after injection. To
examine metastatic spread, mice were injected with 300 pl luciferin (15 mg/ml)
(Biosynth, cat# L-8220), tumors and organs of interest were dissected within

30 min, and imaged with IVIS (Perkin Elmer). Bioluminescence of treated mice
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organs was normalized to the average bioluminescence of matched control organs.
Slow-release pellets were fabricated by mixing silicone elastomer with a mixture of
silicones, Part A (MP3745/E81949) and part B (MP3744/E81950) of low con-
sistency silicone elastomer (MED-4011) and hormone powder*>" see Supple-
mentary Table 2.

IHC staining and markers quantifications. Each xenografted mouse had one
entire or at least half a gland harvested, fixed with PFA and paraffin-embedded.
Sections were cut, dewaxed, rehydrated, and subsequently stained with antibodies
using Ventana Discovery ULTRA (Roche Diagnostics, Rotkreuz, Switzerland) with
Ventana solutions. Paraffin sections were pretreated with heat using standard
condition (40 min) CC1 solution. The following primary antibodies were used with
specific dilutions and incubation times: ER, Zytomed System, cat# BRB053, ready
to use, incubation 16 min; PR, Ventana, cat# 790-2223, ready to use, incubation
32 min; Ki67 Abcam, cat# M3060, dilution 1:400, incubation 60 min; pHH3,
Abcam, cat# ab5176, dilution 1:5000, incubation 16 min. After incubation with a
rabbit Impress HRP antibody (Vector laboratories), the chromogenic revelation
was performed with a ChromoMap DAB kit (Roche Diagnostics, Rotkreuz, Swit-
zerland). Slides were scanned with an Olympus VS120-L100 slide scanner using a
20x/0.75 objective connected to a Pike F505 C Color camera. Images were loaded
into QuPath®! using the BioFormats Extension (https://github.com/qupath/
qupath-bioformats-extension) and tumor cell regions were identified using a cus-
tom script. In short, RGB images were converted to Hue Saturation Brightness and
the Brightness image was used to detect the tissue regions. A median filter of radius
3 pixels was applied, followed by Image]’s Triangle auto-threshold method [https://
imagej.net/Auto_Threshold#Triangle]. Only regions larger than le4 square
microns were kept for analysis. The regions were then manually curated to ensure
accurate detection of the tissue of interest. Individual cells in each region were
segmented using QuPath’s built-in Watershed Cell Detection algorithm (detection
performed on: Optical density sum, Pixel Size”: 0.2 um, Background Radius”:

8.0 um, Median Radius: 0.0 um, Sigma: 1.0 pum, minArea: 10.0 um, maxArea:
400.0 um, Threshold: 0.05, maxBackground: 2.0, Watershed Post Process: true, Cell
Expansion: 0.0 um, include Nuclei, Smooth Boundaries, Make Measurements,
Threshold Compartment used was set on nucleus: DAB OD mean; Nuclear DAB
OD mean >0.2 was considered positive). The number of cells positive for HR and
proliferation markers expression was counted, and the average values were plotted.

Western blot. Western blots were performed using primary antibodies against ERa
(Santa Cruz, sc-543), PR (Santa Cruz, sc-7208), and Cyclin D1 (Neomarkers, #RB-
212-P0). The secondary antibody used against y-tubulin (Sigma, clone GTU-88).

LC-MS hormone measurements. Sample preparation, steroid extraction, liquid
chromatography-mass spectrometry, and data processing as in ref. 2 with the
following difference: after LC-MS injection for P4 analysis, the leftover sample was
dried down under N2 flow, and estrogens were derivatized by resuspending in

1 mg/ml dansyl chloride in 50% acetone- in Na carbonate pH 10.2 for 15 min at
65 °C before re-injection for estrogen analysis.

Whole mounts. Mammary gland whole mounts were performed as described
previously®3. Stereo micrographs were imaged by LEICA MZ FLIII stereomicro-
scope with a Leica MC170 HD camera, and fluorescence images were acquired with
LEICA M205FA fluorescence stereomicroscope equipped with a Leica DFC 340FX
camera.

RNA sequencing and raw data processing. MCF7 xenografts treated with hor-
mone pellets were dissociated into single cells, mouse cells were depleted with
immunomagnetic beads (Miltenyi, cat#130-104-694). For MCF7 xenografts with
PGR overexpression, whole glands were sequenced, and mouse and human reads
were separated computationally>*. Raw reads were aligned to the human (hg38)
and mouse genome (mm9) using HISAT2 (v2.1.0)>, the exact parameters are
hisat2 -k 5 -p 4—seed 42. Gene counts were generated using FeatureCounts®® and
data preprocessed with the edgeR package from Bioconductor®”. The Voom
function®® of the limma package from Bioconductor>® was used to normalize the
data for sequencing depth differences, estimate the mean-variance relationship of
the log counts, and generate a precision weight for each observation so that data
were ready for the limma linear fitting function (ImFit).

Statistical analysis. Statistical analysis was performed with GraphPad Prism
version 8.0.0 for Windows, GraphPad Software, San Diego, CA, USA,
www.graphpad.com. Tests as indicated in figure legends. All statistical tests are
two-tailed. Data were shown as means + SEM, or as otherwise specified. Statistical
significance is indicated as follows *p < 0.05, **p < 0.01, ***p < 0.001,

*HA%p < 0.0001, » weak significance, n.s. not significant. When applicable, batch
effects corresponding to different mammoplasties were modeled via the design
matrix specifications (linear mixed effects modeling). Genes were considered dif-
ferentially expressed based either on a p value cutoff (p < 0.05) and fold change
(log2(FC) | > 0.5) or, when possible, an adjusted p value cutoff of p.adj <0.05.
Pathway enrichment analysis was carried out using ClusterProfiler®>¢! from

Bioconductor (using default parameters). GSEA analysis was carried out using the
GSEA function in ClusterProfiler, and the following annotated gene sets from
MSigDB v6.2:0263 the Hallmark gene set®, and the C2 curated gene sets.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data generated in this study are provided in the Source Data file. The authors declare
that all data supporting the findings of this study are available within the article from the
authors upon reasonable request. The RNA-seq data generated and analyzed in this study
have been deposited in the Gene Expression Omnibus (GEO) database under the
accession codes: GSE192808, for PGR overexpressing MCF7 intraductal xenografts,
GSE192809 for hormone-treated MCF?7 intraductal xenografts, and GSE192810 for
hormone-treated intraductal breast cancer PDXs.

Code availability

The code employed for the analyses during the current study is open-source and
available through the abovementioned packages in R. Scripts can be provided upon
request.
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