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SUMMARY
One goal of precision medicine is to tailor effective treatments to patients’ specific molecular markers of dis-
ease. Here, we used mass cytometry to characterize the single-cell signaling landscapes of 62 breast cancer
cell lines and five lines from healthy tissue. We quantified 34 markers in each cell line upon stimulation by the
growth factor EGF in the presence or absence of five kinase inhibitors. These data—on more than 80 million
single cells from4,000 conditions—were used to fitmechanistic signaling networkmodels that provide insight
into how cancer cells process information. Our dynamic single-cell-based models accurately predicted drug
sensitivity and identified genomic features associated with drug sensitivity, including a missense mutation in
DDIT3 predictive of PI3K-inhibition sensitivity. We observed similar trends in genotype-drug sensitivity asso-
ciations in patient-derived xenograft mouse models. This work provides proof of principle that patient-spe-
cific single-cell measurements and modeling could inform effective precision medicine strategies.
INTRODUCTION

The aim of precision medicine is to use molecular markers of dis-

ease to enable tailored treatments. Currently, precision medicine

ismainly informedbygenomicand transcriptomicmeasurements,

which are scalable and cost effective. For example, tumors with

the BCR-ABL fusion are usually successfully treated with imatinib

mesylate (Gleevec), breast cancer with HER2 overexpression is

treated with trastuzumab (Herceptin), and melanomas that ex-

press BRAFV600E are treated with vemurafenib (Zelboraf) (An

et al., 2010; Garbe and Eigentler, 2018; Garrett and Arteaga,

2011). However, in treatment of breast cancer, patient-drug

matching fails in a subset of patients, and, despite extensive char-

acterization of genetic and epigenetic abnormalities in breast
Cell Systems 12, 401–418
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cancer, only a few targeted therapies are available (Coates et al.,

2015; Cancer Genome Atlas Network, 2012; Nik-Zainal et al.,

2016; Pereira et al., 2016). Even a well-established biomarker

such as the amplification ofHER2 only partially predicts the tumor

response:Only about half of all patientswithHER2-amplifiedmet-

astatic breast cancer respond to trastuzumab (Garrett and Ar-

teaga, 2011).

Cancer cell lines are models for the human disease and can

identify genomic features that correlate with and ultimately pre-

dict drug response (Barretina et al., 2012; Ghandi et al., 2019;

Iorio et al., 2016; Neve et al., 2006). One aim of precision medi-

cine is to identify and target the driver genomic alterations (Mar-

cotte et al., 2016). Despite recent success in identifying driver

alterations (Marcotte et al., 2016; Gholami et al., 2013), genomic
, May 19, 2021 ª 2021 The Authors. Published by Elsevier Inc. 401
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Experimental and computational approach to decipher the signaling landscape of breast cancer cell lines
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information remains an incomplete predictor of drug sensitivity

even in cell lines (Costello et al., 2014; Niepel et al., 2013). Ge-

netic markers alone likely fail to predict drug response because

genomic alterations have complex effects at the regulatory

network and phenotypic level, and multiple drug resistance

mechanisms at the level of signaling networks have been

described (Lee et al., 2012; Yaffe, 2019). Phenotype-proximal

readouts such as protein levels and post-translational modifica-

tions, which better reflect the status of the cell, are potentially

better predictors of drug sensitivity than genomic sequence

(Barrette et al., 2018; Beal et al., 2019; Fey et al., 2015; Fröhlich

et al., 2018), especially when characterizing the response to a

perturbation (Eduati et al., 2017; Hass et al., 2017; Meric-Bern-

stam et al., 2012; Niepel et al., 2013).

Many genetic and epigenetic alterations that drive cancer pro-

gression map to signaling pathways that control the key pro-

cesses of growth, division, death, fate, metabolism, and motility

(Forbes et al., 2011). Indeed, kinases and phosphatases involved

in cellular signaling are the targets of some of the most effective

anti-cancer therapeutics (e.g., HER2, EGFR, and RAF) and some

of the most promising future targets as well (e.g., PKC, p38, and

PI3K). However, the complex and redundant nature of the

signaling network renders prediction of the effects of genomic al-

terations on the signaling state and drug sensitivity non-trivial.

Furthermore, single-cell heterogeneity has been linked to

fractional killing and drug resistance (Cooper and Bakal, 2017;

Miura et al., 2018).

To develop a system to predict drug sensitivity, we used mass

cytometry tomap the single-cell signaling landscape of 62 breast

cancer cell lines and five lines developed from healthy tissue. We
402 Cell Systems 12, 401–418, May 19, 2021
quantified 34 markers over a 60-min stimulation with the growth

factor EGF in the presence or absence of five different kinase in-

hibitors. The generated dataset revealed considerable heteroge-

neity in cellular signaling responses at both the population and

single-cell levels. Basedon thesemultiparametricmass cytomet-

ric measurements, we built cell-line-specific signaling network

models. Predictors derived from these cell-line-specific models

outperformed the state-of-the-art predictor based on transcrip-

tomics data, for PI3K-MTOR-targeting drugs. Finally, we identi-

fied genomic aberrations predictive of drug response that were

not identified without the signaling models. The associations of

genomic variants with drug sensitivity identified by our signaling

model were validated in patient-derived xenograft mouse

models. Our analyses provide mechanistic insights into drug

sensitivity and resistancemechanisms and suggest novel oppor-

tunities for patient stratification and combinatorial therapy.

