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Glioblastoma (GB) is themost common and aggressive primary brain
malignancy, with poor prognosis and a lack of effective therapeutic
options. Accumulating evidence suggests that intratumor heteroge-
neity likely is the key to understanding treatment failure. However,
theextent of intratumorheterogeneity as a result of tumor evolution
is still poorly understood. To address this, we developed a unique
surgical multisampling scheme to collect spatially distinct tumor
fragments from 11 GB patients. We present an integrated genomic
analysis that uncovers extensive intratumor heterogeneity, with
most patients displaying different GB subtypes within the same
tumor. Moreover, we reconstructed the phylogeny of the fragments
for each patient, identifying copy number alterations in EGFR and
CDKN2A/B/p14ARF as early events, and aberrations in PDGFRA and
PTEN as later events during cancer progression. We also character-
ized the clonal organization of each tumor fragment at the single-
molecule level, detectingmultiple coexisting cell lineages. Our results
reveal the genome-wide architecture of intratumor variability in GB
across multiple spatial scales and patient-specific patterns of cancer
evolution, with consequences for treatment design.
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Glioblastoma (GB) is the most common primary brain malig-
nancy in adults and one of the most aggressive cancers. The

median survival in the general patient population is just 4.6 mo.
Even in optimally treated patients, the median survival is 14 mo,
with a 26% 2-y survival rate (1). Considering the average age at
diagnosis, GB typically results in more than 20 y of life lost (2).
Since the 1970s, primary treatment has involved surgery followed
by radiotherapy (3). Recently, targeted chemotherapy approaches
such as the alkylating agent temozolomide (1) also have been used,
although with modest effects on survival. The impossibility of ex-
tensive tumor debulking and poor drug delivery in the brain con-
tribute significantly to the lack of effective treatment options and
poor prognosis.
Insights into the genetic regulatory landscape of GB have

been achieved through The Cancer Genome Atlas (4) and other
studies (5). Furthermore, patterns of gene expression have been
collated to identify molecular subgroups with putative prog-
nostic or predictive significance (5, 6). Nevertheless, the poor
prognosis is compounded by the endemic problem of disease
heterogeneity, which has been reported extensively for other
cancer types (7–10). In glioblastoma, FISH has been used to
identify receptor tyrosine kinase amplifications as markers for
the generation of heterogeneity through clonal evolution (11,
12). These data are based on archival material from single tumor
samples. Spatial heterogeneity within an individual tumor mass
has not been investigated yet, and the impact of sampling bias
has not been addressed. Furthermore, genome-wide studies of
intratumor heterogeneity in GB have yet to be performed.

Real-time perioperative tumor sampling of GB may be con-
founded by tumor necrosis and the challenge of distinguishing dis-
ease from normal brain tissue. To address this, we have developed
a fluorescence-guided multiple sampling (FGMS) approach (13)
based on 5-aminolevulinic acid administration (14) to improve ob-
jective GB sampling in the operating theater. During surgery (Fig.
1A), viable tumor tissue can be identified by visible fluorescence
(Fig. 1B). We adapted this technique to perform multiple sampling
of objectively defined (visibly fluorescent) and spatially distinct GB
tumor fragments from 11 patients (see Table S1 for sample details).
During the operation, between four and six fragments (T1, T2, . . .)
with a volume of 2–3 mm3 each were obtained from the neoplasm,
with samples separated by at least 1 cm (Fig. 1C). The fragments
were labeled in order of resection, with superficial fragments taken
during the early stages of tumor debulking (T1, T2), followed by
deeper fragments (T3, T4, . . .) taken later in the operation. In ad-
dition, we collected a further fragment from the bulk of the tumor
mass (T) and a blood sample as a source of germline DNA to dis-
tinguish somatic copy number lesions. Histopathological analysis
showed that all fragments had similar proliferative index, cellular
atypia, and vascularization and were devoid of significant necrotic
areas (as evident by fluorescence-aided resection). This sampling
technique, performed directly in the operating theater, allowed us to
collect a unique dataset to interrogate intratumor heterogeneity at
the genomic level across the malignancy.
Here, we show that genome-wide GB intratumor genomic

heterogeneity can be decomposed to reveal tumor evolution.
Moreover, we report that based upon gene expression levels,
tumor fragments from the same patient may be classified into
different GB subtypes. Using single-molecule approaches, we
also investigate the clonal composition of single fragments, re-
vealing that a hierarchy of mitotic clones coexists within the
same fragment. Our results show that tumor heterogeneity
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represents a specific signature that informs on GB evolutionary
dynamics at the single-patient level.

