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A Novel Statistical Method to 
Diagnose, Quantify and Correct 
Batch Effects in Genomic Studies
Gift Nyamundanda1,2, Pawan Poudel1, Yatish Patil1,2 & Anguraj Sadanandam1,2

Genome projects now generate large-scale data often produced at various time points by different 
laboratories using multiple platforms. This increases the potential for batch effects. Currently there 
are several batch evaluation methods like principal component analysis (PCA; mostly based on visual 
inspection), and sometimes they fail to reveal all of the underlying batch effects. These methods can 
also lead to the risk of unintentionally correcting biologically interesting factors attributed to batch 
effects. Here we propose a novel statistical method, finding batch effect (findBATCH), to evaluate 
batch effect based on probabilistic principal component and covariates analysis (PPCCA). The same 
framework also provides a new approach to batch correction, correcting batch effect (correctBATCH), 
which we have shown to be a better approach to traditional PCA-based correction. We demonstrate the 
utility of these methods using two different examples (breast and colorectal cancers) by merging gene 
expression data from different studies after diagnosing and correcting for batch effects and retaining 
the biological effects. These methods, along with conventional visual inspection-based PCA, are 
available as a part of an R package exploring batch effect (exploBATCH; https://github.com/syspremed/
exploBATCH).

Batch effect refers to technical variation or non-biological differences between measurements of different groups 
of samples. Although batch effect can be reduced by good experimental design, it is difficult to completely erad-
icate1. If this systematic bias is not removed, its effect can mask important biological differences (discussed in 
results section using colorectal cancer as an example), at worst resulting in misleading inferences and conclusions.

Many approaches have now been developed to remove batch effects from high-throughput genomic profiling 
datasets. Common methods include: combating batch effect (ComBat), an empirical Bayes method for batch 
correction on each gene2; distance-weighted discrimination (DWD), which employs support vector machines 
(SVMs) to find a hyper-plane separating the batches3 (both ComBat and DWD were used by us in multiple 
instances4–7); FAbatch, an extension of ComBat with batch-specific latent variables that is only suitable when the 
outcome of interest is known and binary8; mean-adjustment of microarray data by batches using prediction anal-
ysis of microarrays - PAM9; gene standardisation by z-score10; cross-platform normalisation (XPN), which is based 
on fitting a block linear model on clusters of features and samples from the different datasets to be merged11; and 
finally, PCA/singular value decomposition (SVD), which searches for directions of maximal variance associated 
with batch effect in the data space and removes them12, 13. The main drawback of PCA is that, if batch effect is not 
the greatest source of variability PCA fails as a batch correction method3. In addition, we are going to show that 
correcting batch effect by completely removing principal components (PCs) affected by batch can result in loss 
of essential non-technical information, as this variability may not be exclusively due to batch effect. At present 
ComBat is the standard method and it has been shown to outperform most of the available batch correction 
approaches1. Therefore, we have used ComBat to compare to our exploBATCH method.

Most batch effect studies focus on methods to remove systematic bias in high-throughput genomic data rather 
than on tools to detect, evaluate, or diagnose batch effect before and after correction. The current standard meth-
ods for detecting batch effect including PCA, dendrograms, boxplots, and density plots are based on visualisation 
and can only be regarded as explorative in nature10. PCA is the most standard approach in this setting and is based 
on visual inspection of the first few PCs10, 14. These ad hoc approaches can be subjective and, when within-batch 
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variability is high relative to total batch variability, PCA usually provides inconclusive evidence of the presence of 
batch effect3, 14. Moreover, unnecessary batch correction can lead to unwarranted data distortion10.

There are few metrics available to investigate batch effect including: a) the mixture score, which uses a 
k-nearest neighbour-based distance metric to assess how samples from different batches mix15; b) the skewness 
divergence score (skewdiv), which measures the distributional differences between data from different batches8; 
c) average minimal distance to the other batch (avedist) which uses Euclidean distances to measure separation 
between batches8; and d) the Kullback-Leibler divergence score (klmetr), which assesses variability within and 
between batches16. However, none of these methods provide a formal statistical test to evaluate the presence of 
batch effect(s) in the data.

