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Dr Yiaying Tan 

Senior Editor 

Cell 

 

Dear Dr Tan,  

 

TRACERx Renal: Deterministic evolutionary trajectories govern primary tumour growth 

I am pleased to enclose our updated manuscript with the following changes to comply with 

production requierments: 

1. The total character count including the title, author list and affiliations, Summary, 

Introduction, Results, Discussion, Author Contributions, Acknowledgements, 

References, and main figure legends but excludes STAR Methods text and 

supplemental item legends is 68,863.  

2. The total number of Supplemnetray items is 14 of which 9 are supplementary figures, 

and 5 are supplementary tables. Please note that on fo the supplemnetray figures (a 

PDF) has multiple pages.   

3. Consortia section is included.  

4. Our figures meet the Cell criteria.  

5. Graphical abstract is included.  

6. DOI is included.  

7. Key Resources Table is included.  

8. Highlights are included separately with ETOC blurb 

I hope that the manuscript is now appropriate for publication but please let me know fi 

anything else is required.  

Cover Letter
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Thank you for your consideration 

 

 

Yours sincerely,  

 

 
 

Charles Swanton 

 

On behalf of the TRACERx Renal consortium 
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Summary 

 

The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been 

systematically studied to date. We analysed 1206 primary tumour regions from 101 patients 

recruited into the multi-centre prospective study, TRACERx Renal.  We observe up to 30 driver 

events per tumour, and show that subclonal diversification is associated with known 

prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence and 

mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC 

can be grouped into seven evolutionary subtypes, ranging from tumours characterised by 

early fixation of multiple mutational and copy number drivers, and rapid metastases; to highly 

branched tumours with >10 subclonal drivers and extensive parallel evolution, associated 

with attenuated metastases. We identify genetic diversity and chromosomal complexity as 

determinants of patient outcome. Our insights reconcile the variable clinical behaviour of 

ccRCC, and suggest evolutionary potential as a biomarker for both intervention and 

surveillance.  

 

Keywords: renal cell cancer, cancer evolution, intratumour heterogeneity, deterministic 

evolution, evolutionary contingency, evolutionary subtypes, metastasis, chromosome 

instability 
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Introduction  

Renal cell carcinoma (RCC) is the 7th most frequently diagnosed malignancy (Znaor et al., 

2015), with a rising incidence in the developed world (Smittenaar et al., 2016). The most 

common histological subtype, clear cell (ccRCC), is associated with a wide range of clinical 

outcomes. Around one third of patients with localised ccRCC relapse following surgery, with 

tumour size, grade and necrosis (Leibovich et al., 2003), the presence of vascular and/or fat 

invasion (da Costa et al., 2012) and sarcomatoid differentiation (Zhang et al., 2015) shown to 

impact the risk of recurrence. While these parameters are useful for patient counselling and 

stratification into follow-up and adjuvant studies, their predictive accuracy is inexact.  Solitary 

metastasis at relapse may be amenable to surgery (metastasectomy) or local therapy (e.g. 

ablation) on case-by-case basis (Bex et al., 2016). Patients relapsing with multiple but low 

volume, slow-growing metastases can be observed initially, but the risk of deferring systemic 

therapy remains unclear (Rini et al., 2016). Up to 30% of patients present with metastatic 

disease from the outset. In select cases, primary surgery is used with cytoreductive, or, if 

combined with complete metastasectomy, with curative intent. Patient selection for such 

interventions remains under intense debate, as does the management of small renal masses 

(SRMs, renal lesions <4 cm in size). Increasing use of abdominal cross-sectional imaging has 

led to incidental discovery of SRMs, majority of which have favourable natural history, leading 

to concerns about over-treatment (Welch, 2017). At present, molecular profiling does not 

impact decision making in any of these clinical scenarios.   

The molecular landscape of ccRCC was elucidated by a number of next generation sequencing 

studies (Cancer Genome Atlas Research, 2013; Dalgliesh et al., 2010; Sato et al., 2013; Scelo 
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et al., 2014; Varela et al., 2011) which revealed frequent inactivation of the VHL tumour 

suppressor gene, alterations in the SWI/SNF complex (Varela et al., 2011), histone-modifying 

genes (Dalgliesh et al., 2010) and the PI3K/AKT/mTOR pathway (Cancer Genome Atlas 

Research, 2013; Sato et al., 2013; Scelo et al., 2014). Recurrent arm level or focal losses are 

observed on chromosomes 1p, 3p, 4q, 6q, 8p, 9p, and 14q, and gains on chromosomes 1q, 

2q, 5q, 7q, 8q, 12p and 20q (Beroukhim et al., 2009; Cancer Genome Atlas Research, 2013). 

We previously reported significant mutational and SCNA intratumour heterogeneity (ITH) in 

ten cases of advanced ccRCC (Gerlinger et al., 2014; Martinez et al., 2013), showing that single 

biopsy analyses may miss important alterations or misclassify them as clonal due to the 

“illusion of clonality”. This hinders our understanding of tumour evolution as well the 

validation of biomarkers and therapeutic targets. To date, attempts to molecularly classify 

ccRCC have included single biopsy analyses of mutations (Hakimi et al., 2013; Kapur et al., 

2013; Sato et al., 2013) or global gene expression and methylation (Cancer Genome Atlas 

Research, 2013; Chen et al., 2016). 

To aid an evolutionary classification of RCC we established a multi-centre prospective 

longitudinal cohort study, TRAcking renal cell Cancer Evolution through Therapy (TRACERx 

Renal, clinical trials no NCT03226886), with a protocol-specified endpoint of examining  the 

association of ITH with disease stage and clinical outcomes through multi-region genomic 

profiling of primary tumours  (Turajlic and Swanton, 2017). The TRACERx Renal program 

began recruitment in July 2012, enrolling patients undergoing nephrectomy (with curative or 

cytoreductive intent) for suspected or confirmed renal cell carcinoma (STAR Methods), with 

a target accrual of 320 patients with ccRCC. We report our interim findings of the patterns of 

https://clinicaltrials.gov/ct2/show/NCT03226886
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ITH, clonal evolution, and tumour progression in the first 101 patients with the diagnosis of 

clear cell non-familial RCC (for full inclusion criteria for this cohort see STAR methods).  

Results 

Intratumour heterogeneity of driver events in primary ccRCC  

Clinical annotation of the 101 patients under study is provided in Table S1. Demographic and 

stage distribution were consistent with the referral patterns of the participating centres. All 

the samples were profiled using a bespoke sequencing panel targeting ~110 putative ccRCC 

driver genes (STAR Methods: Driver Panel; Figure S1A: CONSORT diagram). This approach 

enabled us to maximise the sequencing depth, a critical factor for correctly inferring 

evolutionary trajectories (Noorbakhsh and Chuang, 2017). Single nucleotide variants (SNVs), 

dinucleotides variants (DNVs), small insertion and deletions (INDELs) and somatic copy 

number alterations (SCNAs) were successfully derived from 1206 regions across 106 primary 

tumours (median 7 (range 3-75) regions per tumour) from 101 patients, as five patients 

donated pairs of primary tumours. Within the same cohort, 107 regions from 17 tumours 

were profiled by whole exome sequencing (WES), 81 regions from 27 tumours by whole 

genome sequencing (WGS), with six further tumours from the broader TRACERx Renal cohort 

also profiled by WGS (Figure S1B).  

Median sequencing coverage across 1206 tumour regions profiled by the Driver Panel was 

612x (range 105-1520x). We identified a total of 740 somatic mutations including 538 SNVs 

(440 non-synonymous SNVs), 7 DNVs and 195 INDELs (Table S2). We specifically considered 

non-silent mutations in high-confidence ccRCC driver genes (termed driver mutations, 

annotated in Figure 1A; STAR Methods). The median number of driver mutations was 3, range 

0-15 per tumour (Figure 1A). VHL mutations were the only consistently clonal event, present 
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in 77/106 tumours (Figure 1A).  VHL was methylated in 17 additional tumours (Figure 1A, 

Figure S2). One tumour harboured a mutation in the TCEB1 gene, a part of the VHL complex 

(Hakimi et al., 2015) (Figure 1A), thus 90% (95/106) of the tumours harboured clonal 

disruption of the VHL pathway. 4/11 VHL wild type tumours (K206, K228, K427 and K446, 

Figure 1A) had evidence of sarcomatoid differentiation (Table S1A), a feature reported to be 

associated with a lower frequency of VHL mutations (Malouf et al., 2016; Wang et al., 2017). 

K255, another VHL wild-type tumour, had evidence of both clear cell and papillary histology, 

and we observed SCNAs specific to both, including gains of 5q and 16 (Figure S3). We 

observed no mutations in the known ccRCC driver genes in K110 (Figure 1A), but the copy 

number profile, involving whole chromosome losses on 1, 6, 10 and 17, was consistent with 

chromophobe RCC (Davis et al., 2014). Additional pathology review confirmed chromophobe 

histology and K110 was removed from all subsequent analyses. 

The overall frequency of driver mutations was higher in our cohort compared to the published 

single biopsy studies (Cancer Genome Atlas Research, 2013; Sato et al., 2013; Scelo et al., 

2014) (Figure 1B). Notably, the frequency of VHL mutations in our and Scelo studies was 

higher than that reported in the TCGA and Sato studies, potentially due to the higher overall 

number of VHL INDELs called (Figure 1B).  VHL INDELS in the TRACERx Renal cohort were 

confirmed by Sanger sequencing (Figure S2). The higher frequency of mutations in other 

driver genes was due to the detection of subclonal events through multi-region profiling in 

our cohort (Figure 1B).  

An important goal of the TRACERx Renal study is to determine the contribution of SCNAs to 

clonal evolution. Recurrent SCNAs occur at a limited number of genomic sites in ccRCC 

(Beroukhim et al., 2009; Cancer Genome Atlas Research, 2013), usually as whole chromosome 
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or chromosome arm events; and the rate of genome doubling in ccRCC is low (Zack et al., 

2013). Therefore, recurrent SCNAs can be reliably detected by the Driver Panel, as shown by 

the high level of concordance with WGS results (Table S2). We measured the fraction of the 

tumour genome affected by SCNAs using the weighted genome instability index (wGII) 

(Endesfelder et al., 2014), taking the maximum observed wGII score across all regions per 

tumour. Maximum values were utilised in order to capture the highest risk, and hence most 

clinically relevant, subclones in each tumour (STAR Methods). Median wGII in the TRACERx 

Renal cohort was 32.8% (range 4.7% - 97.4%). All SCNAs were annotated using previously 

defined cytobands (Beroukhim et al., 2009) to quantify driver SCNAs (Figure 1A, STAR 

Methods).  In total, we detected 751 driver SCNAs; median 7, range 1-14 per tumour (Figure 

1A).  

Loss of chromosome 3p, which is pathognomonic with ccRCC and encompasses four 

commonly mutated genes (VHL, PBRM1, SETD2 and BAP1), was observed in all but five 

tumours (K021, K375, K354, K255, K114R; Figure 1A).  Three had clonal 3p copy neutral allelic 

imbalance (CNAI) (STAR methods) (K021, K375, K354, Figure S4), consistent with biallelic 

inactivation of mutated 3p driver genes. Driver SCNA 3p25.3 (which contains the VHL locus) 

was subclonal in five tumours: one with a VHL mutation (K252, Figure 1A),  one with VHL 

methylation (K070, Figure 1A); one VHL wild type with a bi-allelic SETD2 mutation (K427, 

Figure 1A); and two with no mutations in any of the 3p genes (K169, K446, Figure 1A). 