Results
Subset of GB Putative Drivers Is Consistently Heterogeneous. We
profiled genome-wide DNA somatic copy number levels for 38
tumor fragments from nine patients from the cohort (see Table
S1). To investigate the global patterns of copy number alteration
(CNA) within each patient, we took the union of CNAs that oc-
curred in at least one of the tumor fragments. We observed several
frequent aberrations that have been reported in other GB cohorts,
including partial loss of chromosome 10 (15) in eight patients and
the focal (<10 Mb) deletion of the CDKN2A/B locus (4, 16) in
seven patients, as well as the frequently co-occurring deletion of
MTAP (17). Polysomy of chromosome 7 was found in all patients.
Gain/amplification of EGFR, often presented as numerically un-
stable extrachromosomal double minutes (18), also was found in
all patients (3/9 were focal high-level amplifications). Moreover,
we identified aberrations in several other putative GB drivers
linked to theRas, p53, andRb pathways, including amplification of
MET (eight cases), CDK6 (eight cases), MDM4 (two cases), and
AKT3 (two cases); focal amplification of PDGFRA (three cases),
PIK3CA (two cases), CCND2 (one case), and MYCN (one case);
deletion of PARK2 (one case), RB1 (one case), PTEN (nine cases,
two of which were focal); and finally focal deletion of TP53 (two
cases),NF1 (two cases), andCDKN2C (one case). CNAs inMDM2
or CDK4 were not detected in our cohort. We also noted copy-
neutral loss of heterozygosity for TP53 (two cases), an important
event for the inactivation of this gene (19). Similar to previous
studies (4), we observed deregulation of the Ras, Rb, and p53
pathways in all patients, with aberrations in multiple components
belonging to each pathway (Table S2).
Some of these putative driver aberrations were consistently

heterogeneous within the same tumor (e.g., Fig. 2A), including
copy number gain/amplification of the PDGFRA (3/3 heteroge-
neous tumors),MDM4 (2/2), and AKT3 (2/2) loci, and deletion of
the genomic locus containing PTEN (6/9) (Fig. S1). Fig. 2B sum-
marizes the CNAs in putative drivers for all patients, in which
aberrations that displayed intratumor heterogeneity are empha-
sized. Moreover, the heterogeneity was not limited to regions of
the genome containing genes previously associated with cancer. In
fact, although the fragments from the same patient shared a com-
mon genomic profile, indicating the clonal origin of the tumor (Fig.
S2), they displayed a striking variety of CNAs that were present in
only a subset of the fragments (Fig. S3).

Copy Number Heterogeneity Allows Tumor Evolution to Be Inferred.
For each tumor, we classified CNAs as “common” (all tumor
fragments had the CNA), “shared” (more than one but not all
fragments had the CNA), and “unique” (only one fragment had
the CNA). The total number of aberrations (Fig. 2C) was highly
variable among tumors, with sample sp42 having the largest
number of CNAs (average 273) and sp54 the smallest (average
91). We observed that for every tumor, only a proportion of
CNAs were common to all fragments (ranging from 1.3% in sp54
T6 to 70% in sp50 T3; mean = 31%; Fig. S4), with shared plus
unique alterations representing most of the CNAs in 31/38
fragments. We confirmed that the observed heterogeneity was
not the result of differences in normal contamination by dem-
onstrating the absence of significant correlation between the
estimated cellularity [using ASCAT (Allele Specific Copy
number Analysis of Tumors) (20)] and the fraction of shared
(Spearman’s ρ = 0.025, P value = 0.88) and unique (Spearman’s
ρ = 0.043, P value = 0.8) alterations.
Because all fragments taken from the same tumor mass almost

certainly evolved from the same tumor-initiating clone, we may
infer that common aberrations arose earlier in the development of
the malignancy with respect to alterations that are found only in
a subset of tumor cells (21). Hence, shared or unique events likely
represent changes that occurred later in tumor development.
Given this reasoning, we can deduce that multiple sampling of
spatially separated tumor regions enables interrogation of the
mutational spectrum of the malignancy both spatially and tem-
porally. Indeed, when we examine the distribution of CNAs across
the genome for all patients (Fig. 2D), we find that in the inferred
early tumor growth phase (common), CNAs largely target chro-
mosomes 7 and 10, on which the most frequent putative GB
drivers, such as EGFR, CDK6, MET, and PTEN, are located. We
also report common copy number deletions ofCDKN2A/B on chr9
(seven patients) and of the 10p12 locus during the inferred early
phase. During the middle phase (shared), amplifications accu-
mulate on chr7 (7p22, 7p11, 7q22, 7q36) and on chr19p12/13,
whereas deletions arise almost exclusively on chr10, further tar-
geting PTEN. Additionally, we observe the focal amplification of
PDGFRA during this middle phase. During what we inferred to be
the late (unique) phase, alterations are more broadly scattered
across the genomewith respect to themiddle phase.We also found
a focal peak of amplification containing GLUT9 (4p16), a gene
previously shown to be involved in cancer glucosemetabolism (22).
To investigate tumor evolution within each patient in more