RESULTS

The proteomes of breast cancer and normal breast
cell lines
Since signaling networks are complex systems that can exhibit

emergent properties, dynamic measurements under multiple

conditions are required to model them effectively. As response

to perturbation is known to be heterogeneous at the single-cell

level and this heterogeneity is linked to drug resistance (Cooper

and Bakal, 2017; Miura et al., 2018), we applied mass cytometry,

using 35 antibodies (Table S1), to measure single-cell responses

to EGF stimulation in the presence or absence of kinase inhibi-

tors over a 10-point, 60-min time course (Figure 1; Table S2).
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Figure 2. The signaling landscape of breast cancer cell lines
(A) Median intensity ratios of markers to time point zero for markers with significant differences over time in response to stimulation with EGF when responses of

the 67 cell lines are averaged. Adjusted p values relative to time zero are represented by the dot size and the box thickness.

(legend continued on next page)
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The kinase inhibitors selected target key signaling nodes and are

well characterized and widely used: CI-1040 was the first MEK

inhibitor to begin clinical development, pictilisib is a pan-PI3K in-

hibitor, rapamycin selectively inhibits mTOR, lapatinib inhibits

both EGFR and HER2, and enzastaurin inhibits PKC (Allen

et al., 2003; Folkes et al., 2008; Graff et al., 2005; Li et al.,

2014; Xia et al., 2002) (Table S3). The resulting perturbation data-

set includes quantitative information on 29 phosphorylation

events covering the major signaling pathways, total protein

abundance, DNA synthesis, and protein cleavage.

We characterized the signaling landscapes of a panel of hu-

man breast cancer cell lines and cell lines from healthy breast tis-

sue (Marcotte et al., 2016) (Tables S4 and S5). The panel includes

62 cell lines generated from human breast tumors; 30 of these

cell lines are basal-like and 32 are luminal-like, of which nine

are known to overexpress HER2. These cell lines reflect some

of the heterogeneity found in patient tumors, and both transcrip-

tomic and genomic data, including data on single-nucleotide

polymorphisms (SNPs) and copy-number aberrations (CNAs),

are available for each line (Heiser et al., 2012; Marcotte et al.,

2016; Neve et al., 2006). Importantly, for 48 of these cell lines,

sensitivities (IC50 values) to 334 drugs have been measured

(Picco et al., 2019; Yang et al., 2013). In total, we analyzed

4,000 samples and more than 80 million single cells (Figure 1),

making it the most comprehensive signaling response dataset

to date.

Since there has been no systematic characterization of protein

abundances for these cell lines, we first conducted a quantitative

proteomic analysis of all the cell lines using data-independent

acquisition mass spectrometry. We quantitatively detected

9,031 proteins in cell lines grown without EGF stimulation. The

proteomes of the five immortalized cell lines derived from normal

tissue (184A1, 184B5, MCF10A, MCF10F, and MCF12A) were

very similar to each other (mean Pearson’s correlation coefficient

for normal lines r = 0.94, across all lines r = 0.87) and clustered

together (Figure S1A). The good quantitative accuracy of the

data is exemplified by the high correlation between levels of

Ku70 and Ku80 in all cell lines (Figure S1B); this is expected since

levels of these two proteins are tightly controlled (Feng and

Chen, 2012; Guo et al., 2019). Most detected proteins (7,328

proteins, 81%) were differentially abundant in at least one tumor

cell line in comparison to the levels in the normal lines
(B) Ratio of signal at stimulation time versus signal at time zero for indicated m

transmitted through the pathway. The error bars represent the standard error, an

(C) Ratios of marker abundance at a given time point compared with time zero, or

clustered based on their signaling signature. CNA calling for PTEN, TP53, EGFR,

classifications are overlaid. Data are from two independent experiments combin

standard deviations across cell lines; the dotted line shows the treatment average

(D) Median intensity ratios of markers significantly altered by the indicated kinase

time zero are represented by the dot size and the box thickness.

(E) Ratios of phospho-S6 signal at the indicated EGF stimulation time versus sign

kinase inhibitors. The error bars represent the standard error.

(F) Values for (1) p-ERK signal in MCF12A cells upon EGF stimulation and (2) p-E

inhibitor normalized to the average signal at time point zero and plotted against ti

only a subset of the time points measured in absence of the inhibitors (Table S2). T

by thick lines. The 25% and 75% quantiles are indicated by the boxes. The whi

beyond the whiskers are plotted individually.

(G) Values of EGFR and S6 abundance (as log2 fold change) plotted versus p-S6 (

represents one cell line, and the color refers to the basal/luminal classification (b
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(Figure S1C). On an average, 2,600 proteins were differentially

abundant when individual cancer cell lines were compared

with the normal proteome; luminal cell lines had significantly

more differentially expressed proteins than basal lines had (Fig-

ure S1D). In agreement with previous reports (Pozniak et al.,

2016; Tyanova et al., 2016; Yanovich et al., 2018), the proteomes

of luminal and basal cell lines mostly clustered together within

each group, and the separation between the two groups was

mostly driven by the differential expression of proteins involved

in metabolic processes and other known proteins such as

FOXA1, Vimentin, CD44, HER2, MET, and EGFR (Figures S1C,

S1E, and S1F). The proteins that were differentially expressed

between tumor and normal cell lines were enriched for breast-

cancer-associated proteins and for GO terms linked to cellular

signaling (Figures S1C and S1G), in agreement with prior knowl-

edge that misregulated signaling plays an important role in can-

cer (Sanchez-Vega et al., 2018; Yaffe, 2019).