The overall frequency of driver SCNAs was higher compared to the published single biopsy 

studies (Cancer Genome Atlas Research, 2013; Sato et al., 2013; Scelo et al., 2014) due to the 

detection of subclonal SCNAs in our cohort (Figures 1C). Notably, the frequency of SCNAs with 

reported prognostic significance, such as loss of chromosomes 14q and 9p, and gain of 
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chromosomes 8q and 12p is markedly underestimated in single biopsy studies (Cancer 

Genome Atlas Research, 2013).  Overall ITH was measured as an index (ITH index = # subclonal 

drivers / # clonal drivers, where “drivers” include all driver mutations and driver SCNAs shown 

in Figure 1A (STAR methods)). Median ITH index value was 1, with a high variability across 

the cohort (range 0-13.5; standard deviation = 2.16). 

 

Clonal evolution and clinical variables in ccRCC  

ccRCC prognostic variables include primary tumour size, overall tumour stage (TNM), 

Fuhrman grade and the presence of necrosis. Overall, the number of driver events was 

significantly associated with all of these parameters, with the associations specific to 

subclonal, and not clonal events (Figure S5). Similarly, higher ITH index values were associated 

with advanced tumour size, stage and grade (Figure S5). Clonal ordering techniques (see STAR 

methods) were used to infer clonal structures and driver phylogenetic trees (Figure 2, Figure 

S3). The median number of clones detected was 4 per tumour (range 1-23). Clone number 

increased with tumour stage and grade (Figure S5), but showed a non-linear association with 

tumour size, initially increasing in line with tumour dimensions but then plateauing at ~10cm 

beyond which clone number began to marginally reduce with increasing size (Figure S6). In 

conclusion, known prognostic parameters are associated with an increasing repertoire of 

driver alterations and subclonal driver diversification in ccRCC.  

 

Convergent Evolution 

We profiled three patients with synchronous bilateral ccRCCs and two patients with 

multifocal ccRCCs, with no family history of ccRCC, or germline mutations in the known ccRCC 
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predisposition genes (Table S1A). All five tumour pairs evolved independently, but converged 

on the VHL pathway. K265, K352, and K334 harboured distinct mutations in VHL and 3p loss 

events in each of the tumours (Figure 1A, Figure S7).  The right-sided K097 tumour harboured 

a VHL mutation and VHL was methylated in the left tumour (Figure 1A, Figure S2). Left K114 

tumour harboured a VHL mutation and 3p loss, while in the right tumour we detected a TCEB1 

mutation with the loss of 8q21.11, encompassing the TCEB1 locus (Figure 1A, Figure S7). K150 

tumour was presumed to be a contralateral renal metastasis from a previously resected left 

high-risk ccRCC. However, the two tumours had distinct VHL mutations (Figure S2) implying a 

case of bilateral metachronous ccRCCs. Our findings illustrate the importance of molecular 

profiling of patients presenting with multiple renal tumours to guide appropriate clinical 

management.  

 

Parallel evolution 

We and others have reported parallel evolution of mutations in the same genes or pathways 

within distinct tumour subclones in ccRCCs (Brastianos et al., 2015; Gerlinger et al., 2014). In 

the TRACERx Renal cohort, 13% of untreated primary tumours had evidence of parallel 

evolution, with SETD2, BAP1 and PTEN (all p<0.05, False Discovery Rate (FDR) < 0.1, Figure 3) 

significantly enriched for parallel evolution, corrected for the number of profiled regions. 

Certain tumours were notable for the number of parallel events they harboured, for example 

K243 had 10 distinct SETD2 mutations (Figure 3). In tumour K448, we observed 5 distinct BAP1 

mutations, and 3 SETD2 mutations, but BAP1 and SETD2 mutations never co-occurred within 

the same clone.  
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We recently identified parallel evolution of SCNAs in non-small cell lung cancer (Jamal-Hanjani 

et al., 2017) through mirrored subclonal allelic imbalance (MSAI, Figure S4). We analysed the 

incidence of MSAI in a subset of TRACERx Renal patients where whole genome or exome 

sequencing data were available (n=41) (STAR Methods) and observed MSAI events in 15/41 

tumours (Figure S4, STAR Methods), a subset of which were validated by an orthogonal 

method (Figure S4). Parallel loss of chromosome 14q was the most common event (4 patients, 

Figure S4), encompassing the ccRCC tumour suppressor HIF1A locus (Shen et al., 2011). 

Identification of conserved ccRCC evolutionary features 

To understand the constraints of ccRCC evolution we analysed conserved patterns of driver 

event co-occurrence, mutual exclusivity and timing to identify statistically significant 

patterns. We utilised the clonal/phylogenetic hierarchy determined for each case (STAR 

methods), in order to accurately place driver events within the same tumour subclone, and 

establish the relative ordering of driver events across the evolutionary path of each tumour. 

In our analyses of event co-occurrences at the clone level (STAR methods) we observe an 

enrichment for mutual exclusivity between BAP1 and SETD2/PBRM1 mutations (Figure 4A). 

However, at a patient level these events were found to co-occur (Figure 1A), often in separate 

spatially distinct major tumour subclones (e.g. K153, Figure S3). BAP1 had a propensity for 

being a lone additional mutational driver event in VHL-mutant clones, whilst PBRM1 and 

SETD2 were enriched for mutual clonal co-occurrence. Due to limited sample size these 

patterns did not reach formal significance, however we note the results are in agreement with 

previously published patient-level meta-analysis (Pena-Llopis et al., 2013). Of all the driver 

mutations, BAP1 was associated with the highest number of driver SCNAs in the same clone 
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(Figure 4A, Figure S8, p=0.032 for BAP1 versus no mutational drivers), consistent with its role 

in chromosomal stability (Peng et al., 2015). Overall, the strongest evidence for co-occurrence 

was found for the following pairs of driver SCNAs: 14q loss with 4q loss, 14q loss with 9p loss 

and 4q loss with 9p loss (Figure 4A, all p<0.05). These pairs of events were all found to co-

occur ≥ 1.8 x more frequently than expected by chance. We validated these observations in 

the TCGA ccRCC data (all p<0.05, Figure S8), showing that the specific event pairings co-

occurred together beyond the general expected correlation between SCNAs (e.g. for 14q loss, 

the most common partner event genome wide was 9p loss, Figure S8). We note that these 

SCNAs harbour well-known tumour suppressors 14q31.1- HIF1A (Shen et al., 2011), 9p21.3- 

CDKN2A (Beroukhim et al., 2009) and 4q- CXXC4 (Kojima et al., 2009).   

In our previous report of ten ccRCC tumours (Gerlinger et al., 2014) mutations in VHL and loss 

of 3p were consistently clonal, and PBRM1 was an additional clonal driver mutation in three 

cases.  In our current prospective cohort, we observed a subset of cases that harboured two 

or more additional clonal driver mutations, aside from VHL. Simulated models of tumour 

growth (Reiter et al., 2013) suggest that just one additional driver will significantly increase 

the growth rate, and we utilised WGS molecular clock timing data (see companion paper 

Mitchell et al. 2018) to test this hypothesis in our data.  Time to presentation was calculated 

as the time elapsed from the emergence of the most recent common ancestor (MRCA) to 

clinical diagnosis. The median time to presentation from the emergence of the MRCA for 

cases with VHL as the only clonal driver mutation, (n=14 cases, 48% of the WGS cohort) was 

28 [4 - 49] years. The addition of one further clonal driver mutation (n=13 cases) was 

associated with a shortening of time to diagnosis, to 5 [1 - 34] years, while the addition of two 

further clonal driver mutations (n=2 cases) shortened the time to diagnosis to 5 [4 - 7] years 
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(p=0.007, Figure 4B). Despite the shortened time of tumour growth, tumour size was found 

to be comparable across all the groups (Figure 4C), and we observed no difference in the 

mode of presentation (incidental versus symptomatic) across the three groups, suggesting 

there was no lead-time bias.  Overall, the groups had the same total median number (n=3) of 

driver mutations (considering clonal and subclonal events). Assessment of proliferation by 

multiregional Ki67 immunohistochemistry (IHC) staining (STAR Methods) showed elevated 

proliferation index in cases with additional clonal driver mutations (p=0.034, Figure 4D, Table 

S3), consistent with the timing analysis. 

Order of Events During ccRCC Evolution 

The order in which driver events are acquired can have prognostic and therapeutic 

implications, as shown by Ortmann and colleagues with respect to the order of JAK2 and TET2 

mutations in myeloproliferative neoplasms (Ortmann et al., 2015). We considered the 

ordering of driver events in ccRCC, assessing for recurrent patterns of driver events preceding 

or following one another. To conduct this analysis, we traced all possible evolutionary 

trajectories, starting at the base of each driver tree and tracing the path through to each 

terminal subclone, considering all possible sequential paths between events (Figure 4E). Due 

to the dense spatial sampling in this cohort the driver tree ordering was typically robust, with 

evidence of sequential waves of clonal expansion between events usually confirmed across 

multiple biopsy regions. In order to reduce the risks of multiple testing we limited further 

analyses to those trajectories containing the most frequent ccRCC driver events: VHL, PBRM1, 

SETD2, BAP1, PI3K/AKT/mTOR pathway mutations or driver SCNAs (Figure 1B). Event 

combinations which we observed in ten or more cases were then tested for significance in 
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the ordering pattern (STAR Methods). Six significantly conserved patterns were detected (all 

FDR<0.05), the first three of which confirmed VHL as a universally preceding event, as 

expected. In addition, PBRM1 mutations were found to consistently precede PI3K pathway 

mutations, SETD2 mutations and driver SCNA events (Figure 4E). In many of these cases the 

event sequences were observed exclusively in one direction, i.e. PBRM1 precedes SETD2 in 

11 separate cases, but the opposite was never observed. 

Evolutionary Subtypes 

A pertinent question is whether conserved patterns of ccRCC evolution relate to distinct 

clinical or biological phenotypes; to investigate this in an exploratory context we classified all 

the tumours under study according to the patterns observed in the evolutionary order, timing 

and co-occurrence analyses (Figure 4). Seven evolutionary subtypes were defined (Figure 5A) 

using a rule based classification system (STAR Methods), which was validated by 

unsupervised clustering (Figure S9). Subtypes were compared across different genomic and 

clinical metrics (STAR Methods) including levels of wGII, percentage of cells positive for Ki67, 

ITH index, clonal structure and clinical parameters including stage, percentage of tumours 

that are Fuhrman grade 4 (%G4) or presence of microvascular invasion (%MVI) (Figure 5). The 

first subtype consisted of tumours with “multiple clonal drivers” (defined as ≥ two BAP1, 

PBRM1, SETD2 or PTEN clonal mutations), and was characterised by high levels of wGII (9 out 

of 12 cases with wGII > cohort wide median value), enrichment for late stage disease (all cases 

were stage III+) and a high level of %MVI / %G4 / %Ki67.  These tumours harboured a smaller 

number of clones (average = 5, range (1-14)) and had little evidence of ITH (1 out of 12 cases 

had ITH > cohort wide median value) (Figure 5, STAR Methods). This pattern would be 
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consistent with sufficient selective fitness being achieved within the dominant clone through 

fixation of multiple driver mutations and SCNAs causing a clonal sweep at an early stage of 

tumourigenesis.  

A second and related subtype comprised “BAP1 driven” cases characterised by tumour clones 

with BAP1 as a lone mutational driver in addition to VHL (Figure 5). Where the tumours 

harboured other driver mutations, they were never found in the same subclone as the BAP1 

mutation (K448, K252, K153, K136, Figure 1 and Figure S3). This group was enriched for 

tumours with elevated wGII (8 out of 12 > median), fewer clones and a higher tumour grade 

(%G4). This pattern suggests that BAP1 mutations coupled with SCNAs afford a fitness 

advantage such that no additional driver events become fixed making them terminal drivers 

within individual clones. The third subtype consisted of “VHL wildtype” tumours, 

characterised by high ki67% (highest across all groups), elevated levels of wGII, potentially 

compensating for a lack of driver mutations, and additional phenotypic differences such as 

frequent presence of sarcomatoid differentiation.  