detail, we used TuMult (23) to reconstruct phylogenies based on
the underlying copy number data (Fig. S5). The results are con-
sistent with the analysis above: During the first appearance of

T1

CB

T2 T3 T4A

B

C

Fig. 1. GB sample collection scheme. FGMS (Fluorescence-Guided Multiple Sampling) detects viable tumor tissue in bright pink color [(A): off; (B): on] while
avoiding necrotic areas and normal brain tissue during surgery. (C) At the time of resection, multiple fluorescent tumor fragments (T1, T2, T3, . . .), ∼10 mm
apart, were collected from 11 GB patients.
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a malignant clone, loss of CDKN2A/B and amplification of
EGFR, CDK6, and MET occur. Later malignant events most
often are copy number aberrations in genomic regions con-
taining PDGFRA, PTEN, and TP53. For example, the expansion
of tumor sp52 was initiated by alterations inEGFR,CDK6,MET,
CDKN2A, and NF1. Subsequently, the initial tumor clone sep-
arated into one subclone with an amplification of PDGFRA and
another subclone with loss of PTEN and RB1. The latter di-
versified further into three subclones, one of which showed
amplification ofAKT3 (Ras pathway) andMDM4 (p53 pathway).

Distinct GB Subtypes Are Present Within the Same Tumor. To char-
acterize intratumor variation at the level of transcription, we used
microarrays to profile gene expression levels in 51 tumor fragments
from 10 patients, 8 of whom were common to the copy number set
(Table S1). Hierarchical clustering confirmed patient-specific
cancer profiles, with most samples from the same tumor falling
into the same cluster, with only three exceptions (sp42T4, sp54T3,
and sp56T3). We assigned each sample to one of four subtypes:
“proneural,” “neural,” “classical,” and “mesenchymal” using the
Verhaak classifier (5), which is based on an 840-gene signature.

Each subgroup has a characteristic copy number profile, different
survival, and variable response to treatment; hence, this classifi-
cation is believed to be relevant for patient stratification and thus
therapy design (24). We found that in 6 of 10 cases (sp42, sp49,
sp52, sp54, sp55, and sp56), the fragments from the same tumor
mass were classified into at least two different GB subgroups (Fig.
3 A and B). This indicates that tumor clones with different phe-
notypic profiles coexist within the same malignancy.
To further investigate heterogeneity at the gene expression level,

we selected the 100 most heterogeneous genes within each tumor
(see SI Materials and Methods for details) and found that 5 of them
were common to more than six patients (Table S3). Gene ontology
analysis (25) revealed that themost heterogeneous genes fromeach
patient were involved in the same biological processes (Fig. 3C),
such as brain cell proliferation/differentiation (neurogenesis, gen-
eration of neurons, CNS development, neuron projection de-
velopment), neuronal activity (regulation of membrane potential,
neurotransmitter secretion), morphogenesis (cell morphogenesis,
cell morphogenesis involved in differentiation) as well as tumor
angiogenesis (blood vessel development, vasculature development),
and cell migration and invasion (extracellular matrix organization).
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Fig. 2. Landscape of intratumor heterogeneity at the copy number level. (A) Example of intratumor heterogeneity based on PDGFRA aberrations in patient
sp49; whereas fragments T and T2 show no alterations, focal gain and amplification are evident in fragments T3 and T4, respectively (■, PDGFRA location). (B)
For each patient, the number of fragments that exhibit CNAs in a putative driver gene is reported. In eight of nine patients, we found putative driver
alterations that were not common to the whole tumor (enhanced borders), such as PDGFRA and PTEN. (C) CNAs were classified as common (found in all
fragments), shared (found in more than one but not all fragments), and unique (found in only one fragment). All tumors displayed a large yet variable
number of shared and unique aberrations. (D) The distribution of common/shared/unique altered probes delineates tumor evolution in the early/middle/late
phases, respectively. Alterations focus on chr7 and chr10 as well as CDKN2A/B during an early phase, followed by a middle (shared) phase in which CNAs
accumulate further on chr7 and 10, around the PDGFRA locus and on 19p13/12. Finally, during the late phase (corresponding to unique alterations), CNAs
spread across the genome, with a peak on 4p16 (GLUT9).
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Moreover, we found that many of these genes are putatively regu-
lated by three transcription factors (E12, LEF1, and NFAT; Table
S4), all of which are known to regulate neural progenitor cell pro-
liferation/differentiation either through theWnt/β-catenin signaling
pathway (LEF1, NFAT) or through basic-loop-helix factors (E12)
(26–29).