Principal variation component analysis (PVCA) is another batch evaluation method that identifies sources 
of variability in data1, 17. Specifically, PVCA is a multi-step method that initially reduces data dimensionality 
using PCA followed by estimating the variability associated with batches using a linear mixed model fitted on 
each PC1, 17. Finally, PVCA derives the proportion of variability associated with batch effect using the estimated 
batch variability from the linear mixed model and eigenvalues associated with each PC from PCA1. Although this 
method has been successfully applied to compare the performances of different batch correction methods, it has 
the following main limitations in diagnosing batch effects: (i) it involves multiple batch evaluation steps, which 
reduces statistical power; (ii) there is no standard approach for selecting the optimal number of PCs associated 
with the data; and (iii) it does not use a formal statistical test to assess the significance of the batch effects. Hence, 
there remains a need for methods that perform formal statistical testing to significantly evaluate/diagnose the 
batch effect(s) before and after batch correction.

Here we propose a new batch evaluation and correction approach called explore batch effect (exploBATCH) 
based on PPCCA, which we originally developed to discover metabolites associated with cancer phenotypes18. 
Since the PPCCA framework allows for incorporation of covariates into traditional PCA, findBATCH (within 
exploBATCH) employs PPCCA to evaluate and detect the presence of significant batch effects by statistically 
testing if the samples are distributed according to batches in the principal subspace. Reese et al. developed guided 
PCA (gPCA), an extension of traditional PCA, to discover batch effects in high-throughput genomic data14. 
However, although gPCA provides a permutation-based formal statistical test of batch effect, it is a global test on 
all the PCs. Instead, findBATCH statistically tests every PC for the presence of batch effect. Furthermore, we have 
developed a new method correctBATCH (a part of exploBATCH and again based on PPCCA) for batch correction 
that subtracts the batch effect on each affected PC to recover the batch-corrected expression data. We evaluate 
this package using examples from breast (GSE1276319, GSE1378720 and GSE2359321) and colorectal cancer (CRC; 
GSE1808822 and GSE2387823) and normal sample gene expression profiles.

Results and Discussion
Framework of exploBATCH for batch detection and correction.  The main challenge in merging 
different datasets is detecting and correcting for systematic bias (due to the fact that data are generated from 
different sources, time points or platforms) without distorting important biological effects. The different steps 
involved in evaluating batch effect(s) in exploBATCH are illustrated in Fig. 1. First, each individual dataset is 
separately pre-processed and normalised according to the technology used and then pooled together based on 
common identifiers (probes or gene names). Second, findBATCH within exploBATCH is used to evaluate the 
existence of batch effect(s) in the data. The findBATCH function selects the optimal number of probabilistic (p)
PCs (based on the highest Bayesian information criterion value; BIC; Nyamundanda et al., 2010)18 associated 
with PPCCA and exploits variability associated with the batch variable to quantify and test the effect of batch(es) 
in the data. The findBATCH function computes 95% confidence intervals (CI) around the estimated batch effect 
on each pPC. Those pPCs with 95% CI values not including zero are considered to have significant batch effect. 
Finally, if one or more batch effects exist, correctBATCH subtracts the effect of batch on each affected probabilistic 
principal component (pPC) to recover the batch-corrected expression data. ComBat (standard approach for batch 
correction in genomics1) was included as part of exploBATCH, however, any other batch correction method can 
be implemented within exploBATCH when required. Both findBATCH and correctBATCH are implemented in R 
statistical software as exploBATCH. The exploBATCH output includes: (i) Forest plots, showing estimated batch 
effect(s) with corresponding 95% CIs to identify pPCs significantly associated with batch; (ii) PCA and PPCCA 
plots before and after batch correction for visual inspection; and (iii) batch-corrected expression data using cor-
rectBATCH or ComBat. Overall, exploBATCH provides a framework for formal statistical testing to assess and 
quantitate the batch effect(s), which also allows for batch correction.