The fourth subtype were “PBRM1→SETD2” driven, a group characterised by highly branched 

trees (>10 clones per tumour; range (3-23)), the highest mean ITH score in the whole cohort, 

lower ki67%, frequent parallel evolution events and advanced disease stage (Figure 5). This 

pattern would be consistent with the notion of slower branched growth, with early PBRM1 

mutations followed by strong and repeated selection for SETD2 mutations. Supporting this 

notion was the average time to progression (defined as time to progression following 

cytoreductive nephrectomy, or the time to relapse following nephrectomy with curative 

intent) in this group (11.7 months), which was more than twice as long as that for “multiple 
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clonal driver”, “BAP1 driven” and “VHL wildtype” tumours (4.7, 5.9 and 4.5 months 

respectively, not formally significant). Critically, the observed features of this subtype were 

independent of tumour size, with no significant difference between the highly branched 

“PBRM1→SETD2” (mean tumour size 105mm, Table S1B) and the more monoclonal “multiple 

clonal driver” subtype (mean tumour size 107mm, Table S1B). The fifth and sixth subtypes 

were “PBRM1→PI3K” and “PBRM1→SCNA”, characterised by early PBRM1 mutation followed 

by mutational activation of the PI3K/AKT/mTOR pathway or subclonal SCNAs, respectively, 

and enriched for lower grade tumours.  

The final evolutionary subtype consisted of the “VHL mono-driver” tumours, which displayed 

limited branching and a monoclonal structure, with no additional driver mutations, and low 

wGII. The majority of tumours in this group presented at an early stage (mean tumour size 

45mm) suggesting they may be an early evolutionary ancestor of the more complex subtypes 

described above. Small renal masses (SRMs) without evidence of vascular or fat invasion (T1a) 

are an increasingly common clinical entity, which can potentially be managed by active 

surveillance (Jewett et al., 2011). We note that the only ≤4 cm tumour that was upstaged due 

to the presence of renal vein invasion (K021) was in the “multiple clonal driver” category, 

consistent with this evolutionary path enhancing vascular invasion independent of tumour 

size.  

Specific evolutionary subtype cases could not be assigned in 37 cases from a wide distribution 

of disease stages (stage I=12, II=2, III=16, IV=7). These tumours are likely to be driven by rarer 

evolutionary patterns not yet identifiable with current sample sizes. Several appeared to 

exhibit precursor subtype features, for example clonal VHL mutation, followed by PBRM1 
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mutation in a major subclone, that may have continued to evolve if they remained in situ. 

Further elucidation of the genomic and non-genomic drivers of evolutionary subtypes in 

larger datasets will be of major interest.  

ITH index and saturation of ccRCC driver events 

While pervasive ITH has been described in multiple tumour types, only one prospective study 

of multiregional tumour profiling has been reported to date (Jamal-Hanjani et al., 2017). 

TRACERx Renal, with 1206 primary tumour biopsies profiled across 101 ccRCC cases, affords 

an unprecedented opportunity to systematically explore the ITH extent. In a subset of 

tumours (n=15) which underwent extensive sampling (≥20 biopsies), we considered driver 

event (mutation and SCNA) saturation, measured as the proportion of events discovered with 

each additional tumour region profiled. Our analysis revealed a wide spectrum of saturation 

gradients (Figure 6A), highlighting the challenge of attempting to establish a biopsy count 

reliably applicable to all ccRCCs. Accepting this caveat, and considering all the tumours with 

≥15 biopsies (n=20) we calculated the stepwise change in driver event discovery when using 

between 1 to 15 biopsies (Figure 6B). On average, two biopsies were required to detect ≥ 50% 

of all variants and seven for ≥ 75% variants (Figure 6B). As expected, these values changed 

markedly based on tumour ITH, with homogenous tumours (≤median ITH index) achieving ≥ 

0.75 detection within four biopsies, as opposed to eight biopsies required for heterogeneous 

tumours (>median ITH) (Figure 6B).  Splitting instead by evolutionary subtype, fewest biopsies 

were needed to reach 0.75 driver detection in the “multiple clonal driver” and “VHL 

monodriver” groups, and largest number for “PBRM1-->SETD2” tumours (Figure 6C). 

We considered the utility of a radiologically guided two-site biopsy approach, for primary 

tumours which present as an SRM, or larger tumours without (M0) or with metastases (M1). 
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We down-sampled our dataset to two biopsies per tumour (STAR methods), and considered 

the mean results across all possible combinations to simulate how many subclonal driver 

events would be missed and how many subclonal events would be misclassified as clonal 

(“illusion of clonality”). For the SRM group 11/15 tumours had an average of ≤1 driver event 

missed and ≤1 driver event misclassified as clonal with a paired biopsy approach (Figure 6D, 

panel 1). For larger tumours, whether metastatic or not, performance was less favourable, 

with the majority suffering from multiple missed subclonal drivers and/or events misclassified 

as clonal (Figure 6D, panels 2&3). For these tumours, our data suggests that a range of four 

to eight biopsies is required to capture the majority of events (≥75% detection), although this 

approach may still miss some important drivers.  

Clonal evolution and clinical significance 

Association of the ITH index and disease progression was a pre-defined endpoint of the 

TRACERx Renal study  (Turajlic and Swanton, 2017). Patients whose tumours had high ITH 

index (>median value) had significantly reduced progression free survival (PFS), compared to 

those with low ITH index (p=0.0160 log-rank, hazard ratio (95% CI) HR = 2.4 [1.1 – 5.2]). Due 

to the small sample size the association was not significant when adjusted for known 

prognostic variables in a Cox proportional hazards model (p=0.4800 adjusted) (Figure 7A, 

STAR Methods). As elevated wGII was consistently enriched in the high risk evolutionary 

subtypes, we also considered its association with PFS.  Patients in our cohort whose tumours 

had high wGII (>median value) had a non-significant trend towards shorter PFS compared to 

those with low wGII (p=0.0717 log-rank HR = 1.9 [0.9 - 4.0], p=0.9400 adjusted, Figure 7A). 

We further investigated ITH and wGII metrics in the larger and more robustly powered TCGA 
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KIRC cohort, and found both measures to be significantly associated with PFS (p=0.0021 HR = 

1.9 [1.2 – 2.8] and p=0.0004 HR = 2.1 [1.4 - 3.3] respectively, log-rank). This association 

remained independently significant after adjusting for stage and grade (p=0.05 HR = 1.5 [1.0 

- 2.3] and p=0.02 HR = 1.7 [1.1 - 2.6] respectively, adjusted, Figure 7A), and in addition both 

measures were found to be significantly associated with overall survival (OS) in an adjusted 

analysis (p=0.04 HR = 1.7 [1.0 - 2.7] and p=0.04 HR = 1.7 [1.0 - 2.8] respectively, adjusted, 

Table S4). We note that the single biopsy approach is likely to have reduced the sensitivity to 

detect ITH and subclonal SCNAs in the TCGA cohort. 

Next, we considered ITH and wGII measures in combination, to ascertain if a low score in one 

measure but high in the other was sufficient on its own to be associated with increased 

patient risk. Significantly reduced survival was observed in all groups compared to “Low ITH 

and Low wGII”, suggesting that either driver event intratumour heterogeneity, or a 

homogeneous profile with high wGII (e.g. "Multiple Clonal Driver" evolutionary subtype), 

were the underlying factors associated with poor prognosis (TRACERx Renal 100: p=0.0019 

log-rank, p=0.7500 adjusted, TCGA PFS: p=0.0025 log-rank, p=0.0041 adjusted, Figure 7A, 

TCGA OS: p=0.0001 log-rank, p=0.0040 adjusted, see Table S4 for full TCGA Cox model 

results).  

We finally considered whether ITH and wGII measures associated with the pattern of 

metastatic progression.  Within our cohort, 37 patients had metastatic disease and we 

classified their disease progression (following cytoreductive or curative intent nephrectomy) 

into “rapid” or attenuated” (Table S1B, STAR Methods). 67% (n=9) of "Low ITH, High wGII" 

patients had rapid progression, as compared to 18% (n=28) in the other three groups 
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(p=0.0106, Fisher’s exact) (Figure 7B). Although limited by a small number of events (n=14), 

overall cancer-specific survival analysis (as opposed to PFS) in our cohort also demonstrated 

an association between ITH / wGII metrics and patient survival (p=0.0065 log-rank). The 

shortest survival time was observed in the “Low ITH, High wGII" group, further highlighting 

the aggressive nature of homogeneous tumours with high clonal wGII, a measure reflecting 

early fixation of chromosomal complexity (Figure 7C).  

Discussion 

We used clonal event co-occurrence, mutual exclusivity and temporal ordering to reveal 

deterministic features of ccRCC evolution and infer seven evolutionary subtypes. The 

"multiple clonal drivers" subtype was characterised by clonal co-occurrence of drivers that 

are usually mutually exclusive (BAP1 and PBRM1; BAP1 and SETD2), pointing to their 

combination being both tolerated and advantageous in certain contexts. These tumours had 

high wGII and low diversity, suggesting high clonal fitness with limited ongoing selection or a 

recent clonal sweep. Despite being the largest tumours in the whole cohort they had the 

shortest time from the most recent common ancestor to diagnosis, consistent with a recent 

clonal sweep and accelerated tumour growth, due presumably to the presence of additional 

drivers as shown in simulated models of tumour growth (Reiter et al., 2013). We note that 

our findings are in keeping with the observation of an aggressive subgroup of ccRCC with the 

concurrent loss of expression of PBRM1 and BAP1, a likely surrogate for the "multiple clonal 

drivers" subtype (Joseph et al., 2016). The "BAP1 driven" subtype confirmed the tendency to 

mutual exclusivity between BAP1 and PBRM1 (Pena-Llopis et al., 2013) mutations at the clone 

level. The majority of these tumours had no other detectable mutational drivers, suggesting 

that BAP1 mutations combined with SCNAs drive a robust clonal expansion. Accordingly, in a 
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recently published mouse model of ccRCC co-targeting of VHL and BAP1 resulted in high grade 

tumours with short latency (Gu et al., 2017).  

At the other end of the evolutionary spectrum the "PBRM1→SETD2" tumours had extensive 

branching, high ITH and preponderance for parallel evolution. The conserved ordering of 

SETD2 and PBRM1 mutations and the strong repeated selection of SETD2 mutant subclones 

that induce a limited clonal expansion raise interesting biological questions. It is possible that 

this sequence of events cannot achieve broader clonal growth due to a narrow selective 

fitness or because it occurs after the primary tumour bulk is established. The spatial clustering 

of parallel SETD2 mutations suggests a potential role for niche-specific selection, or even 

niche construction by the SETD2 mutant subclones.   

PBRM1 mutations are highly enriched as an early event in ccRCC, evidenced by their being 

clonal in 74% of cases, but also by the “PBRM1→PI3K” and “PBRM1→SCNA” evolutionary 

subtypes. In a mouse model of ccRCC (Gu et al., 2017) co-targeting of VHL and PBRM1 led to 

low grade ccRCC tumours which arose late, while an aggressive phenotype was triggered by 

the additional disruption of TSC1, a component of the PI3K pathway. Thus, although PBRM1 

is frequently selected early on it appears to have a strong necessity for later subsequent driver 

events.  

The "VHL wildtype" tumours were characterised by high wGII of cryptic aetiology, and were 

enriched for sarcomatoid differentiation, while the "VHL monodriver" tumours had few driver 

events and low wGII, and were enriched for SRMs.  