Each Tumor Fragment Contains a Complex Hierarchy of Clone
Lineages. Given the heterogeneity at both the DNA copy number
and transcriptional levels within each malignancy, an important
question is the depth and complexity of this subclonal structure at
the resolution of individual cells. A clone is a group of cells with
a common genomic profile, yet because of the large spectrum of
possible alterations, identifying distinct subclones and their com-
mon mutations within a mixed population of cells is challenging.
The definition of a clone implies that cells within the same clone
are related in terms of proliferation. Hence, an optimal approach
to identifying subclones is to exploit a measure of mitotic distance
(number of cell divisions) between the cells within a fragment. This
also allows the reconstruction of the phylogeny of the cells and the
relationship between the subclones. Here, we use neutral meth-
ylation loci as molecular clocks that report on the number of cell
divisions. Previously, we used this approach in normal (30–32) and
cancerous tissues (33) to investigate mitotic heterogeneity at the
single-molecule level and to infer patient-specific tumor parame-
ters (34). In brief, a molecular clock is a genomic locus that records
proliferative events within a cell, thereby allowing mitotic rela-
tionships to be traced at single-molecule resolution within a
tumor fragment.
In this study, we used the IRX2 locus as a molecular clock for

eight patients, using 454 sequencing to generate single-molecule
reads from each tumor fragment. Fig. 4A illustrates the fraction of
the different mitotic clones in each sample (one mitotic clone
corresponds to a unique methylation tag). Interestingly, in none of
the 38 fragments examined from eight GB cases was a single
dominant clone (defined as>60%of cells) observed. Fig. 4B shows
the phylogenetic reconstruction of the mitotic clones for three

representative tumor fragments, in which leaf thickness indicates
the abundance of each clone. This indicates that not only are there
different subclones in each fragment, but they belong to clearly
distinct cell lineages, representative of a complex hierarchy.

Discussion
From an evolutionary perspective (7, 35), the divergent de-
velopment of subpopulations of cancer cells within the same tu-
mor likely is at the root of therapy failure, the development of
treatment resistance, and ultimately recurrence of the malignancy
(36–40). A detailed understanding of the evolutionary dynamics
of tumor progression will provide insight into the associated
molecular genetic mechanisms and will allow us to construct order
from apparent chaos.
In GB, intratumor heterogeneity at the level of the tyrosine

kinases EGFR, PDGFRA, and MET was demonstrated previously
using FISH (11). Moreover, cell lines with different EGFR/
PDGFRA profiles derived from the same GB showed differential
response to growth factors (12). However, a comprehensive ge-
nomic analysis of intratumor heterogeneity and tumor evolution in
GB has not been previously described. More importantly, the
mechanisms behind intratumor heterogeneity and its conse-
quences remain largely unknown. To date, analyses in GB as well
as in many other cancer types are based on single tissue samples
from individual patients. Here, we show that an objective multiple
sampling scheme is the key to interrogating intratumor heteroge-
neity and deconvoluting the underlying cancer dynamics. A single
biopsy is unlikely to represent the full set of mutations present in
a particular cancer because it may underestimate the landscape of
alterations that are present, as recently reported in renal carci-
noma (10). For GB, in which the tumor is not resected as a solid
mass but in a piecemeal fashion, multiple sampling from the same
neoplasm is challenging and is done most easily at the time of
surgery. Using FGMS (Fluorescence-Guided Multiple Sampling),
we have applied a real-time perioperative multiple sampling ap-
proach duringGB resection, which partially conserves information
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on the spatial organization of the samples. All patients underwent
primary GB resection with no preoperative treatment that would
have introduced biases in the analysis of genetic alterations.
Here, we demonstrate that GB exhibits a landscape of hetero-