The signaling landscape of breast cancer cell lines
After analyzing static bulk proteomes of the cell lines, we ex-

ploited the dynamic single-cell data after EGF stimulation in or-

der to examine the signaling responses by averaging phospho-

protein levels across cells. Twenty-one of the measured markers

significantly changed over time (ANOVA, adj. p value% 0.05). p-

MEKS221, p-ERK, p-AKTS473, and p-S6 responded as expected

(Figure 2A) (Klinger et al., 2013; Pennock and Wang, 2003). A

detailed examination of ERK-MAPK pathway markers revealed

delayed peak times and signal amplification for proteins pro-

gressively more distal from the stimulus (Figure 2B). Although

abundances of most phosphorylated proteins increased upon

stimulation, p-RB and p-4EBP1 levels decreased (Figure 2A).

In individual cell lines, there were considerable differences in

fold changes of all 34 measured markers upon EGF stimulation

(Figure 2C). Most cell lines responded strongly to EGF stimula-

tion, but some did not respond at all and some even had lower

levels of phosphorylation upon EGF stimulation (DU4475, BT-

474, ZR-75-B, and MDA-MB-175-VII cells). These differences

were not due to differences in initial levels of phosphorylation

(Figure S2A). Overall, p-NF-kB varied the least, and p-S6 and

p-4EBP1 varied the most. Depending on the cell line, p-4EBP1

increased (HCC2218, MCF12A, and HCC1599 cells) or

decreased (MDA-MB-468, HCC1954, and HCC1187 cells). In
arkers averaged over the 67 cell lines. The schematic depicts how signal is

d the asterisks the adjusted p values (*p % 0.05, **p % 0.01, ***p % 0.001).

dered by increasing stimulation time, marker, and treatment, in all 67 cell lines

and ERBB2, as well as PAM50 tumor subtype classifications and luminal/basal

ed by linear interpolation. The bar graph to the left of heatmap shows marker

. The single-cell data underlying the regions numbered 1 and 2 are shown in (F).

inhibitors compared with EGF stimulation alone. Adjusted p values relative to

al at time zero averaged over the 67 cells lines in the presence of the indicated

RK signal in MCF12A cells upon EGF stimulation in the presence of the MEK

me. Note that the time courses performed in the presence of inhibitors contain

hemedians correspond to those in the heatmap shown in (C) and are indicated

skers extend between the median and ± (1.58 3 inter-quantile range). Values

as log2 time 0 to time 60 min after stimulation) for all cancer cell lines. Each dot

lue/yellow). The Spearman correlations are reported.
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many cell lines there was no change in p-S6, but in 16 cell lines

there was at least a 2-fold increase. Furthermore, phosphoryla-

tion of the STATs was highly cell line specific. Much of the in-

ter-cell line heterogeneity was correlated. For example, p-ERK

and p-p90RSK levels were correlated aswere the two AKT phos-

phorylations, presumably due to common regulatory mecha-

nisms. However, in certain cell lines this was not the case, hinting

at differential regulatory mechanisms (Figures S2B and S2C).

Signaling dynamics varied between cell lines as well. In most

lines, p-ERK peaked at 9 min and then decreased (Figure 2B),

but in some lines it had very different dynamics. For example,

in T47D cells, levels plateaued at 9 min. Similar heterogeneity

was observed for p-AKTS473, p-p90RSK, p-S6, and p-MKK4.

When the responses of all 67 cell lines were averaged, most of

the measured markers changed significantly upon treatment

with at least one of five kinase inhibitors when compared with

EGF stimulation alone (20 markers, Figure 2D). We observed

an overall decrease in phosphorylation upon kinase inhibition,

although certain markers increased, and all the inhibitors had

the expected effects. For example, inhibition of EGFR resulted

in reduced phosphorylation in the STAT, ERK-MAPK (p-

MEKS221, p-ERK, p-p90RSK, and p-CREB), and PI3K-AKT

(both p-AKT sites, p-GSK3b, p-S6K, and p-S6) pathways.

Notably, both levels and dynamics of the known signal integrator

S6 changed significantly upon inhibition of all five pathways (Fig-

ures 2D and 2E). Analyses of average responses showed some

intriguing behaviors. For instance, MEK inhibition induced an in-

crease in levels of p-AKT but a decrease in p-S6K. Inhibition of

PKC resulted in higher phosphorylation levels of several

markers, including p-AMPKa, p-p38, and p-AKTT308, possibly

due to the release of the PKC-mediated inhibition of the ki-

nase GSK3b.