The evolutionary subtype group sizes were too small for formal survival analysis and 

assessment in the full TRACERx Renal study cohort (target n=320) will be of significant 

interest. Nevertheless, the features critical in distinguishing the evolutionary subtypes, 
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diversity (ITH) and chromosomal complexity (wGII), were prognostic in our and the TCGA KIRC 

cohort. Low diversity, high wGII tumours were more likely to progress rapidly and widely, 

suggesting the presence of occult metastases at presentation, while heterogeneous tumours 

(high ITH) with or without high wGII, were more likely to have an attenuated progression 

pattern, often with solitary metastasis. Thus, cytoreductive nephrectomy, metastasectomy or 

deferral of systemic therapy may be detrimental in the low diversity/high wGII cases, and 

ongoing investigations will determine if the proposed classification could help to optimise the 

benefit from these interventions.  

An increasingly important area of clinical management are SRMs, which account for almost 

one-half of all newly diagnosed renal masses (Kane et al., 2008). There is an ongoing debate 

about their treatment due the low rate of progression observed during active surveillance 

(Jewett et al., 2011). The majority of SRMs in our cohort had low ITH and low wGII, consistent 

with high cure rates achieved with early surgical intervention. The VHL monodriver subtype, 

characterised by low ITH and low wGII had a median time from MRCA to diagnosis of 30 years 

suggesting that such tumours have limited growth potential and could be amenable to 

observation. However, some SRMs in our cohort were characterised by high ITH or wGII and 

given the adverse molecular features these tumours potentially would progress in the 

absence of surgical intervention.  Therefore, evolutionary classification could aid an active 

surveillance strategy in the context of SRMs.    

The number of driver events required for tumour initiation, maintenance and progression is 

subject of active debate and study (Tomasetti et al., 2015). We observed an extensive 

repertoire of disease drivers, with up to 30 mutational and SCNA driver events detectable in 

a single tumour.  The question remains how many biopsies are required to determine the 
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panoply of disease drivers. While it appears that the gain in driver detection per additional 

biopsy begins to decline after ~8 biopsies, in some tumours, especially the PBRM1-->SETD2 

subtype, a large number of driver events would still be missed if only ~8 biopsies are taken. 

Without taking into account the spatial arrangement of the tumour biopsies we note a two-

site biopsy approach recovers nearly all subclonal driver events in the majority of SRMs with 

a moderate risk of illusion of clonality. For larger tumours, our data suggests a biopsy number 

in the range of four to eight is required to capture the majority of events. We recognise that 

in the setting of clinical practice molecular profiling of multiple biopsies will not be practical, 

and that alternative approaches are needed.  

Our data account for a number of clinical and experimental observations in ccRCC and 

highlight important evolutionary principles. Clonal co-occurrence of multiple drivers resulting 

in a clonal sweep is consistent with the hypothesis of punctuated evolution, proposed as an 

alternative to phyletic gradualism by Gould and Eldredge (Eldredge and Gould, 1997); while 

the contribution of chromosomal complexity to an aggressive phenotype has parallels with 

Goldschmidt’s view of macroevolution, in Material Basis of Evolution (Goldschmidt, 1940). 

We note however, that both micro and macro evolution influenced the clinical outcomes in 

our cohort, and we also acknowledge the likely contribution of non-genetic diversity. Finally, 

while evolutionary contingency was clearly evident in patients with multiple independent 

primary tumours, the deterministic nature of ccRCC evolution was illustrated by the highly 

conserved sequence of driver events. We conclude that an understanding of the clonal 

dynamics and the evolutionary potential of a tumour provide biological insight as well as a 

potential rationale for clinical decision making. 
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Figure Legends 

Figure 1 - Overview 

Panel A is an overview of driver alterations, including SNVs, DNVs, INDELs and SCNAs, detected in 101 

TRACERx Renal patients. Rectangles and triangles indicate clonal and subclonal mutations 
respectively. Parallel evolution mutations are annotated in orange with a split indicating >2 
events. Five bilateral or multi-focal cases are shown on the right, with distinct VHL mutations 
within pairs indicated with an asterisk. Panel B shows mutational frequency in 14 key driver 
genes in the TRACERx Renal cohort and three single biopsy ccRCC studies (TCGA KIRC, Sato, 
and Scelo).  Clonal mutations are shown in the darker shade, subclonal in lighter. Panel C 
shows the frequency of SCNAs in the TRACERx Renal cohort. Copy number gains and losses 
are indicated in red and blue respectively, with clonal SCNAs darker and subclonal in lighter 
shade. Putative driver copy number altered regions are annotated. The dotted line indicates 
the frequency of the same SCNAs in the TCGA cohort. 
 

Figure 2 – Driver phylogenetic trees  

Driver phylogenetic trees for each tumour (or multiple tumours from the same patient) are 
shown ordered by overall tumours stage. The founding clone is indicated in light blue, with 
subsequent sub clones shown in distinct colours. The size of each node represents the 
number of SCNAs detected within that subclone. Length of lines connecting tumor subclones 
does not contain information. 
 
Figure 3 – Parallel Evolution 

Table shows driver gene events with >10 subclonal mutations across the cohort. These genes 
were tested for evidence of parallel evolution using a permutation model accounting for 
overall gene mutation frequency and the number of biopsies per tumour (see STAR 
METHODS). BAP1, SETD2 and PTEN were found to show significant evidence of parallel 
evolution (p<0.05, FDR<0.1). Example driver trees and accompanying tumour sampling 
images are presented for each significant gene: BAP1, PTEN and SETD2. Parallel events are 
marked on the driver trees and clone colour is matched from the tree to corresponding 
sampled region.  
  
Figure 4 – Conserved features of ccRCC evolution 
 
Panel A shows event co-occurrence analysis, with red indicating enrichment for co-
occurrence and blue for mutual exclusivity. Values are log2(observed no. of co-occurrences / 
expected no. of co-occurrences, STAR METHODS), with significant patterns marked according 
to the legend. Data is shown for event co-occurrence / mutually exclusivity, in first truncal 
clones only per case (bottom left) and second all terminal subclones (top right) such that all 
clonal and subclonal interactions are considered, see STAR METHODS. P-values are calculated 
under a probabilistic model, as implemented in R package ‘co-occur’, with only interactions 
significant in both ‘clonal’ and ‘clonal + subclonal’ analyses are considered significant. Panel 
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B (first boxplot) shows molecular clock timing analysis from the whole genome sequenced 
cohort, with time from the most recent common ancestor (MRCA) to tumour diagnosis 
plotted on the x-axis. On the y-axis are cases split into three groups, based on having one, two 
or three clonal driver events. VHL wild type cases (n=2) are excluded on account of their 
distinct aetiological and phenotypic profile. P-value is based on Kruskal-Wallis test. (Second 
boxplot) shows the same y-axis patient groups but plotted on the x-axis is tumour size (mm). 
P-value is based on Kruskal-Wallis test. (Third boxplot) shows on the y-axis all cases from the 
100-patient cohort, again VHL wild type cases were then excluded, and remaining cases were 
split into three groups based on one, two or three clonal driver mutations. Multi-region data 
on % of cells staining positive for proliferation marker ki67 is shown on the x-axis. P-value is 
based on a linear mixed effect model, to account for non-independence of multiple 
observations per tumour. Panel C (left) shows an illustrative schematic tree to demonstrate 
the method used to trace each tumour’s evolutionary paths. (Right) shows results from the 
event ordering analysis for all pairs of events with n=10 or more observations. Plotted are the 
counts of instances where: event 1 was found to precede event 2, and event 1 was found to 
follow event 2. Significance was tested via Fisher’s exact test with p-values shown after 
correction for multiple testing using Benjamini–Hochberg procedure. 
 
Figure 5 – Evolutionary subtypes 
 
Figure shows cases grouped by evolutionary subtype, with the following parameters also 
annotated: presence of clonal wGII (blue > median, white ≤ median), presence of subclonal 
wGII (blue > median, white ≤ median), ITH index score (red > median, white ≤ median) and 
tumour size (mm) (range [18-180], white = low, black = high). Occurrences of parallel 
evolution are denoted in the heatmap with “P”. Plotted next is the distribution of stages per 
subtype, followed by grade, coloured as per the legend, and then a further six metrics are 
summarised as the average values for each group: i) mean number of tumour clones, ii) % of 
patients with grade 4 disease, iii) % of patients with microvascular invasion, iv) mean % of 
cells staining positive for Ki67 proliferation index (mean calculated first per cass, and then 
across the cohort), v) % of patients with disease relapse/progression, vi) relapse/progression 
time. Shown next are relapse/progression free survival plots per group and lastly shown are 
three example driver phylogenetic trees from each group. 
 

Figure 6 – Intratumour heterogeneity index and saturation analysis 
 
Panel A shows the number of tumour biopsies profiled (X-axis) versus the number of driver 
events (i.e. all gene mutations and SCNAs shown in Figure 1A) discovered (Y-axis) for densely 
sampled (20+ biopsies) cases. Panel B shows saturation curves for all cases with ≥ 15 biopsies, 
with biopsy number plotted on x-axis and proportion of the total driver events detected (from 
all biopsies) on y-axis, increasing with each additional biopsy taken. Data is shown for all cases 
and tumours split based on low and high ITH (above/below median). Panel C shows a boxplot 
summary of the absolute number (top) and proportion (bottom) of biopsies needed to detect 
≥ 0.75 of driver events for tumours grouped by evolutionary subtype. Panel D illustrates the 
potential errors arising from a two-site biopsy approach: considering all pairs of biopsies, 
plotted on the X-axis is the mean number of subclonal driver events misidentified as clonal 
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(illusion of clonality), on Y-axis is the number of subclonal driver events missed entirely. Data 
is shown for three clinical scenarios left: Small Renal Masses (size < 4cm), middle: tumours 
treated by nephrectomy with curative intent and right: tumours treated by cytoreductive 
nephrectomy. The size of points within a panel is proportional to the number of biopsies 
available for that tumour and colours vary only to distinguish overlapping points. 
 
Figure 7 - Clinical endpoints  
 
Panel A Kaplan-Meier plots for progression free survival (PFS) in the TRACERx Renal cohort 
(three plots in top row) and for overall survival (OS) in TCGA KIRC cohort (three plots in bottom 
row). Three groupings are plotted for each cohort.  Left: high (>median) versus low ITH index:  
middle: high (>median) versus low wGII; and right: four group high/low combination 
groupings of the two metrics. Log-rank and adjusted (for stage and grade as covariates in a 
Cox proportional hazard model) p-values are stated. Panel B shows the proportion of cases, 
within each of the high/low four groups, that progressed to disseminated versus solitary 
metastases, based on each patient’s first progression event. Counts in the highest group “low 
ITH, high wGII”, were compared to all other groups through Fisher’s exact test. Panel C shows 
cancer related deaths OS analysis (as opposed to PFS shown in panel A) for the TRACERx Renal 
cohort, with patients grouped using the four-category high/low ITH/wGII system. Log-rank 
and adjusted (for stage and grade as covariates in a Cox proportional hazard model) p-values 
are stated. 
 

Figure S1 - Consort diagram  
Panel A shows the Consort diagram for the filtering steps leading to the reported cohort; 
Panel B shows the summary of Driver Panel, Whole Exome and Whole Genome Sequencing 
in the TRACERx Renal 101 Cohort Related to STAR Methods. 
 
Figure S2 - TRACERx Renal cohort: VHL summary.  
VHL mutations as confirmed by Sanger sequencing, and VHL methylation results. Related to 
Figure 1 and Star methods. 
 