geneous mutations across the whole genome at the copy number
level; this represents a signature of the history of the malignancy
from the first tumor-founding cell(s). By deconvoluting such
a signature, wemay infer the temporal sequence of alterations that
have occurred in the malignancy. Further, using gene expression
data we observed that different samples from the same tumor were
classified into different GB subtypes (Fig. 3A). This shows that the
impact of sampling bias must be considered when establishing
molecular criteria for patient stratification. Supporting this asser-
tion, the morphological data available from individual tissue bi-
opsies may provide misleading information, resulting in diagnostic
errors (39). Hence, these results support the development of per-
sonalized treatments based upon a multimodal approach that uses
information from multiple samples from the same GB.
As an example of how our data might be integrated with the

current standard of clinical practice, Fig. 5 shows how the ana-
tomical positions of the five tumor fragments collected for patient
sp42 (A) may be coupled with the reconstructed evolution of the

tumor mass (B). During the operation, fragments are numbered in
order of resection, approximately corresponding to the depth of the
sample within the brain. This coupling reveals a complex evolu-
tionary pattern with the accumulation of malignant traits in dif-
ferent parts of the neoplasm (C). Our analysis suggests that the
founder clone displayed amplification/gain of EGFR, CDK6, and
MET, and loss/deletion of CDKN2A/B, PTEN, and PARK2 (hence
targeting the Ras and Rb pathways), before splitting into two
populations (subclones 1 and 2), thefirst of which generated T2 and
T3, with T3 gaining a copy of chromosome 3 (which contains
PIK3CA). The second subclone subsequently acquired further
mutations manifested in T4, which also displayed an altered gene
expression profile belonging to a mesenchymal subtype, despite the
rest of the tumor fragments being proneural. Subclone 2 gave rise to
another independent +PIK3CA subclone (again with chromosome
3 gain). The latter then expanded to form T1 and, with the partial
loss of chromosome 17 (containing NF1 and TP53) and therefore
alteration of the p53 pathway, generatedT.Of note, the occurrence
of new lesions, such as loss ofNF1 andTP53 in fragment T,may not
necessarily represent a fast clonal expansion event, but also a slower
process of selection of a preexisting rare clone that becomes
dominant within a fragment and, therefore, detectable by copy
number profiling.
Our study presents an integrated analysis of intratumor

heterogeneity at the genotype level (copy number), cellular phe-
notype (gene expression), and single-molecule mitotic level (mo-
lecular clocks). To our knowledge, the multiple sampling scheme
and genomic data have never before been integrated in this way to
describe GB evolution at the individual patient level.
Taken together, our results shed light upon intratumor hetero-

geneity and the clonal evolution of GB. Based on these results, we
propose that patient-specific dynamics of tumor heterogeneity
underlie variation in response to treatment. Specifically, after
therapy, the surviving population may not be a single resistant
cancer clone, but rather a heterogeneous population of malignant
cells with genetic aberrations that allow them to survive the initial
treatment. This view extends the concept of clonal evolution by
allowing selection to play a role limited only by the spatial
structure of the neoplasm, in which multiple clones with different
fitness coexist within the same cancer (41). Instead of benefitting
single clones, this would favor the whole tumor population by
converting heterogeneity into an asset to resist treatment (7, 42).
This hypothesis implies that patterns of heterogeneity might be
used to stratify individual patients and to select an appropriate
multimodal therapeutic strategy. To test this hypothesis, multiple
sampling data (paired primary tumor and recurrence) from a
larger population are required. Furthermore, future studies
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Fig. 4. Multiple mitotic clones coexist within each GB fragment. (A) Fraction
of the five most common mitotic clones in each tumor fragment based on
molecular clock analysis of eight patients (sp57 was excluded because of PCR
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on the molecular clock analyses. In these three representative cases, the exist-
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thickness is proportional to the abundance of the clone within the fragment.
The results indicate clonal heterogeneity within each fragment and the
presence of multiple cell lineages that correspond to distinct mitotic clones.
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should characterize the interaction of cell populations within
tumor fragments, as this would improve our understanding of
complex microenvironmental forces that contribute to tumor
development.

Materials and Methods
Using our established FGMS approach (13), we obtained between four and
six tumor fragments from different areas of the visibly fluorescent tumor
mass that were at least 10 mm apart. Tissue collection protocols were
compliant with the UK Human Tissue Act 2004 (HTA Licence ref 12315) and
approved by the Local Regional Ethics Committee (LREC ref 04/Q0108/60).
Informed consent was obtained from each patient before surgery. Samples
were subject to genome-wide copy number analysis on the Affymetrix SNP6
platform (Fig. S6), gene expression profiling on the Illumina HT12 platform,

and methylation molecular clock analysis as described elsewhere (34). See SI
Materials and Methods for further details.
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