There was more heterogeneity between cell lines upon pertur-

bation with kinase inhibitors than with EGF stimulation alone

(Figure 2C): the average standard deviation of the median fold

change was significantly higher at 60 min upon treatment with

all inhibitors than with EGF stimulation alone (ANOVA, adjusted

p value = 0.026). In some lines, the expected targets of inhibitors

did not respond. Among the most interesting cases were cell

lines in which ERK phosphorylation was observed despite the

presence of the MEK inhibitor (e.g., T47D, HCC2218,

HCC1599, and CAL148 cells), GSK3b inhibition was observed

although a PKC inhibitor was present (MCF12A, HCC2185, and

MCF10F cells), and p-AKTS473 phosphorylation was observed

despite PIK3 inhibition (HCC2118 and HCC1599 cells). In

another example, inhibition of mTOR strongly diminished phos-

phorylation of S6 in most cell lines at 60 min (mean decrease

of 1.65-fold) but did not in MCF10F and HCC2185 cells (Figures

2C and 2E). Overall, inhibition of EGFR resulted in the most un-

expected behaviors in individual cell lines: We observed strong

EGFR-dependent phosphorylation of S6 in MDA-kb2 cells and

EGFR-independent phosphorylation of STAT3 and p90RSK in

184B5 and HCC202 cells, respectively. These phenotypes might

be the result of either acquired resistance to the inhibitor or

compensatory mechanisms.

When single cells from individual cell lines were evaluated, we

generally observed homogeneous responses to perturbations,

and bimodal responses were rare. Cellular variability (quantified

as the coefficient of variation of the different marker levels)
decreased with EGF stimulation time but increased upon kinase

inhibition (Figures S2D and S2E). This phenomenon was

apparent, for example, for p-ERK in MCF12A cells (Figure 2F).

There were differences among the cell lines, however. For

instance, whereas p-S6 cellular variability typically decreased

over time post EGF addition, this did not hold true for HCC1500

cells (Figure S2F). Furthermore, the cell line-specific responses

did not correlate directly with any tested genomic aberrations

(e.g., with CNA status for PTEN, TP53, ERBB2, and EGFR, Fig-

ure 2C) or with the basal levels of major signaling proteins (Fig-

ure 2G). In summary, some signaling patterns are clearly

conserved across cell lines, but therewere no twocell lineswhere

the responses to inhibition were the same, revealing the

complexity of the signaling landscape in breast cancer cell lines.

Cell-line-specific signaling network models
Next, we used the generated data to train cell-line-specific

mechanistic signaling network models as a step toward under-

standing the signaling landscape of breast cancer cell lines.

We began with the markers targeted by our antibody panel,

expanded and connected the network using prior knowledge

available in Omnipath (T€urei et al., 2016) (Table S6; Figure S3A),

and built a dynamic mechanistic model using logic-based ordi-

nary differential equations (Figure S3B). For the cell-line-specific

signaling network models, we fit a node-specific speed factor (t)

that describes how rapidly the signal is relayed to that node via

all upstream edges and an edge-specific transmission param-

eter (kA,B) that non-linearly describes how much of the signal is

relayed from node A to node B (Figure 3A). Multiple steps are

condensed into each of these parameters to increase scalability

and to efficiently model multiple pathways together, which is

required to use the complete set of markers. As a consequence,

neither t nor kA,B are directly interpretable in a biochemical

sense; however, they provide measures of pathway activity.

For example, a small node-specific speed factor t cannot be in-

terpreted as describing an enzyme with slow kinetics but would

be expected for nodes with slow or minimal responses to a

perturbation.

We tested the fits of models to the data using the root mean

square error (RMSE) (Hengenius et al., 2014). The models fit

the data very well with an average error of only 5%, which is in

the same range as biological replicate average error of 4% (Fig-

ure 3B). A few markers in some cell lines showed considerable

error (0.3% of the marker and cell line combinations have a

RMSE >15%, and 5% have RMSE >10%, e.g., 20% for p-S6K

in AU565 cells and 17% for p-S6 inMPE600 cells), likely because

the prior knowledge network is incomplete. Importantly, a single

model for all cell lines performed poorly (data not shown), prob-

ably because it does not account for the observed heterogeneity

between cell lines. The models captured both dynamics and in-

hibitor effects, as exemplified by the model for BT483 cells: The

model accurately describes p-p90RSK time-dependent

response to stimulation as well as its MEK-dependence (Fig-

ure 3C). Clustering of the cell lines based on t and k partly reca-

pitulated the major clusters obtained based on the response to

stimulation (Figures 2E and S3C). This suggests that our

models—with only 107 model parameters—recapitulate the un-

derlying 1,995 median points of information (markers 3 time

points 3 treatments) in a condensed manner.
Cell Systems 12, 401–418, May 19, 2021 405
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Figure 3. Cell-line-specific signaling models

(A) Illustrations of the effects of t (speed parameter, top) and k (edge parameter, bottom) on signal strength and dynamics in node B. The value of node A (input)

changes over time from 0 to 1, and the signal of B is plotted as a function of time in the different modeled contexts depicted in the schematic.

(B) Marker and cell line RMSE of a randommodel, the cell-line-specificmodels, and the biological variance. The biological variance was computed as the average

RMSEs between themedians and the two biological replicates for eachmarker and cell line. The thick lines indicate themedian; the boxes andwhiskers represent

the 25% and 75% quantiles and the medians ± (1.58 3 inter-quantile range), respectively. Data beyond the whiskers are plotted as dots.