Figure S3 - Mutation heatmap and driver trees for a subset of TRACERx Renal cohort.  
Mutation heatmap and driver trees, for individual cases as referenced in the results section. 
Related to Figure 1, Figure 2. 
 
Figure S4 - Copy neutral allelic imbalance, MSAI and SCNA profiles for bilateral and 
multifocal tumours.  
Page 1 shows copy neutral allelic imbalance data. Pages 2-17 shows case level MSAI results. 
Page 18 shows a summary of MSAI results. Pages 19-20 shows MSAI validation results. Page 
21 shows SCNA profiles for bilateral and multifocal cases, with each row represents an 
individual tumour region; blue represents copy number loss, red represents copy number 
gain. Related to Figure 1, Figure 3 and Star methods. 
 
Figure S5 - TRACERx Renal cohort: Correlation of driver events versus clinical variables and 
tumour size versus number of clones.  
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Shown on page 1 are boxplots illustrating comparison of number of variants, ITH score or 
number of clones classified variously by Tumour Size (in cm), Overall Stage, Grade and Tumour 
Necrosis status. Drivers refer to "driver events", i.e. non-synonymous SNVs, DNVs, or small 
INDELS (Muts) in "Driver Genes" or driver copy number events (SCNA). Clonal/Subclonal 
Drivers refer to events detected in all/not-all primary regions respectively. Driver ITH refers 
to the ITH index (# of subclonal variants/# of clonal variants) restricted to driver events. P-
values refer to pairwise comparisons of groups as indicated and were performed using a 
Wilcoxon test in all cases. n values indicate the size of the baseline group when no p value is 
presented, or the comparison group when associated with a p value. Non-significant p values 
are included for completeness. Shown on page 2 are local polynomial curve fits (using the 
locpoly function in the R package KernSmooth) and display the results: rows correspond to 
the fitting of curves of fixed degree, 1 (i.e. linear) in the first row and increasing by 1 until 
degree 5 (i.e. quintic) curves are applied in the bottom row. Columns correspond to fixed fit 
bandwidths, which is to say, the size of the window across which the curve is fit, with window 
sizes of 1, 5, 10, 15 and 20 applied. These local fits are illustrated with the green curve, while 
a red, global linear least squares fit is also displayed for comparison. Related to Figure 1 and 
Star methods.  
 
Figure S6 - SCNAs co-occurring with mutational driver events.  
Panel A shows SCNAs co-occurring with mutational driver events in TRACERx Renal cohort. 
Panel B shows SCNA co-occurrence in TCGA KIRC cohort. Panel C shows 14q loss co-occurring 
with the other SCNAs. 14q loss is shown on X-axis and on Y-axis is log(p-value) for co-
occurrence. Panel D shows a null distribution of 1000 random gene sets, which were 
simulated and tested for an association with shortened time from MRCA to tumour diagnosis. 
The same method as Figure 4 panel B were used, i.e. regression model with adjustment term 
included for overall clonal mutation burden per tumour. No evidence of inflation was found 
in the test statistic (λ=0.96). Panel E shows the analysis of event ordering including VHL as 
positive control. Panel F shows observed versus expected co-occurrence frequencies. Related 
to Figure 4. 
 
Figure S7 - TRACERx Renal cohort unsupervised clustering analysis of evolutionary features.  
On the x-axis are the rule based evolutionary subtype groups, and on the y-axis are group 
assignments based on unsupervised clustering. Shown below the x-axis is the percentage of 
members, from each evolutionary subtype, which are assigned to the same unsupervised 
cluster. Colours have no meaning except to denote different groups. Related to Figure 5 and 
Star methods. 
 
Table S1 - TRACERx Renal cohort: clinical characteristics, evolutionary subtypes, progression 
patterns and survival outcomes.  
Related to Figure 1 
 
Table S2 - TRACERx Renal Driver Panels and detected somatic alternations.  
Related to Figure 1 and Star Methods. 
 
Table S3 - TRACERx Renal Cohort: Multiregional Ki67 immunohistochemistry (IHC) staining 
analysis.  
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Related to Figure 4 
 
Table S4 - TCGA KIRC cohort: multivariate survival analysis and processing notes.  
Related to Figure 7 and Star methods. 
 
Table S5 - Comparison of clone numbers detectable from driver panel and whole exome 
sequencing in the same cases.  
The left panel shows the raw clone numbers for each case, per sequencing data type. 
The right panel shows the correlation of number of tumour clones identified using Renal 
Driver panel (x-axis) and whole exome sequencing (y-axis). The shaded area represents the 
confidence interval. Related to Star methods. 
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STAR Methods  

Contact for reagent and resource sharing 

Further information and requests for resources and reagents should be directed to and will 

be fulfilled by the Lead Contact, Charles Swanton (Charles.swanton@crick.ac.uk).  

Experimental model and subject details 
 
Patients were recruited into TRACERx Renal Renal, an ethically approved prospective cohort 

study (National Health Service Research Ethics Committee approval 11/LO/1996). The study 

sponsor is the Royal Marsden NHS Foundation Trust. The study is coordinated by the Renal 

Unit at the Royal Marsden Hospital NHS Foundation Trust. The study is open to recruitment 

at the following sites: Royal Marsden Hospital NHS Foundation Trust, Guy’s and St Thomas’ 

Hospital NHS Foundation Trust, Royal Free Hospital NHS Foundation Trust and Western 

General Hospital (NHS Lothian). Patients were recruited into the study according to the 

following eligibility criteria: 

Inclusion criteria 

● Age 18- years or older 

● Patients with histologically confirmed renal cell carcinoma, or suspected renal 

cell carcinoma, proceeding to nephrectomy/metastectomy 

● Medical and/or surgical management in accordance with national and/or local 

guidelines 

● Written informed consent (permitting fresh tissue sampling and blood 

collection; access to archived diagnostic material and anonymised clinical 

data) 

Exclusion criteria 

● Any concomitant medical or psychiatric problems which, in the opinion of the 

investigator, would prevent completion of treatment or follow-up 

● Lack of adequate tissue 

about:blank
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Further eligibility criteria were applied to the cohort presented in this paper (it therefore 

follows that these patients do not have consecutive study ID numbers from 001 to 100): 

 Confirmed histological diagnosis of clear cell renal cell carcinoma.  

 No documented germline renal cell carcinoma predisposition syndrome (including 

VHL). 

 At least three primary tumour regions available for analysis.  

The cohort was representative of patients eligible for curative or cytoreductive nephrectomy.   

Full clinical characteristics are provided in Table S1A. Demographic data include: Sex, Age and 

Ethnicity. Clinical data include: Presenting symptoms, Smoking status, BMI, History of 

Previous RCC, Family History of RCC, Bilateral or Multi-focal RCC, Neoadjuvant therapy (6 

patients received systemic therapy prior to nephrectomy).  Histology data include: overall 

TNM Stage (based on Version 7 classification), Location of nephrectomy, Number of 

harvested and involved lymph nodes, presence of Microvascular Invasion, presence of Renal 

Vein Invasion, presence of IVC tumour thrombus, Size of primary tumour, Leibovich score, 

Fuhrman Grade, Time to nephrectomy (days). Clinical status of patients included: Relapse free 

survival (months), Total follow up (months), Survival Outcome. 16 patients were lost to 

follow-up: 8 were stage I, 5 stage III and 3 stage IV. For clinical parameter correlation and 

outcome analyses for cases with multiple tumours (K114, K324, K354, K097, k265) we used 

the higher stage (or if stage was equal, then the larger of the two tumours, namely: K114_L, 

K334_R, K352_1, K097_L, K265_1. 

Classification of disease progression pattern for metastatic cases. Patterns of disease 

progression (Table S1B) were classified as follows (1) Rapid- disease progression with 

multiple new lesions or cancer-specific death within 6 months of surgery (2) Attenuated- no 

disease progression (for example completely resected metastases at presentation, remains 
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disease-free); disease progression with a single new lesion within 6 months of surgery (for 

example a solitary bone, brain or lung deposit) OR disease progression after >6 months of 

surgery. 

 

Method details 
 
Sample collection 

All surgically resected specimens were reviewed macroscopically by a pathologist to guide 

multi-region sampling for this study and to avoid compromising diagnostic requirements.  

Tumour measurements were recorded and the specimen were photographed before and 

after sampling. Primary tumours were dissected along the longest axes and spatially 

separated regions sampled from the “tumour slice” using a 6 mm punch biopsy needle. The 

punch was changed between samples to avoid contamination. The total number of samples 

obtained reflects the tumour size with a minimum of 3 biopsies that are non-overlapping and 

equally spaced.  However, areas which are obviously fibrotic or haemorrhagic are avoided 

during sampling and every attempt is made to reflect macroscopically heterogeneous tumour 

areas. Primary tumour regions are labelled as R1, R2, R3… Rn and locations are recorded. 

Normal kidney tissue was sampled from areas distant to the primary tumour and labelled N1.  

Each biopsy was split into two for snap freezing and formalin fixing respectively, such that the 

fresh frozen sample has its mirror image in the formalin-fixed sample which is subsequently 

paraffin embedded. Fresh samples were placed in a 1.8 ml cryotube and immediately snap 

frozen in liquid nitrogen for >30 seconds and transferred to -80 C for storage. Peripheral blood 

was collected at the time of surgery and processed to separate buffy coat.  

Nucleic acid isolation from tissue and blood (TRACERx Renal cohort) 
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DNA and RNA were co-purified using the AllPrep DNA/RNA mini kit. (Qiagen).   Briefly, a 2mm3 

piece of tissue was added to 900ul of lysis buffer and homogenised for five seconds using the 

TissueRaptor (Qiagen) with a fresh homogenisation probe being used for each preparation.  

Each lysate was applied to a QiaShredder (Qiagen) and then sequentially purified using the 

DNA and RNA columns according to the manufacturer’s protocol. Germline control DNA was 

isolated from whole blood using the DNeasy Blood and Tissue kit (Qiagen) according to the 

manufacturers protocol. DNA quality and yield was measured and accessed using the 

TapeStation (Agilent) and Qubit Fluorometric quantification. (ThermoFisher Scientific) 

 

Detection of VHL mutations by Sanger sequencing 

Validation of the patient VHL mutations was carried using PCR followed by Big Dye Terminator 

Sanger sequencing on the ABI 3700.  20ng of patient DNA was amplified for each VHL exon. 

PCR conditions involved 35 cycles of denaturation at 950C, followed by oligonucleotide primer 

annealing at 55oC and sequence extension at 720C using Qiagen Taq polymerase and reagents.  

See Figure S2 for Oligonucleotide sequences 

 

Methylation specific PCR 

Methylation of the VHL promoter was detected after bisulphite treatment of 500ng of patient 

DNA using the EZ DNA Methylation-Direct kit (Zymo Research).  Bisulphite treated DNA was 

amplified in the PCR using methylation specific oligonucleotides followed by Big Dye 

terminator Sanger sequencing.  Methylation was confirmed by comparing and contrasting 

patient tumour and normal renal tissue for methylation protected CpG sequences.  See Figure 

S2 for oligonucleotide sequences 
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Independent pathology review of individual tumour regions 

Where available, (median of 7 regions per patient (range: 1-63) from 79 patients) histological 

sections of each region in each case were evaluated by the same pathologist (JIL). Tumor type 

was assigned to each case following current classification of the International Society of 

Urologic Pathology (ISUP) (Srigley et al., 2013). Four main histological types were considered 

based only on hematoxylin-eosin sections: clear cell renal cell carcinoma, papillary renal cell 

carcinoma, chromophobe renal cell carcinoma and renal oncocytoma. Atypical cases, 

including unclassified and tumours with mixed histology, were specifically annotated. Tumor 

architecture was also considered. The presence of rhabdoid and syncytial (Przybycin et al., 

2014; Williamson et al., 2014) cells in any region of tumours were also considered, since both 

are related to a more aggressive clinical course. Tumour grading was performed according to 

the most up to date ISUP classification (Delahunt et al., 2013) and the presence of necrosis 

sarcomatoid changes and microvascular invasion was noted. Percentage of viable tumour 

cells was also estimated in every sample to provide an approximate percentage of tumour 

content.  