Demonstration of exploBATCH.  Detecting, quantitating and correcting for batch effect - merging three 
breast cancer gene expression datasets.  In this example using breast cancer datasets with batch effect, we demon-
strate the utility of exploBATCH in detecting, estimating and correcting for batch effect. We also compared results 
of exploBATCH to other commonly used methods – ComBat and gPCA. Initially, we sought to merge gene expres-
sion data (profiled using Affymetrix GeneChip® Human Genome U133 Plus 2.0 Array, 20,155 genes) generated 
from primary human breast tumors from three different studies of 70 samples (GSE1276319, n = 30; GSE1378720, 
n = 22; and GSE2359321, n = 18; after microarray quality control; see Materials and Methods). It can be clearly 
seen in Fig. 2A and Supplementary Figure 1 that clustering of samples in the principal subspace (defined by 
the first two PCs) was exclusively driven by batch effect, which is due to merging data from different sources. 
However, in situations where batch effect is not the greatest source of variability, PCA may fail to reveal any 
underlying clustering structure due to batch effect3. Consequently, findBATCH was applied as a formal statistical 
test to detect the presence of batch effect in this pooled dataset, by determining the lower dimensional representa-
tion of the data affected by batch effect. The BIC plot in Fig. 2B shows that the first five pPCs (with the highest BIC 
value) explained most of the data variability. The 95% CIs of the estimated regression coefficients associated with 
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batch effect in Fig. 2C (forest plot showing the results of findBATCH, which allow us to quantify batch effect and 
perform formal statistical tests) are used to assess the effect of batch on each of the five pPCs. Fig. 2C shows signif-
icant batch effects in pPC1, pPC2 and pPC4 (since their corresponding 95% CIs did not include zero). We further 
assessed batch effect using another method, gPCA14, and it showed a p-value less than 0.001, representing the 
presence of significant batch effect in these pooled dataset, which is consistent with findBATCH analysis (Fig. 2C). 
However, unlike findBATCH, gPCA method does not assess the effect of batch on individual PCs. Overall; this 
establishes the presence of batch effect in the pooled breast cancer dataset.

In order to correct batch effect in this pooled dataset, we applied our correctBATCH method, which subtracts 
the effect of batch in the principal subspace. The performance of correctBATCH was compared to ComBat, the 
current standard approach to batch correction1, and traditional PCA correction12, 13. Although visually inspecting 
PCA plots in Fig. 3A and B highlighted no batch effect (mixing of samples from different batches) after applying 
both correctBATCH and ComBat, formal statistical tests were carried out again using findBATCH to assess for 
any residual batch effect. None of the five pPCs were significantly associated with batch effect after applying the 
two batch correction methods (95% CIs in Fig. 3C do include zero for all pPCs), confirming the removal of batch 
effect. We also applied gPCA to assess if batch effect has been corrected. A gPCA p-value was 1 for both batch cor-
rection methods (Fig. 3C), also confirming that batch effect has been removed. The performance of the two batch 
correction approaches - correctBATCH and ComBat - in this dataset was generally comparable with a correlation 
coefficient of 0.96 (Fig. 3D). However, data corrected for batch effect using PCA approach (removing the eigen 
vectors associated with batch effect12, 13) had very low correlation with correctBATCH (Pearson correlation coeffi-
cient = 0.35) and ComBat (Pearson correlation coefficient = 0.26) corrected data, Supplementary Figure 2A and 
B, respectively. This low correlation could be due to the loss of important biological information when the affected 
PCs are completely removed in PCA approach. We will demonstrate this in the next example.

Overall, this example demonstrates how exploBATCH can be used to: (i) statistically test (instead of simple 
visual inspection) and quantitate the presence of batch effect using findBATCH, and (ii) correct for batch effect 
using correctBATCH.

Batch vs. biological effect - merging two colorectal cancer gene expression datasets.  When clustering gene expres-
sion data containing a mixture of different samples (normal and tumor), tumors typically cluster away from the 
normal samples; here we refer to this as the “normal/tumor biological effect”. If experiments are not carefully 

Figure 1.  Flowchart of steps within exploBATCH. A schematic representation of the steps involved within 
exploBATCH for batch detection, quantitation and correction.
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designed, it can be difficult to distinguish biological effects from batch effects. In this example, we demonstrate 
how exploBATCH can be used to disentangle biological variability from batch variability.

Two gene expression datasets (GSE1808822 and GSE2387823; Affymetrix GeneChip® Human Genome U133 
Plus 2.0 Array) consisting of 52 and 58 samples, respectively, (after microarray data analysis quality control; see 
Materials and Methods) were pooled together. Whilst all of the 52 samples from GSE18088 were CRCs, 24 of 58 
GSE23878 samples were from normal tissues and the rest were tumor samples (after quality control of the data; 
see Materials and Methods). Here the aim is to assess whether (i) findBATCH can distinguish batch effect from 
biological effect; and (ii) the correction of batch effect using correctBATCH retains the normal/tumor biological 
effect.