(C) Representative fit for the 85th percentile of the RMSE for the p-p90RSK signal upon stimulation with EGF without (black) and with MEK inhibition (yellow) in

BT483 cells. The scaled signals for the biological replicates A and B are plotted as triangles and crosses, respectively. The fitted model is plotted as a

continuous line.

(D) Themean values for k and t of the mechanistic signaling network models for all 67 cell lines are represented as a signaling network. The color and thicknesses

of edges indicate k parameter values on a low-to-high scale (gray-red, thin-thick) and the node colors indicate t parameter values on a low-to-high scale (gray-

red). Modeled but not measured nodes are represented by dotted boxes, the model inputs are green, and intervention points are marked by an image of a drug

capsule.

(E) p-ERK signal over an EGF stimulation time course for 184A1 cells (left) and MDA-MB-157 cells (right) under the indicated conditions. The ratios of median

signal to signal at time point zero are plotted. Error bars are standard errors of themedian of single cells. The schematics in each plot show excerpts from the cell-

line-specific signaling model, represented as in (D).

(F) p-AKTS473 signal over an EGF stimulation time course for T47D cells (left) and 184A1 cells (right) under the indicated conditions. The ratios of median signal to

that at time point zero are plotted. Error bars are the standard errors of the median of single cells. The schematics show relevant excerpts from the cell-line-

specific signaling model, depicted as in (D).
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The average network across all cell lines, although not infor-

mative about cell-line heterogeneity, provides a compact view

of how breast cancer cells process information (Figure 3D).

The most active pathways (as assessed by phosphorylation

levels) have large signal transmission parameters. The highest

k was for the GSK3b$PIP3 edge (mean 3.14); this connection

was one of the most consistently active across cell lines as it

had the smallest coefficient of variation (CV = 67%, Figure S3D).

Other very active connections were PI3K$PIP3, EGF$EGFR,

AKT$MEKS221, PIP3$AKTS473, p38$STAT1, ERK$MKK3, and

ERK$MKK6. Furthermore, under the studied conditions, the acti-

vation of p38, S6, and CREB occurred mostly independently

from their known activators MKK3, MKK6, and p90RSK
406 Cell Systems 12, 401–418, May 19, 2021
(Figure 3D), respectively (Remy et al., 2010; Roux et al., 2007;

Xing et al., 1996).

The node-specific speed parameter t is an indicator of reac-

tion dynamics. Among the nodes with rapid dynamics in most

cell lines were EGFR, PI3K, PIP3, PAK, and PKC (Figure 3D). In

contrast, SMAD2, SMAD3, AMPKa, the STATs, SRC, MKK3,

MKK6, and p53 nodes generally had slow dynamics (Figure 3D).

The parameter t is highly cell line dependent: The mean CV is

164%. The most conserved t was that for the PI3K with a CV

of 103% (Figure S3D). The parameters weakly correlated across

cell lines (Pearson’s correlation, r = 0.17, Figure S3E), reflecting

the heterogeneous signaling landscape. Models of some cell

lines were more correlated, indicative of quite similar dynamics



A

B C

D

(legend on next page)
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(r = 0.61 for HCC1428 and MDA-MB-362 cells), whereas others

were very different (r =�0.15 for HCC1599 and EFM-192A cells,

Figure S3E).

We next investigated the differences in signaling behavior be-

tween the luminal and basal cell lines, since this separation is

well established and has clinical consequences. In accordance

with the literature (De Andrade et al., 2016), we found higher

EGFR expression (Figure S1F) and increased EGFR activation

(SERUM$EGFR) in basal compared with luminal cell lines (Fig-

ure S4). STAT1 activation (p38$STAT1) was higher in luminal

cell lines than in basal lines, as previously reported (Choi et al.,

2013). Both p38 and ERK signaling were overall higher in luminal

cell lines, although we noted overall higher activity in the PI3K

pathway in basal cell lines. Although this was unexpected, it

might be due to the known higher baseline activation of PI3K

signaling in luminal cell lines, and hence a lower response to

EGF or serum stimulus, which are captured as relative responses

in our networks.

Since MEK is a clinical target of many drugs and MEK-inde-

pendent ERK activation is a known resistance mechanism (Gri-

maldi et al., 2017; Kim and Giaccone, 2018; Lun et al., 2019;

Simard et al., 2015), we examined MEK pathway activity. This

pathway was active in most cell lines, but not in all. For example,

in 184A1 cells, ERK activation was mostly MEK dependent,

whereas in MDA-MB-157 cells it was mostly FAK dependent

(Figure 3E). Our data are in line with previous reports that show

that MDA-MB-157 cells are relatively resistant to BRAF-targeted

drugs (PLX-4720 and dabrafenib) in comparison with the other

cell lines (Picco et al., 2019; Yang et al., 2013). Cell-line-specific

differences were also observed in the generally active PI3K

pathway: In T47D cells, the phosphorylation of AKTS473 de-

pended strongly on PI3K, whereas in 184A1 cells the depen-

dency was less pronounced (Figure 3F). This is consistent with

the fact that T47D cells are sensitive to PI3K inhibition (Picco

et al., 2019; Yang et al., 2013). These cell-line-specific differ-

ences could be indicative of opportunities for intervention or pa-

tient stratification.