 

Regional staining by Immunohistochemistry and Digital Image Analysis of Ki67 

Tissue sections of 4µm were mounted on slides and immunohistochemical staining for Ki67 

was performed using a fully automated immunohistochemistry (IHC) system and ready-to-

use optimized reagents according to the manufacturer´s recommendations (Ventana 

Discovery Ultra, Ventana, Arizona, USA). Primary antibody used was rabbit anti-Ki67 

(AB16667, Abcam, Cambridge, UK) and secondary antibody was Discovery Omnimap anti-
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rabbit HRP RUO (760-4311, Roche, Rotkreuz, Switzerland). DAB kit was Discovery Chromomap 

DAB RUO (760-4311, Roche). After IHC procedure, slides were first evaluated for Ki67 staining 

quality using mouse intestine tissue as positive control. Regions containing tumor tissue were 

identified and marked by a pathologist and subsequently scanned in brightfield at 20x 

magnification using Zeiss Axio Scan.Z1 and ZEN lite imaging software (Carl Zeiss Microscopy 

GmbH, Jena, Germany). Digital images were then subjected to automated image analysis 

using StrataQuest version 5 (TissueGnostics, Vienna, Austria) for Ki67 quantification. Three 

different gates were set to quantify low, medium and high intensity DAB staining which 

corresponded to Ki67 expression levels. Results were depicted as total percentage of Ki67-

positive nuclei.  

 

Flow Cytometry Determination of DNA Content (FACS) 

Fresh frozen tumour tissue samples, approximately 4mm3 in size, were mechanically 

disrupted and incubated in 2ml of 0.5% pepsin solution (Sigma, UK) at 37 ºC for 40 minutes 

to create a suspension of nuclei. The nuclei were washed with phosphate-buffered saline 

(PBS) and then fixed with 70% ethanol for a minimum of 90 minutes. The nuclei were washed 

again with PBS and stained with 200μl of propidium iodide (50μg/ml) overnight. Flow 

cytometric analysis of DNA content was performed using the LSR Fortessa Cell Analyzer 

(Becton Dickinson, San Jose, USA), BD Facs Diva™ software and FlowJo software (FlowJo LLC, 

Oregon, USA. A minimum of 10,000 events were recorded (typically up to 20,000 and up to 

100,000 in complex samples). Analysis was performed using methods derived from the 

European Society for Analytical Cellular Pathology DNA Consensus in Flow Cytometry 

guidelines and following discussions with Derek Davies (Head of Flow Cytometry Facility, The 



38 

Francis Crick Institute). Gating of forward and side scatter was applied to exclude debris and 

cell clumping. Samples with <7,500 events after gating were excluded from further analysis. 

The coefficient of variation (CV) was measured on each G1 peak. Samples with a CV>10% were 

excluded from further analysis. Each tumour sample was assumed to contain normal cells to 

act as internal standard. Where possible the position of the diploid peak was calculated with 

reference to the peak of diploid cells in a case matched normal tissue sample. The DNA index 

(DI) of any aneuploid peak present was calculated by dividing the G1 peak of the aneuploid 

population by the G1 peak of the normal diploid cells.  Diploid samples were defined as having 

DI of 1.00. Any additional peak was defined as aneuploid. A tetraploid peak was defined as 

having a DI of 1.90-2.10 and containing >15% of total events unless a second peak 

corresponding to G2 was clear on the histogram. Similarly, aneuploid peaks near to G1 (DI 

0.90-1.10) were only considered if there was a clear second peak containing >15% of total 

events.   

 

Targeted Driver Panel (DP) design and validation 

Driver gene panels (Panel_v3, Panel_v5 and Panel_v6) were used in this study. Panel_v3 was 

designed in 2014, including 110 putative driver genes. Panel_v5 and Panel_v6 were designed 

in 2015, including 119 and 130 putative driver genes respectively. Driver genes were selected 

from genes that were frequently mutated in TCGA (accessed in April 2015) or highlighted in 

relevant studies (Arai et al., 2014; Sato et al., 2013; Scelo et al., 2014). Only alterations in 

driver genes represented in all three panels were considered in the overall driver mutation 

analyses.  All panels targeted potential driver SCNA regions. To prevent inter-patient samples 



39 

swaps, we included the 24 SNPs that were previously identified by Pengelly et al in Panel_v5 

and Panel_v6. Details of the 3 panels can be found in Supplementary table (Table S2). 

 

Renal Driver Panel Library Construction and Targeted Sequencing 

Following isolated gDNA QC, depending on the available yield, samples were normalised to 

either 1-3 µg or 200 ng for the Agilent SureSelectXT Target Enrichment Library Protocol; 

standard or low input sample preparation respectively. Samples were normalised using a 1X 

Low TE Buffer. Samples were sheared to 150-200bp using a Covaris E220 (Covaris, Woburn, 

MA, USA), following the run parameters outlined in the Agilent SureSelectXT standard 3 µg 

and low input 200 ng DNA protocols. Library construction of samples was then performed 

following the SureSelectXT protocols, using 6 pre-capture PCR cycles for the standard input 

samples and 10 pre-capture PCR cycles for the 200 ng low input samples. Hybridisation and 

capture were performed for each individual sample using the Agilent custom Renal Driver 

Panel target-specific capture library (versions 3, 5 & 6). The same version of the capture 

library being used for all samples from the same patient case. Captured SureSelect-enriched 

DNA libraries were PCR amplified using 14 post-capture PCR cycles in PCR reactions that 

included the appropriate indexing primer for each sample. Amplified, captured, indexed 

libraries passing final QC on the TapeStation 4200 were normalised to 2nM and pooled, 

ensuring that unique indexes were allocated to all final libraries (up to 96 single indexes 

available) in the pool. QC of the final library pools was performed using the Agilent 

Bioanalyzer High Sensitivity DNA Assay. Library pool QC results were used to denature and 

dilute samples in preparation for sequencing on the Illumina HiSeq 2500 and NextSeq 500 

sequencing platforms. The final libraries were sequenced 101bp paired-end multiplexed on 
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the Illumina HiSeq 2500 and 151bp paired-end multiplexed on the NextSeq 500, at the 

Advanced Sequencing Facility at the Francis Crick Institute. Equivalent sequencing metrics, 

including per sample coverage, was observed between platforms. 

 

Whole Exome Library Construction and Sequencing 

gDNA isolated from each sample were normalized to 1-3 µg. Libraries were prepared from 

using the Agilent SureSelectXT Target Enrichment Library protocol and Agilent SureSelectXT 

Human All Exon v4 enrichment capture library. The libraries were prepared using 6 pre-

capture and 12 post-capture PCR cycles. Captured Whole Exome final libraries passing the 

final QC step were normalised to 2nM and pooled for sequencing on the HiSeq 2500 

instrument. Dual HiSeq SBS v4 runs at 101bp paired-end reads generated the data for 

analysis. Target coverage was 400-500x for the tumour regions and 100-200x for the 

associated normal. 

 

SNV, and INDEL calling from multi-region DP and multi-region WE sequencing 

Paired-end reads (2x100bp) in FastQ format sequenced by Hiseq or NextSeq were aligned to 

the reference human genome (build hg19), using the Burrows-Wheeler Aligner (BWA) 

v0.7.15. with seed recurrences (-c flag) set to 10000  (Li and Durbin, 2009). Intermediate 

processing of Sam/Bam files was performed using Samtools v1.3.1 and deduplication was 

performed using Picard 1.81 (http://broadinstitute.github.io/picard/) (Li and Durbin, 2009). 

Single Nucleotide Variant (SNV) calling was performed using Mutect v1.1.7 and small scale 

insetion/deletions (INDELs) were called running VarScan v2.4.1 in somatic mode with a 

minimum variant frequency (--min-var-freq) of 0.005, a tumour purity estimate (--tumor-
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purity) of 0.75 and then validated using Scalpel v0.5.3 (scalpel-discovery in - -somatic mode) 

(intersection between two callers taken)(Cibulskis et al., 2013; Fang et al., 2016; Koboldt et 

al., 2009). SNVs called by Mutect were further filtered using the following criteria: i) ≤5 

alternative reads supporting the variant and variant allele frequency (VAF) ≤ 1% in the 

corresponding germline sample, ii) variants that falling into mitochondrial chromosome, 

haplotype chromosome, HLA genes or any intergenic region were not considered, iii) 

presence of both forward and reverse strand reads supporting the variant, iv) >5 reads 

supporting the variant in at least one tumour region of a patient, v) variants were required to 

have cancer cell fraction (CCF)>0.5 in at least one tumour region (see Subclonal 

deconstruction of mutations section for details of CCF calculation) , vi) variants were required 

to have CCF>0.1 to be called as present in a tumour region, vii) sequencing depth in each 

region need to be >=50 and ≤3000. Finally, suspected artefact variants, based on inconsistent 

allelic frequencies between regions, were reviewed manually on the Integrated Genomics 

Viewer (IGV), and variants with poorly aligned reads were removed. Dinucleotide 

substitutions (DNV) were identified when two adjacent SNVs were called and their VAFs were 

consistently balanced (based on proportion test, P>=0.05). In such cases the start and stop 

positions were corrected to represent a DNV and frequency related values were recalculated 

to represent the mean of the SNVs. Variants were annotated using Annovar (Wang et al., 

2010). Deleterious mutations were defined if two out of three algorithms - SIFT, PolyPhen2 

and MutationTaster - predicted the mutation as deleterious. Individual tumour biopsy regions 

were judged to have failed quality control and excluded from analysis based on the following 

criteria: i) sequencing coverage depth below 100X, ii) low tumour purity such that copy 

number calling failed. Mutations detected in high-confidence driver genes (VHL, PBRM1, 
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SETD2, PIK3CA, MTOR, PTEN, KDM5C, CSMD3, BAP1, TP53, TSC1, TSC2, ARID1A, TCEB1) were 

defined as driver mutations. As TSC1 and TSC2 were not targeted in Panel v5, to check the 

mutation status in these two genes, patients were sequenced using Panel v5 were re-

sequenced with Panel v6 and no new mutations were detected. 