Although Fig. 4A and Supplementary Figure 3 highlight batch effect, as samples from GSE23878 dataset clus-
tered away from GSE18088 samples in the first PC, it is difficult to differentiate normal/tumor biological effect 
from batch effect by visual inspection alone as some normal samples are mixing with tumors. findBATCH was 
applied to detect batch effect in this pooled dataset with two different variables (batch and normal/tumor) as 
covariates in the PPCCA model. The presence of the normal/tumor variable allowed us to assess if batch cor-
rection using either correctBATCH or ComBat retained biological effect. The optimal number of pPCs for this 
dataset was nine (BIC plot in Fig. 4B). Whilst the first two of the nine pPCs (pPC1 and pPC2) were significantly 
associated (95% CIs don’t contain zero) with the batch variable (Fig. 4C), confirming the presence of batch effect 
in the data, the first three pPCs (pPC1, pPC2 and pPC3) were also associated with the normal/tumor biological 
effect (Fig. 4D). Hence, batch and biological effects are entangled in the first two PCs, which makes PCA-based 
batch correction challenging.

In order to efficiently remove the effect of batch whilst retaining biological effects in the data, we applied cor-
rectBATCH, which removes the effect of batch in each pPC, as well as ComBat to assess if the two methods retain 
biological effect in the data after batch correction. The results of batch correction using these two methods are 

Figure 2.  Detection of batch effect in pooled breast cancer gene expression datasets. (A) A PCA plot showing 
clustering of samples according to batches (three breast cancer datasets – GSE23593, GSE13787 and GSE12763). 
(B) BIC values from findBATCH showing the optimal number of pPCs for pooled/merged (three) datasets. The 
higher the BIC value, the better the model. The red dashed vertical line identifies the optimal number of pPCs. 
(C). A forest plot depicting different pPCs from findBATCH applied to quantify batch effect before correction.
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shown in Fig. 5. Since PCA does not provide a measure to assess the presence of batch effect, it is not easy to con-
clude from PCA plots in Fig. 5A and B that batch effect has been completely corrected. However, formal statistical 
tests using findBATCH confirmed no significant batch affect (95% CIs in Fig. 5C and D, in blue, do include zero) 
after applying correctBATCH and ComBat. Global test of batch effect on all PCs using gPCA also confirmed no 
significant batch effect left in correctBATCH and ComBat corrected data with p-values of 1.000 and 0.908 (Fig. 5C 
and D), respectively. Crucially, both batch correction methods managed to retain the normal/tumor biological 
effect (95% CIs in Fig. 5C and D, in orange, do not include zero). Interestingly, the resolution of normal/tumor 
biological effect in the data improved after batch correction (Fig. 5C and D; at least one additional pPC was asso-
ciated with biological effect) compared to that before correction (Fig. 4D). The performance of correctBATCH and 
ComBat was comparable with high Pearson correlation coefficient of 0.95 (Fig. 5E).

However, when PCA-based batch correction was applied to the pooled colorectal data, the results did not 
correlate well with those of correctBATCH and ComBat (Supplementary Figure 4), with Pearson correlation of 
0.36 and 0.23, respectively. We further assessed batch effect on the pooled data using findBATCH after PCA-based 
correction. We observed that only the first probabilistic component (pPC1) from findBATCH was associated with 
the normal/tumor biological effect, as shown in Fig. 6A. In Fig. 6B, this pPC1 only explains less than a tenth (9%) 
of the total variability in the data corrected for batch effect using PCA. On the other hand, correctBATCH and 
ComBat-based batch effect correction of the same data showed additional three pPCs (pPC2, pPC3 and pPC4 
in correctBATCH; and pPC2, pPC3 and pPC5 in ComBat; Fig. 5C and D) associated with a total of 30% and 27% 
variability of normal/tumor biological effects, respectively. This loss of information in pPC1 of PCA-based batch 
correction can be explained by the fact that, since batch and biological effects were coupled in pPC1 and pPC2 
(as shown in Fig. 4C and D), PCA-based batch correction of simply discarding these two PCs resulted in loss of 
important normal/tumor biological effect in these two components.