Prediction of drug sensitivity using dynamic predictors
Weused theGenomics ofDrugSensitivity inCancer (GDSC) data-

set,which includes IC50 values for 334drugs in48of thecell lines in

our panel (Picco et al., 2019; Yang et al., 2013), to assess whether

our dynamic models accurately predicted drug sensitivity. We

usedmachine learning topredict the IC50 values using either static

or dynamic predictors (Figure 4A). The static predictors,
Figure 4. Prediction of drug sensitivity using dynamic predictors.

(A) Computational approach to predict drug sensitivity and identify predictive fea

(B) Upper: sensitivities that are predicted with significant accuracy by at least one

hypothesis correction for the predicted drug measurements, n = 409) in rows vers

static (stimulation time zero) and dynamic predictors, shown separately. The bub

significant accuracy (for 46 combinations of treatment and time). The bubble siz

circumference is light gray, sensitivity was not accurately predicted. Drugs are a

pathways are marked with a colored box and p values are shown at top right (*p%

drug names give the version of the GDSC screen, if ambiguous. Lower: number

(C) Performance score plotted against the significance for predictions using the R

target pathways. Thresholds for significance are indicated by dashed lines (FDR

(D) Plots of measured and predicted IC50 values for the cell lines for which dat

predicted by the edge flux at 7-min stimulation in presence of the PKC inhibitor. R

error bars represent the standard deviation from the 5-fold cross-validation.
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describing the steady state and acquired in absence of perturba-

tion, includedproteinabundancemeasurements (log2 foldchange

to the normal), RNA-seq data, and the non-linear logic-based

model described in the previous section, parametrized by the t

and k model parameters. Since the t and k parameters of the

cell-line-specific logic signaling network models are time and

treatment independent, theseparametersdonotprovidedirect in-

formation on which pathways are active in specific conditions or

on the covariance over time and are thus considered as static.

The dynamic predictors, describing the perturbed state, include

46 interdependent matrices, one for each individual combination

of treatment and time point (Table S2), and include the median

marker expression, the variability of marker expression at the sin-

gle-cell level, and the edge flux. The edge flux represents the ac-

tivity transferred between a node pair, similar to a metabolic flux,

and capture the information transfer through the network and ulti-

mately is important in defining a specific cellular state. Edge flux

was computed from themodel parameters (t and k). For example,

in a kinase cascade A->B->C, the edge flux betweenA andB rep-

resents the increased activity per unit time of B caused by A. The

edgefluxdependson theactivity ofA (at time t) andon thestrength

of the edge (k). Edge flux represents activity rather thanphosphor-

ylation even in the case of a kinase cascade, since phosphoryla-

tion of a site may sometimes inhibit the activity of the protein as

GSK3bS9 phosphorylation (Stambolic and Woodgett, 1994). The

activity of a node is relative (1means fully active and0means inac-

tive) and the edge flux also has a valuebetween0 and 1 (seeSTAR

Methods).

To predict drug sensitivity, we employed the Macau algorithm

(Simm et al., 2017; Yang et al., 2018) (Figure 4A). We defined as a

performance score the Pearson’s correlation between predicted

and measured IC50 (in a cross-validation scheme where pre-

dicted cell lines are not used for training) and identified signifi-

cantly predicted drug sensitivity by requiring a false discovery

rate (FDR) of less than 15% and a performance score greater

than 0.3 as visualized on the volcano plot (Figures 4B and 4C).

Based on these criteria, RNA levels (Marcotte et al., 2016)

were predictive for the cell line sensitivity to 149 drugs (45% of

all drugs tested). Variability of marker expression at the single-

cell level, the edge flux, and median marker expression accu-

rately predicted only 19, 9, and 6 drug sensitivities (Figure 4B).

Use of protein abundance data, model parameters (t, k), or an

RNA-seq dataset reduced to 34 dimensions with sparse prin-

cipal component analysis (Erichson et al., 2020) predicted no

sensitivities accurately (Figures 4B and S5A and data not
tures.

dynamic predictor are shown (FDR 15% and performance score > 0.3, multiple

us the predictors in columns. Cellular variability and median were used as both

ble color indicates the number of times the drug sensitivity was predicted with

e is proportional to the performance score of the best predictor. If the bubble

rranged by their target pathways (key to the far right); significantly predicted

0.05, **p% 0.01, ***p% 0.001; Fisher’s exact test). Parentheses following the

of accurately predicted drugs per predictor is reported as a bar plot.

NA-seq (top) and edge flux (bottom) predictors. Color code indicates putative

15% and performance score > 0.3).

a are available from the GDSC dataset. Left: ipatasertib sensitivity was best

ight: pictilisib sensitivity was not significantly predicted with RNA-seq data. The
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shown). As expected, larger IC50 ranges and less missing data

yielded more significant predictions (Figure S5B).

Whereas RNA-seq data accurately predicted sensitivities of

more cell lines to drugs than other static inputs, there was no

enrichment for drugs targeting specific pathways (Figure 4C).

In contrast, the drug sensitivities accurately predicted by the dy-

namic predictors (edge flux, cellular variability, and median

marker expression) were significantly enriched for drugs target-

ing parts of the modeled network (Fisher’s exact test, Figure 4B).

The edge flux most accurately predicted sensitivities of cell lines

to drugs targeting the PI3K-MTOR signaling pathway (Figure 4C).