 

SCNA calling from multi-region DP and multi-region WE sequencing 

To estimate somatic copy number alterations, CNVkit v0.7.3 was performed with default 

parameter on paired tumour-normal sequencing data (Talevich et al., 2016). Outliers of the 

derived log2-ratio (logR) calls from CNVkit were detected and modified using Median 

Absolute Deviation Winsorization before case-specific joint segmentation to identify genomic 

segments of constant logR  (Nilsen et al., 2012).  Tumour sample purity, ploidy and absolute 

copy number per segment were estimated using ABSOLUTE v1.0.6 (Carter et al., 2012). In line 

with recommended best practice all ABSOLUTE solutions were reviewed by 3 researchers, 

with solutions selected based on majority vote. Copy number alterations were then called as 

losses or gains relative to overall sample wide estimated ploidy. Arm gain or loss was called 

when >50% of the chromosomal have copy number gain or loss. Driver copy number was 

identified by overlapping the called somatic copy number segments with putative driver copy 

number regions identified by Beroukhim and colleagues (Beroukhim et al., 2009). We 

compared SCNA calls between targeted panel and WGS datasets, and SCNA concordance was 

87% (Table S5). The average proportion of the genome with aberrant copy number, weighted 

on each of the 22 autosomal chromosomes, was estimated as the weighted genome 

instability index (wGII).   
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TCGA WES data analysis 

To compare mutation frequency detected in TRACERx Renal cohort with public data (Figure 

1B and 1C), event calls from 451 TCGA KIRC patients were retrieved from cBioportal 

(http://www.cbioportal.org/) on 2017/07/21. To investigate the clonality of mutations in 

TCGA KIRC cohort, we obtained the next generation sequencing data for matched tumour and 

normal/blood from 338 cases in BAM format from TCGA, which were then converted into 

FASTQ format files using bam2fastq in bedtools package (Quinlan and Hall, 2010). SNVs, 

INDELs and SCNAs were called using the same methods as TRACERx Renal data (STAR 

Methods: SNV, and INDEL calling from multi-region DP and multi-region WE sequencing, 

SCNA calling from multi-region DP and multi-region WE sequencing). 20 cases were excluded 

from the study as the ABSOLUTE v1.0.6 algorithm failed to find a stable SCNA solution, further 

details can be found in Table S4. Clonality of SNVs and SCNAs were estimated using ABSOLUTE 

v1.0.6. Cancer cell fraction for INDELs were calculated using method described in STAR 

Methods: Subclonal deconstruction of mutations. INDELs with CCF>0.5 were called clonal. 

ITH index for each patient was calculated as the measure of intratumour heterogeneity (ITH 

index = # subclonal drivers / # clonal drivers). However, due to the limitation of single biopsy, 

intratumour heterogeneity was found to underestimated (ITH index range 0-3, median=0.0, 

sd=0.41). 

 

Quantification and statistical analysis 
 
R 3.3.2 was used for all statistical analyses. 
 
Saturation Analysis and Phenotypic Correlations 
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For saturation analysis, the mean number of variants observed for each subset of biopsies of 

a given size was calculated by exhaustive consideration of all such subsets when the total 

number of such subsets was less than 18 million and by consideration of a random collection 

of 18 million subsets, with possible repetition, when the total number of possibilities was 

greater. For phenotypic correlations, comparisons were performed using the Fisher's Exact 

test for 2x2 tables and the "non-parametric 2-way anova" Freidman test for n x m tables 

where at least one of n and m is greater than 2. P-values were corrected for multiple testing 

using the Benjamini–Hochberg procedure. 

 
Subclonal deconstruction of mutations 

To estimate the clonality of a mutation in a region, we used the following formula: 

𝑣𝑎𝑓 =
𝐶𝑁𝑚𝑢𝑡  ∗  𝐶𝐶𝐹 ∗  𝑝

𝐶𝑁𝑛  ∗  (1 − 𝑝) +  𝐶𝑁𝑡  ∗  𝑝
 

where 𝑣𝑎𝑓 is the variant allele frequency at the mutation base; 𝑝 is estimated tumour purity; 

𝐶𝑁𝑡 and 𝐶𝑁𝑛 are the tumour locus specific copy number and the normal locus specific copy 

number which was assumed to be 2 for autosomal chromosomes; and 𝐶𝐶𝐹 is the fraction of 

tumour cells carrying the mutation. Consider 𝐶𝑁𝑚𝑢𝑡 is the number of chromosomal copies 

that carry the mutation, the possible 𝐶𝑁𝑚𝑢𝑡 is ranging from 1 to 𝐶𝑁𝑡 (integer number). We 

then assigned 𝐶𝐶𝐹 with one of the possible value: 0.01, 0.02, ..., 1, together with every 

possible 𝐶𝑁𝑚𝑢𝑡 to find the best fit cancer cell fraction of the mutation. Since we focused on 

driver genes in this study and the accuracy of the estimated CCF is limited by the size of the 

panel, we call mutations with CCF>0.5 as clonal mutations, mutations with CCF≤0.5 and 

CCF>0.1 are subclonal. To determine the clonality of a mutation in a tumour, we ask for the 

mutation to be clonal in all regions in a tumour. Exceptions were made for long INDELs that 

affect >6 bp of the genome, due to VAF under estimation. If a long INDEL is present in all 
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regions of a tumour, we called it as clonal. To determine the clonality of a SCNA in a tumour, 

we ask for the SCNA to be presence in all tumour regions, otherwise it is called subclonal.  

 

Driver tree reconstruction 

A matrix with presence and absence of nonsynonymous and synonymous point mutations, 

DNVs, INDELs and arm level SCNAs was created for each tumour, and all the events were 

clustered based on the following rule: a valid cluster has to have at least two arm level SCNAs 

or one non-synonymous mutation. The driver events clusters were then ordered into a clonal 

hierarchy using TRONCO and presented as driver trees (De Sano et al., 2016).  

Clustering was performed on multi-region whole exome sequencing using PyClone Dirichlet 

process clustering (Roth et al., 2014). For each mutation, the observed variant count was used 

and reference count was set such that the VAF was equal to half the pre-clustering CCF. Given 

that copy number and purity had already been calculated, we set the major allele copy 

numbers to 2 and minor allele copy numbers to 0 and purity to 0.5; allowing clustering to 

simply group clonal and subclonal mutations based on their pre-clustering CCF estimates. 

PyClone was with 10,000 iterations and a burn-in of 1000, and default parameters, with the 

exception of --var_prior set to ‘BB’ and –ref_prior  set to ‘normal’. 

In terms of limitations, we recognise that our Driver Panel phylogenies are based on fewer 

clonal markers, as compared to whole exome or genome derived phylogenetic trees. As a 

consequence some tumour clones are based on only a limited number of genomic markers, 

however three contingency measures are in place to mitigate against phylogenetic 

misconstruction: i) ultra-deep 500x sequencing coverage, which ensures stably derived 

cancer cell fraction estimates, ii) a bespoke gene panel which is enriched for driver events, 
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increasing the likelihood that mutational markers are driving genuine clonal expansion, iii) 

cross-capture validation with tree structures in >10 cases confirmed using exome sequencing 

data (Table S5). Furthermore, the panel sequencing strategy has allowed extensive tumour 

sampling, with >1,200 biopsies sequenced, enabling robustness in terms of spatial sampling. 

 

Parallel evolution significance testing 

All genes with ≥ 10 subclonal mutations across the cohort were tested for evidence of parallel 

evolution (qualifying genes: BAP1, CSMD3, KDM5C, MUC16, MTOR, PBRM1, PTEN, SETD2. 

TSC1, TP53). For each gene the observed number of parallel mutations across the 100 case 

cohort was compared to a null distribution of the expected number of subclonal mutations 

co-arising in different tumour regions within the same case due to chance. To simulate the 

null distribution the mutation frequency of each gene per biopsy region was calculated, based 

on total number of unique subclonal mutations for that gene (cohort wide) divided by the 

total number of biopsies sequenced (cohort wide). This probability was then used in a simple 

Bernoulli trials model simulated for each patient, with the number of trials based on the 

number of biopsy regions sequenced per case. This model allows for the fact that cases with 

a large number of sampled regions have high chance of co-arising mutations in different 

biopsy regions by chance rather than due to parallel evolution. The total count of co-arising 

mutations by chance was calculated across the 100 case cohort (using the specific number of 

biopsy regions per case) and then compared to the observed number parallel events. 

Significance was determined through 1000 permutations per gene, with resulting p-values 

corrected for multiple testing using the Benjamini–Hochberg procedure. 
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Detection of allelic imbalance  
 
  
Heterozygous SNPs called using germline variants were identified using VarScan v2.4.1 in 

mpileup2snp mode. SNPs used must be called in all regions of the tumour and have a B-allele 

frequency (BAF, total variant base / total reference bases at a position) of between 0.35 and 

0.65 in the germline sample. Mean absolute deviation (MAD) from 0.5 calculated for all 

heterozygous SNPs on each arm in all samples: mean (abs(arm_hz_BAF – 0.5)). The germline 

MAD was then subtracted from all tumour region MADs for each patient’s disease for all 

chromosome arms. Copy neutral allelic imbalance was then called if: 1) There is no copy 

number event (gain or loss) associated with the chromosome arm in a sample but there is a 

MAD of >= 0.1. 2) There is no copy number event associated with the chromosome arm in a 

sample but its MAD is >= the median MAD of gain/loss events in this sample and is also >= 

0.05. 3) If a patient’s disease has the same chromosome arm exhibiting copy neutral allelic 

imbalance in 2 or more regions by the above the two criteria, the same chromosome arm in 

the other regions is re-examined using the lowest quartile MAD of gain/loss events in each 

region as a cut off and has a MAD of >=0.05. 

  

Calculating clonality of copy neutral allelic imbalance (CNAI): Only regions with at least one 

chromosome arm exhibiting a MAD score of greater than 0.05 were considered for this 

analysis. Regions with no MAD score greater than 0.05 are marked on the patient specific 

supplementary figures “low purity” (Figure S4). Copy neutral allelic imbalance calls are shown 

as diamonds in the patient specific copy number plots attached in this email. The CNAI 

occurrences in each patient were then grouped into the following categories: Clonal CNAI – 

All regions of the tumour have no copy number gains or losses associated with this 
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chromosome arm but all have been classified as exhibiting CNAI. Clonal loss and CNAI – All 

regions of the patient’s disease have either a loss being called or exhibit CNAI for this 

chromosome arm. 

 
 
Detection of mirrored subclonal allelic imbalance (MSAI) 
 
In order to detect mirrored subclonal allelic imbalance (MSAI) allele counts were generated 

using AlleleCounter (github.com/cancerit/alleleCount) (see companion paper Mitchell et al 

2018). The counts from whole exome sequenced samples were analysed using ASCAT (Van 

Loo et al., 2010) to generate copy number calls. Whole-genome samples were analysed using 

Battenberg (Nik-Zainal et al., 2012) to generate copy number calls (see companion paper, 

Mitchell et al 2018). Heterozygous SNPs among the 1000 genomes positions (Genomes 

Project et al., 2010) used as input for ASCAT/Battenberg analyses were identified by isolating 

those which had a B-allele frequency (BAF) of between 0.3 and 0.7 (calculated by variant reads 

over total reads) in the germline sample for each patient. The BAFs of these heterozygous 

SNPs were then used with the segmentation and copy number calls produced for each region 

by either ASCAT or Battenberg analyses to detect MSAI events for each patient’s disease using 

the method outlined previously (Jamal-Hanjani et al., 2017).  

 
Using the heterozygous SNPs present in the targeted regions detected by Driver Panel 

sequencing we identified allelic imbalance (AI) at the level of chromosome arms. In some 

cases the AI was not associated with a copy number gain or loss relative to the sample’s ploidy 

and was classified as copy neutral allelic imbalance (CNAI) (STAR methods). In total, we 

identified 18 cases where one or more chromosome arms demonstrated clonal CNAIs (34 

events total) and 8 patients where, at least one chromosome arm was always affected by 
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either loss relative to ploidy or CNAI (13 events total). 5 of these 8 patients also demonstrated 

instances of ubiquitous arm level CNAI in all regions. 

 

Validation of MSAI 

Validation of MSAI was achieved using Polymorphic microsatellite markers specific to the 

chromosome and chromosome region being investigated.  Once a polymorphic marker is 

identified, patient DNA is amplified in the PCR, incorporating a fluorescent primer into the 

PCR fragment that can be accurately measured for size and fluorescent intensity.  

Measurement of Fluorescent units under each allele peak can be used to compare and 

contrast variation between alleles within and between different tumour regions and the 

normal sample using the formula (At/Bt)/(An/Bn). 