Figure 3.  Correction of batch effect in pooled breast cancer gene expression datasets. (A,B) PCA plots 
highlight clustering of samples (three breast cancer datasets – GSE23593, GSE13787 and GSE12763) after 
batch correction using correctBATCH (A) and ComBat (B). (C) A forest plot depicting different pPCs from 
findBATCH for assessing batch effect after correction using both correctBATCH (blue) or ComBat (green). The 
gPCA p-values for the corrected data using correctBATCH (blue) or ComBat (green) are also shown. (D) A plot 
showing Pearson correlation between correctBATCH and ComBat batch corrected data.
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Overall, this example demonstrates that findBATCH from exploBATCH tool can effectively differentiate batch 
variability from biological variability to determine and quantitate batch effect in the data. It also detects batch 
effect even when the results of visual inspection are inconclusive. Moreover, the PPCCA model in correctBATCH 
(from exploBATCH tool) allows for correction of batch effect without distorting important biological structures 
in the data.

Conclusions
Here, to our knowledge for the first time, we establish a method to evaluate or diagnose batch effect(s) in genomic 
data at the level of individual PCs. Our method allows for both visual inspection and formal statistical testing of 
batch effect(s) before and after batch correction. The two methods, findBATCH and correctBATCH, within the 
package exploBATCH were applied successfully to the two gene expression datasets (breast and colorectal cancer/
normal samples) to diagnose and correct for batch effect, respectively. The correctBATCH framework allows for 
removal of batch effect(s) in genomic data without compromising biological effect, provided that the experiments 
are designed to properly distinguish between batch and biological effects.

Materials and Methods
Samples and pre-processing.  All the datasets used are publicly available. The three datasets in the first 
example, GSE1276319, GSE1378720, and GSE2359321, are human breast cancer samples. The gene expression pro-
files for these breast cancer samples were performed using Affymetrix GeneChip® Human Genome U133 Plus 
2.0 Array. The replicate samples were removed from GSE23593 as indicated in GEO Omnibus leading to a total of 
18 samples. The samples were pre-processed and normalized using robust multi-array average (RMA)24 using R 
and Bioconductor25. One sample (GSM346904) from GSE13787 had normalized unscaled standard error (NUSE; 

Figure 4.  Detection of batch effect in CRC and normal gene expression datasets. (A) A PCA plot showing 
clustering of samples according to batches (the two CRC datasets – GSE18088 and GSE23878) in the principal 
subspace defined by the first two PCs. The filled squares identify normal samples and the filled circles identify 
tumors. (B) BIC values from findBATCH showing the optimal number of pPCs for pooled/merged datasets. 
The higher the BIC value, the better the model. The red dashed vertical line identifies the optimal number of 
pPCs to be nine. (C,D) Forest plots depicting different pPCs from findBATCH applied to quantify (C) batch 
and (D) normal/biological effect using uncorrected CRC pooled dataset (GSE18088 and GSE23878). pPCs are 
considered significant only if 95% CIs do not include zero.
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Figure 5.  Correction of batch effect in CRC and normal gene expression datasets whilst retaining biological 
effects. (A,B) PCA plots showing clustering of samples (the two CRC datasets – GSE18088 and GSE23878) 
after batch correction using correctBATCH (A) and ComBat (B). (C,D) Forest plots from findBATCH show 
batch (blue) and normal/tumor biological effect (orange) associated with batch corrected data from (C) 
correctBATCH and (D) ComBat. pPCs are considered significant only if 95% CIs do not include zero. The gPCA 
p-values of 1.000 and 0.908 for correctBATCH and ComBat, respectively, are shown. (E) A plot showing Pearson 
correlation between batch-corrected data from correctBATCH and ComBat methods.

Figure 6.  PCA-based batch correction loses biological information. (A) A forest plot depicting different pPCs 
from findBATCH applied to assess normal/tumor biological effect after PCA-based batch correction (applied 
on CRC pooled dataset from - GSE18088 and GSE23878 datasets). pPCs are considered significant only if 95% 
CIs do not include zero. (B) A plot showing the cumulative proportion of variation (PoVs) for the first nine 
PCs (from PCA) for the uncorrected (red) and corrected (using PCA corrected; blue, correctBATCH; green 
and ComBat; violet) CRC pooled data for batch effect. The quadrants highlight the cumulative PoVs for PCs 
associated with normal/tumor biological effect in PCA (9%; blue), correctBATCH (30%; green), and ComBat 
(27%; purple) corrected data.
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as a part of the affyPLM26, 27 package from Bioconductor) median score greater than 1.05, which was removed, 
leading to a total of 22 samples. GSE12763 had 30 samples. A single probe with highest variation was selected for 
those genes with multiple probes before merging different datasets. In addition, those probes with gene name not 
annotated by the HUGO gene nomenclature committee (HGNC)28 were removed.