For instance, sensitivities to ipatasertib and pictilisib were better

predicted by the edge flux than by the RNA-seq-based model,

and only the edge flux predicted sensitivities to pictilisib with sig-

nificant accuracy (Figures 4D and S5C). In contrast, cellular vari-

ability and median marker expression were the most accurate

predictors of sensitivities to drugs targeting the WNT and

EGFR signaling pathways, respectively (Figure 4B).

For the 46 interdependent edge flux matrices, we plotted how

many combinations of inhibitor treatment and time (i.e., condi-

tions) were predictive of drug sensitivity (Figure 4B). In general,

only a few conditions were predictive of sensitivity to a given

drug (median of 1 condition per drug, Figure S5A). The edge

flux was the most consistent predictor across conditions (me-

dian of 7 conditions per drug). For example, edge flux was a pre-

dictor of sensitivities to the AKT-targeting drugs ipatasertib and

afuresertib. The median marker expression and cellular vari-

ability were also predictive of sensitivity to some drugs across

conditions; however, these predictors were not accurate when

only the stimulation condition was considered, demonstrating

the importance of perturbation experiments (Figure S5A).

For different drugs, the predictors that were accurate differed.

Sensitivities to just two drugs (CP724714 andAZD7762) of the 33

significantly predicted by the dynamic predictors were accu-

rately predicted by two predictors (cellular variability andmedian

marker expression), showing that the predictors provide orthog-

onal information (Figure 4B). For ten drugs (AS601245, AZD6482,

DMOG, enzastaurin, fulvestrant, navitoclax, NU7441, pictilisib,

and taselisib), sensitivities were accurately predicted only by

the dynamic predictors. Importantly, the predictions recapitulate

distinct drug sensitivity patterns for specific drugs in basal and

luminal cell lines (Figure S5D). Thus, the characterization of the

signaling landscape improved drug sensitivity prediction of

selected kinase inhibitors.

Features affecting drug sensitivity predictions
We next identified the features, such as the median expression

of a phosphorylated protein, that are important for the drug

sensitivity prediction (Figure 4A). We extracted feature impor-

tance directly from the drug sensitivity models using a proced-

ure similar to that used to retrieve loadings for linear models.

We calculated an effect size per drug for each feature and

computed the significance of each effect size (Figure 4A). The

effect size is a measure of the contribution of a particular feature

to the accurate drug sensitivity prediction, and as such may be

useful for understanding drug sensitivity and resistance mecha-

nisms. We note that effect sizes as defined here are not clini-

cally interpretable. We defined features with positive effects

as those higher in resistant cell lines and not in sensitive
ones; features with negative effects were those higher in sensi-

tive but not resistant cell lines.

Features that significantly contributed to overall accuracy of

prediction of drug sensitivity and resistance (effect size > 0.01

or < �0.01 and 5% FDR, see STAR Methods) were identified

by averaging across all models for all drugs (Figures 5A and

S6A). The edge flux has more predictive features than other pre-

dictors (11 of the 15 most predictive features, Figure 5B). For

example, three of the edges connecting PKC to the signaling

network are among the 15 most predictive features, with the

edge from BTK to PKC being the most predictive feature. The

most predictive feature is the level of GAPDH. Whereas GAPDH

median levels were predictive of drug sensitivity, its cellular vari-

ability was predictive of drug resistance. The opposing effects of

median levels and cellular variability were also observed for other

proteins such as Ki-67, p-MKK4, and p-MEKS221 (Figures S6A

and S6B).

Next, we repeated the same analysis but instead of averaging

across all drugs we averaged across groups of drugs targeting

selected biological pathways (Figures 5C, S6C, and S6D). This

approach minimized contributions of off-target effects and pro-

vided insights into drug-class-specific effects. Most features

with a significant predictive effect were correlatedwith sensitivity

(e.g., BTK$PKC) or resistance (e.g., p38$MK2) across all drug

classes (Figures 5C, S6C, and S6D). We did, however, observe

drug-class-specific patterns in which certain features are predic-

tive only for drugs targeting a certain pathway (Figures 5C, S6C,

and S6D). We also identified features that are sometimes predic-

tive of sensitivity and sometimes of resistance, depending on the

targeted pathway. For example, the AKT,RAS$MEKS221 edge

flux (the parameter controlling MEK activation, which integrates

both the positive influence of RAS and the negative influence of

AKT) correlated with sensitivity to drugs targeting EGFR and

PI3K-MTOR signaling and resistance to drugs targeting ERK-

MAPK and IGF1R signaling (Figures 5C and 5D). Although not

predictive for overall drug sensitivity or resistance, p90RSK

correlated with sensitivity to drugs targeting several specific

pathways (Figures 5A, 5C, S6A, S6C, and S6D): its activation

through ERK (ERK$p90RSK) was predictive of sensitivity to

ERK-MAPK-pathway-targeted drugs, p90RSK$S6 of sensitivity

to drugs targeting EGFR signaling, and its cellular variability of

resistance to ERK-MAPK signaling drugs (Figures 5D and

S6E). In other examples, the cellular variability of p-STAT1 was

particularly predictive for a subset of drugs that target PI3K-

MTOR, and the median level of p-AMPKa was predictive of

sensitivity to PI3K-MTOR inhibition (Figures 5D, S6C, S6D, and

S6E). An interesting instance is the extent to which the cellular

variability of the proliferation marker Ki-67 predicted resistance

across drug classes (Figures 5D and S6E). Large Ki-67 variability

was predictive of sensitivity to EGFR signaling drugs. Notably,

cellular variability of Ki-67 was most predictive for drugs target-

ing DNA replication. This supports the ‘‘proliferation rate

paradox’’: that is, the finding that many chemosensitive human

cancers have low proliferation rates (Mitchison, 2012). The levels

of Ki-67 are predictive for sensitivity, but the predictive power is

smaller than that of the cellular variability (Figures S6B and S6E).