 

Co-occurrence testing 

Co-occurrence of driver events in each tumour was conducted based on the driver tree clones 

as determined above. Analysis was conducted on the most frequent driver mutational events 

(BAP1, PBRM1, SETD2, VHL, Figure 1B), the most frequent SCNAs (3p loss, 5q gain) and SCNA 

events with established clinically prognostic value (loss 4q, loss 9p, loss 14q and gain 8q) (Ito 

et al., 2016; Kojima et al., 2009; La Rochelle et al., 2010; Monzon et al., 2011; Perrino et al., 

2015). For each event pairing tumour clones were assessed to determine if the given two 

events were found to co-occur together in the same clone. Analysis was first conducted using 

only the “MRCA” clone per case (n=100), to ensure independence of observations at the 

patient level (for bilateral/multi-focal cases the first/left tumour was taken in each case). 

Analysis was then repeated using “truncal plus subclonal” clones (total n=306 across all 
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tumours, with the set of subclones defined as unique terminal tree nodes). R package 

‘cooccur’ (Griffith A, 2016)was used to compare observed event co-occurrence frequencies 

to those expected by chance under a probabilistic model. The distribution of observed and 

expected values is shown in Figure S8. Values were plotted as enrichment scores calculated 

as log2(observed count/expected count). Only patterns found to be significant in both the 

“truncal” and “truncal plus subclonal” were considered significant overall. Correction for 

multiple testing was conducted using the Benjamini–Hochberg procedure. 

 

Most recent common ancestor (MRCA) and ki67 analysis 

The estimated time of MRCA was calculated using multi-region whole genome sequencing 

data as detailed in the companion paper by Mitchell et al., (Cell 2018). From the total n=33 

cases with WGS data, MRCA timing analysis was successful in n=31 cases, from which known 

VHL wildtype cases (n=2) were excluded on account of their distinct aetiological and 

phenotypic profile. Of the n=29 cases analysed, n=23 overlapped with the renal TRACERx 

Renal 101 cohort cohort presented here, and n=6 were additional ccRCC patients recruited to 

the TRACERx Renal Renal study. The association between time from MRCA to tumour 

diagnosis and number of clonal driver events was assessed using a linear model, adjusting for 

the total clonal mutation burden per tumour. The association between tumour region ki67 % 

of cells stained as positive and number of clonal driver events was assessed using a linear 

mixed effect (LME) model, to account for the non-independence of multiple samples from 

individual patients, using all cases with available data in the TRACERx Renal 101 cohort after 

exclusion of known VHL wildtype tumours. 
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Event ordering analysis 

The ordering of driver events was based on the clonal hierarchy of each tumour, as 

determined by driver tree reconstruction method detailed above. Due to dense spatial 

sampling (median 7 biopsies per tumour, range [3-75]) the driver tree ordering was typically 

robust, with evidence of sequential waves of clonal expansion between events usually 

confirmed across multiple biopsy regions. The set of sequential event paths (i.e. event A > 

event B > event C) for each tumour was captured starting with the events in the MRCA clone. 

For each MRCA event, evolutionary sequences were traced through each node of the tree 

until a terminal clone was reached. All possible sequential paths (trajectories) between MRCA 

and terminal clone events were recorded. To reduce risk of multiple testing we limited further 

analyses to those trajectories containing the most frequent (“core”) ccRCC driver events: VHL, 

PBRM1, BAP1, SETD2, PI3K/AKT/mTOR pathway mutations or driver SCNAs. The list of 

trajectories was further reduced to ensure pairings of events were counted only once per 

case, (e.g. in the case of K243 where a single PBRM1 mutation precedes 10 SETD2 mutations, 

this is counted only once) and PI3K/AKT/mTOR pathway mutations interacting with SCNAs 

were not considered due to the nonspecific many-to-many relationship. The final list of 

trajectories was analysed using R package Trajectory Miner (Gabadinho et al., 2011) to 

identify recurrent patterns of event pairs enriched for occurrence is a consistent direction. 

Event pairings observed in ten or more cases were then tested for significance in a specific 

ordering direction using a Binomial test, with null expected p=0.5, to reflect an equally 

balanced 50%:50% distribution of event ordering by random chance. As expected, VHL was 

found to be significantly enriched as an early event preceding all other alterations, consistent 
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with its known timing as a universally clonal event (data not shown in figure). All p-values 

were corrected for multiple testing using the Benjamini–Hochberg procedure. 

 

Evolutionary subtype classification 

Based on the evolutionary analysis in Figures 4A-C a rule based classification was devised in 

order to assign cases into subgroups and allow for comparison against phenotypic and clinical 

outcomes. Cases were assigned to groups based on the following series of rules (applied in a 

hierarchical manner in the order listed): i) presence of ≥  2 BAP1, PBRM1, SETD2 or PTEN 

clonal mutational events meant assignment to “multiple clonal driver” group (the selection 

of these four genes is based on the timing results observed in Figure 4B) , ii) presence of a 

tumour clone/subclone with a BAP1 mutational driver event, and no other “core” mutational 

driver events aside from VHL in that same clone/subclone, meant assignment to the “BAP1 

driven” group, iii) presence of a tumour clone/subclone with PBRM1 mutation followed by a 

SETD2 mutation, meant assignment to the “PBRM1->SETD2” group, iv) presence of a tumour 

clone/subclone with PBRM1 mutation followed by a PI3K pathway mutation, meant 

assignment to the “PBRM1->PI3K” group, v) presence of a tumour clone/subclone with 

PBRM1 mutation followed by a driver SCNA event, meant assignment to the “PBRM1->SCNA” 

group, vi) absence of VHL mutation or methylation meant assignment to “VHL wildtype” 

group, vii) presence of VHL as the only “core” mutational driver event meant assignment to 

the “VHL monodriver” group. For bilateral/multi-focal cases the evolutionary subtype was 

assigned based on the first/left tumour in each case. To test the stability and validity of the 

rule based classification an unsupervised clustering analysis was additionally performed, 

using R function daisy, with the distance matrix computed using Gower’s formula on account 



53 

of the mixture of continuous and binary data types. Clustering was conducted based on the 

following measures: wGII (minimum and maximum regional values per tumour), tumour size 

(mm), clone number, ITH index, number of clonal driver events and presence/absence of the 

six observed evolutionary patterns (BAP1 lone driver clone/subclone, PBRM1->SETD2 

clone/subclone, PBRM1->PI3K clone/subclone, PBRM1->SCNA clone/subclone, VHL 

mutational status, VHL as the only “core” mutational driver event). Clustering was performed 

using a partitioning around medoid method, with cluster number from 2 to 15 considered, 

and a 10 cluster solution resulting as the optimal solution. Overall high concordance in cluster 

assignment was observed between the rule based and unsupervised methods (Figure S9), and 

in the unsupervised method three additional subgroups were identified (Figure S9, the groups 

are referred to just by cluster number due to currently unclear evolutionary aetiology): cluster 

5 which was characterised by low clone number (median=2) and small size (mean=6.7cm), 

cluster 7 which exhibited high wGII, and cluster 9 with branched structure (median 11 clones) 

and large size (mean=10.9cm). 

 
Survival analysis 

Survival analysis was conducted using the Kaplan-Meier method, with p-value determined by a log-

rank test. Progression free survival (PFS) was defined as the time to recurrence or relapse, or if a 

patient had died without recurrence, the time to death. In the TRACERx cohort, overall survival (OS) 

was measured as cancer specific death. For the TCGA cohort, all death events were included in the 

PFS/OS analyses (consistent with the original author’s analysis of the data, on account of a lack of 

cause of death data).  Hazard ratio and multivariate analysis adjusting for clinical parameters was 

determined through a Cox proportional hazards model.  
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Downsampling simulation 

Empirical error rates were determined by exhaustive consideration of all pairs of biopsies from a given 

tumour sample and, for each pair, comparing the number of variants detected in one or more of the 

full set of biopsies not found in either member of that pair ("False negative") or determined to be 

subclonal in the full set but detected in both samples in that pair ("illusion of clonality"). Each tumour 

is then represented by the mean value of each of these estimates across all pairs. 

 

Data and Software availability  

 

Sequencing data that supports this study will been deposited at the European Genome-

phenome Archive (EGA), which is hosted by the European Bioinformatics Institute (EBI); 

accession numbers EGAS00001002793. 
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Additional resources  
 
Clinical trial registry number: https://clinicaltrials.gov/ct2/show/NCT03226886 

TRACERx Renal Renal study website, detailing investigators, sponsors and collaborators: 

http://TRACERx Renal.co.uk/studies/renal/ 
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K079 VHL_3:10183793:T:C        K119 VHL_3:10183797:T:C       K165 VHL_3:10183797:T:A 

K180  VHL_3:10183794:G:T     K191   VHL_3:10183725:C:A     K229VHL_3:10183734:C:A 
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VHL validation by Sanger sequencing 

Figure S2: TRACERx Renal cohort: VHL summary. Related to Figure 1 and Star methods.Supplemental Figure 2 Click here to download Supplemental Figure FIgure S2.pdf 

http://www.editorialmanager.com/cell/download.aspx?id=1663347&guid=751e20d6-1513-4a4c-8f35-413df0a128d1&scheme=1
http://www.editorialmanager.com/cell/download.aspx?id=1663347&guid=751e20d6-1513-4a4c-8f35-413df0a128d1&scheme=1


K250 VHL_3:10183843:10183843:C:-        K334_L  VHL_3:10183742:10183742:C:- 

K276 VHL_3:10183873:T:A K376 VHL_3:10183804:10183809:CGACG:- 

K448  VHL_3:10183762:C:A           K097_R  VHL_3:10183846:10183846:G:- 

K104 VHL_3:10183863:10183863:G:-          K130 VHL_3:10183712:10183712:C:- 
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Figure S3: Mutation heatmap and driver trees for a subset of TRACERx Renal cohort. Related to Figure 1, Figure 2.
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Clonal copy neutral allelic imbalance (CNAI)  in relation to clonal mutations 
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The top panel of this figure is bar chart depicting the number of ubiquitous (present in all regions sequenced for a patient) copy 
neutral allelic imbalance (CNAI) events in dark blue and the number of ubiquitous CNAI/loss in the cohort for all chromosome arms
is indicated in light blue. Patients with co-occurring clonal mutations on these chromosomal arms are shown by lines to the 
corresponding chromosome arms. The bottom panel is a heatmap indicating which patients’ disease from the cohort have either 
ubiquitous CNAI events (dark blue) or ubiquitous CNAI/loss events (light blue). 

Figure S4: Copy neutral allelic imbalance and MSAI. Related to Figure 1, Figure 3 and Star methods.Supplemental Figure 4 Click here to download Supplemental Figure Figure
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B-allele frequency profile of heterozygous SNPs across the genome (chromosomes 1-22) from all
regions obtained from the multi-region whole genome sequencing from the patient’s disease.
Sections of BAF in regions that have mirrored subclonal allelic imbalance are highlighted in blue 
or orange. This legend applies to the ther patient specific figures of the same format in this document. 
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Shows the BAF and LogR (log ratio of the relative levels 
of sequencing coverage in the tumor region versus the 
germline normal) profile across part of chromosome 8 for
all regions of the tumor samples that underwent whole 
exome sequencing from patient’s disease. Each
region has a plot of LogR below with the total copy number
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a BAF plot below. The BAF in regions that have mirrored
subclonal allelic imbalance are highlighted in blue or orange.
This legend applies to the ther patient specific figures of the
same format in this document.
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PCR fragment analysis using microsatellite marker D14S306 validating subclonal loss
and MSAI  (R19) in patient K280. Each number following the patient identifier indicates a tumor
region and the germline is indicated by a ‘B’.



PCR fragment analysis using microsatellite marker D14S306 validating subclonal loss and MSAI  
(R4, R8 & R14) in patient K243. 

MSAI validation
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