For the second example on colorectal cancer, we chose two gene expression data sets (GSE1808822 and 
GSE2387823; Affymetrix GeneChip® Human Genome U133 Plus 2.0 Array) with 53 and 59 samples, respec-
tively. Two samples, one each from GSE18088 and GSE23878, had NUSE median score greater than 1.05, hence 
were removed from analysis. All 52 samples from the GSE18088 data were primary CRC tumors whilst 24 of 58 
GSE23878 samples were normal samples and rest of the samples were matched tumor samples. Again, each of the 
datasets was pre-processed and normalized using RMA as described above.

Probabilistic principal component and covariates analysis.  Suppose we have measurements, 
yi = (yi1…yip)

T, taken on a large number of p correlated variables (i.e. genes) and corresponding phenotypes (i.e. 
covariates), xi = (xi1…xil)

T, recorded on a sample i. PPCCA18 can be used to model the relationship between the 
expression data matrix Y = (y1…yn)

T and covariates X = (x1…xl)
T where n is the number of samples and l is the 

number of covariates plus an intercept term. High-dimensional data point yi is modeled as a linear function of 
the corresponding low-dimensional probabilistic principal component (pPC) score ui = (ui1…uiq)

T (also known 
as scores in PCA), whilst the pPC score, ui, is modeled as a linear function of covariates xi, plus some unexplained 
additional sources of variation ξi = (ξi1…ξip)T and εi = (εi1…εiq) T, respectively, where, q « p. The PPCCA model 
can be written as follows,

µ ξ= + +y uW , (1)i i i

β ε= +u x , (2)i i i

where W is a p × q loadings matrix, μ is a p dimensional mean vector of the data and β is a q × l regression coef-
ficients matrix quantifying the relationship between the pPC score ui and covariates xi. The pPC score, observed 
errors, and the pPC errors are assumed  to be from multivariate normal distribution (MVN), ui ~ MVNq (β xi, I), 
ξi ~ MVNp (0, σ2I) and εi ~ MVNq (0, I), where I is an identity matrix and σ2 is the residual variance. For a more 
detailed description of the PPCCA model see Nyamundanda et al.18.

Explore batch (exploBATCH) package.  Approaches in exploBATCH R package, to quantitate and correct 
batch effect, are based on the PPCCA model18. Firstly, the PPCCA model is applied to detect batch effect in the 
dataset. This is achieved by carrying out a formal statistical test to determine if samples are distributed according 
to batches in the principal subspace defined by the PPCCA model. Since the PPCCA allows for incorporation of 
covariates in PCA, the batch variable(s) can be tested if it is significantly associated with any of the pPCs from 
PPCCA using the following test statistic created under the null hypothesis of no batch effect,

β β∆ = SE( )/ ( ) (3)bk bk bk

where βbk is the regression coefficient that quantifies batch effect b on kth pPC, and SE is the corresponding stand-
ard error. If this test statistic is significant (5% significance level) for any of the pPCs it confirms the presence 
of batch effect in the data. Secondly, the effect of batch is removed on those pPCs significantly associated with 
the batch variable of interest using PPCCA (implemented as correctBATCH within exploBATCH R package) as 
follows,

β= −u u x (4)ck ak b bk

where uak and uck is a vector of scores of kth pPC affected and corrected for batch effect, respectively, whilst xb is 
the variable defining batches. Finally, correctBATCH recovers the batch effect corrected expression data by using 
the PPCCA model to predict the observed data but conditioning on the scores, u = (uc, uu), where uc is scores of 
corrected and uu is uncorrected pPCs.

In order to improve the speed of matrix multiplications and inversions in exploBATCH, Rcpp29 packages 
(such as RcppArmadillo30 and RcppEigen31), which allow calling C++ functions in R, were adopted in explo-
BATCH to fit the PPCCA model from MetabolAnalyze18 package. R packages such as, foreach32 and doParallel33, 
were implemented in exploBATCH to allow for multi-threading when selecting the optimal number of pPCs and 
estimating parameter uncertainty. This drastically improved the computational efficiency of exploBATCH, com-
pared to MetabolAnalyze package that includes PPCCA. The other information and bottlenecks associated with 
exploBATCH implementation are available in the supplementary information (Supplementary Figures 5 and 6).

Other R packages in exploBATCH include, SVA34 for ComBat, STATS25 for PCA, and MASS35 for generating 
data from a multivariate Gaussian distribution. The exploBATCH package is available as an R package on github 
(https://github.com/syspremed/exploBATCH).

References
	 1.	 Chen, C. et al. Removing batch effects in analysis of expression microarray data: An evaluation of six batch adjustment methods. 

PLoS One 6 (2011).
	 2.	 Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. 

Biostatistics 8, 118–27 (2007).
	 3.	 Benito, M. et al. Adjustment of systematic microarray data biases. Bioinformatics 20, 105–114 (2004).
	 4.	 Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

http://5
http://6
https://github.com/syspremed/exploBATCH


www.nature.com/scientificreports/

9SCIenTIfIC REPOrtS | 7: 10849  | DOI:10.1038/s41598-017-11110-6

	 5.	 Sadanandam, a et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med 
19, 619–625 (2013).

	 6.	 Sadanandam, A. et al. A cross-species analysis in pancreatic neuroendocrine tumors reveals molecular subtypes with distinctive 
clinical, metastatic, developmental, and metabolic characteristics. Cancer Discov. 5, 1296–1313 (2015).

	 7.	 Sadanandam, A., Futakuchi, M., Lyssiotis, C. A., Gibb, W. J. & Singh, R. K. A Cross-Species Analysis of a Mouse Model of Breast 
Cancer-Specific Osteolysis and Human Bone Metastases Using Gene Expression Profiling. BMC Cancer 11, 304 (2011).

	 8.	 Hornung, R., Boulesteix, A.-L. & Causeur, D. Combining location-and-scale batch effect adjustment with data cleaning by latent 
factor adjustment. BMC Bioinformatics 17, 27 (2016).

	 9.	 Sims, A. H. et al. The removal of multiplicative, systematic bias allows integration of breast cancer gene expression datasets - 
improving meta-analysis and prediction of prognosis. BMC Med. Genomics 1, 42 (2008).

	10.	 Lazar, C. et al. Batch effect removal methods for microarray gene expression data integration: A survey. Brief. Bioinform. 14, 469–490 
(2013).

	11.	 Shabalin, A. A., Tjelmeland, H., Fan, C., Perou, C. M. & Nobel, A. B. Merging two gene-expression studies via cross-platform 
normalization. Bioinformatics 24, 1154–1160 (2008).

	12.	 Alter, O., Brown, P. O. & Botstein, D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. 
Natl. Acad. Sci. 97, 10101–10106 (2000).

	13.	 Luo, J. et al. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray 
gene expression data. Pharmacogenomics J. 10, 278–91 (2010).

	14.	 Reese, S. E. et al. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component 
analysis. Bioinformatics 29, 2877–2883 (2013).

	15.	 Kim, K.-Y. et al. An attempt for combining microarray data sets by adjusting gene expressions. Cancer Res. Treat. 39, 74–81 (2007).
	16.	 Lee, J. A., Dobbin, K. K. & Ahn, J. Covariance adjustment for batch effect in gene expression data. Stat. Med. 33, 2681–95 (2014).
	17.	 Li, J., Bushel, P.R., Chu, T. & Wolfinger, R.D. Principal variance component analysis: estimating batch effects in micorarray gene 

expression data in Batch Effects and Noise in Microarray Experiments: Sources and Solutions (ed. Scherer, A.) 141-154 (John Wiley 
and Sons, Ltd., 2009).

	18.	 Nyamundanda, G., Brennan, L. & Gormley, I. Probabilistic principal component analysis for metabolomic data. BMC Bioinformatics 
11, 571 (2010).

	19.	 Hoeflich, K. P. et al. In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer 
models. Clin. Cancer Res. 15, 4649–4664 (2009).

	20.	 Marty, B. et al. Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer 
cells. Breast Cancer Res. 10, R101 (2008).

	21.	 Barry, W. T. et al. Intratumor heterogeneity and precision of microarray-based predictors of breast cancer biology and clinical 
outcome. J. Clin. Oncol. 28, 2198–2206 (2010).

	22.	 Gröne, J. et al. Molecular profiles and clinical outcome of stage UICC II colon cancer patients. Int. J. Colorectal Dis. 26, 847–858 
(2011).

	23.	 Uddin, S. et al. Genome-wide expression analysis of Middle Eastern colorectal cancer reveals FOXM1 as a novel target for cancer 
therapy. Am. J. Pathol. 178, 537–47 (2011).

	24.	 Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 
4, 249–264 (2003).

	25.	 Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, 
R80 (2004).

	26.	 Heber, S. & Sick, B. Quality assessment of Affymetrix GeneChip data. OMICS 10, 358–68 (2006).
	27.	 Brettschneider, J., Collin, F., Bolstad, B. M. & Speed, T. P. Quality Assessment for Short Oligonucleotide Microarray Data. 

Technometrics 50, 241–264 (2008).
	28.	 Bruford, E. et al. The HGNC database in 2008: A resource for the human genome. Nucleic Acids Res. 36, 445–448 (2008).
	29.	 Eddelbuettel, D. & Fran, R. Rcpp: Seamless R and C++ Integration. J. Stat. Softw. 40, 1–18 (2011).
	30.	 Eddelbuettel, D. & Sanderson, C. RcppArmadillo: Accelerating R with high-performance C++ linear algebra. Comput. Stat. Data 

Anal. 71, 1054–1063 (2014).
	31.	 Bates, D. & Eddelbuettel, D. Fast and Elegant Numerical Linear Algebra Using the {RcppEigen} Package. J. Stat. Softw. 52, 1–24 

(2013).
	32.	 Weston, S. Using The foreach Package. (2015) (Date of access: 30/03/2017) ftp://cran.r-project.org/pub/R/web/packages/foreach/

vignettes/foreach.pdf.
	33.	 Weston, S. & Calaway, R. Getting Started with doParallel and foreach. (Date of access: 30/03/2017) https://cran.r-project.org/web/

packages/doParallel/vignettes/gettingstartedParallel.pdf (2015).
	34.	 Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The SVA package for removing batch effects and other unwanted 

variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
	35.	 Venables, W. N. & Ripley, B. D. Package ‘MASS’. Mod. Appl. Stat. with S (2002).

Acknowledgements
We thank Ms. Katherine Eason and Dr. Kate Young for carefully reading the manuscript. We thank Dr. Igor Kozin 
for helping with high performance computing-based data analysis. We acknowledge NHS funding to the NIHR 
Biomedical Research Centre at The Royal Marsden and the ICR.

Author Contributions
A.S. conceived the idea and designed the experiments. G.N. conceived the experiments, developed the statistical 
models and the R package, conducted the experiments, curated the colorectal cancer datasets and analysed the 
results. P.P. helped with curating breast cancer datasets. Y.P. helped with organizing the R package. G.N. and A.S. 
interpreted the results and wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-11110-6
Competing Interests: A.S. has ownership interest (including patents) as a patent inventor for a patent entitled 
“Colorectal cancer classification with differential prognosis and personalized therapeutic responses” (patent 
number PCT/IB2013/060416).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/s41598-017-11110-6


www.nature.com/scientificreports/

1 0SCIenTIfIC REPOrtS | 7: 10849  | DOI:10.1038/s41598-017-11110-6

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	A Novel Statistical Method to Diagnose, Quantify and Correct Batch Effects in Genomic Studies

	Results and Discussion

	Framework of exploBATCH for batch detection and correction. 
	Demonstration of exploBATCH. 
	Detecting, quantitating and correcting for batch effect - merging three breast cancer gene expression datasets. 
	Batch vs. biological effect - merging two colorectal cancer gene expression datasets. 


	Conclusions

	Materials and Methods

	Samples and pre-processing. 
	Probabilistic principal component and covariates analysis. 
	Explore batch (exploBATCH) package. 

	Acknowledgements

	Figure 1 Flowchart of steps within exploBATCH.
	Figure 2 Detection of batch effect in pooled breast cancer gene expression datasets.
	Figure 3 Correction of batch effect in pooled breast cancer gene expression datasets.
	Figure 4 Detection of batch effect in CRC and normal gene expression datasets.
	Figure 5 Correction of batch effect in CRC and normal gene expression datasets whilst retaining biological effects.
	Figure 6 PCA-based batch correction loses biological information.