Additional identified trends include the dependence on the

source of activation (e.g., ERK, PI3K, and PKC, Figure 5A)

opposing effects of some features on closely related pathways
Cell Systems 12, 401–418, May 19, 2021 409
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Figure 5. Features that influence drug sensitivity predictions

(A) Significant effect size features (contributing to the accurate drug sensitivity prediction) of the cellular variability (nodes) and edge flux (edges) predictors are

represented on the signaling network. The colors represent the mean effect sizes over all conditions and drugs. The edge thicknesses are proportional to the

absolute values of the mean effect sizes (FDR 1%, see STAR Methods).

(B) Effect size distributions for the most predictive 16 features across the three dynamic predictors. The horizontal lines represent the medians and the 25% and

75%quantiles. The color of the distribution indicates the predictor. The arbitrary large effect size threshold (0.01) is indicated by the dashed line. *p% 0.05, **p%

0.01, ***p % 0.001.

(C) Mean pathway-specific effect size features of the edge flux with drugs binned according to the target pathway in rows and features shown in columns (FDR 5%).

Both the features and target pathwayswere hierarchically clustered.Mean effect sizes are indicated ona low-to-high color scale. For each class the lowest adjustedp

value of all side-by-side comparisons is indicated by the dot size and the box thickness. The group ‘‘other’’ contains all the drugs not falling into another group.

(D)Effect sizedistributions for four selected featuresshowingpathway-specific effects.The selectedpredictors and featuresare indicated ineachcase. Thesignificant

threshold of 0.01 minimum effect size is plotted as a dashed line. The horizontal lines indicate the median and the 25% and 75% quantiles. AKT,RAS$MEKS221

represents the parameter controlling MEK activation and it integrates both positive RAS and negative AKT influence. *p% 0.05, **p% 0.01, ***p% 0.001.
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Figure 6. Resistance and sensitivity to lapatinib and genomic variants associated with drug sensitivity

(A) Significant effect-size features of the median (nodes) and edge flux (edges) predictors represented on the signaling network for lapatinib (FDR 15% and effect

size > 0.01 or <�0.01). The effect sizes are indicated using color (nodes and edges), and the edge thicknesses are proportional to the absolute values of the effect

sizes. An image of a drug capsule highlights the putative drug target. In each case the conditions with the highest performance scores are plotted: PI3K inhibitor

60 min and stimulation time zero for medians and edge fluxes, respectively. The data in region labeled B are shown in that panel.

(B) Values for the edge flux p38$MK2 (at stimulation time zero) plotted against lapatinib IC50 for different cell lines (n = 42). Each data point represents a cell line.

(C) Upper: heatmap of the effect size of the selected signaling features (columns) and the six selected drugs (rows) for 48 cell lines. The drug’s target pathway and

predictors are overlaid. The effect sizes are indicated on a low-to-high color scale. The adjusted p value and effect size thresholds are indicated by the dot size

and the box thickness. Lower left: heatmap of the maximal difference in selected signaling features (columns) among genomic statuses (rows) in 64 and 61 cell

lines for filtered CNA and SNP, respectively. Both the signaling features and the genomic features were hierarchically clustered. SNP or CNA status is overlaid.

Only genomic features with at least one significant link resulting from the QTL analyses are reported, and the adjusted p values are indicated by the dot size and

the box thickness. Lower right: heatmap ofmaximal differences in IC50 values (–ln) for dasatinib, fulvestrant, lapatinib, pictilisib, taselisib, and uprosertib (columns)

among genomic statuses (rows) in 42 and 40 cell lines for CNAs and SNPs, respectively. The adjusted p value of theQTL analysis using the IC50 values directly and

using an ANOVA on the genomic features identified through the signaling are indicated by the dot size and the box thickness in green and black, respectively. In

(legend continued on next page)
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(e.g., ERK$p90RSK opposite effects on EGFR and ERK-MAPK

signaling, Figure 5D). In sum, these findings confirm the utility

of integrating dynamic perturbation data with mathematical

modeling and show how identical signaling features can be pre-

dictive of sensitivity and resistance depending on the context.

Resistance and sensitivity to PI3K and EGFR inhibition
Finally, we used the dynamic predictors to probemechanisms of

drug resistance and sensitivity. We focused on inhibition of two

clinically relevant targets, EGFR and PI3K, considered essential

to basal and luminal breast cancers, respectively (Marcotte et al.,

2016). The median marker expression after treatment with the

PI3K inhibitor for 60 min predicted the sensitivities of cell lines

to the FDA-approved lapatinib, an inhibitor of EGFR and HER2

used in combination therapy for HER2-positive breast cancer

(Giampaglia et al., 2010), with significant accuracy (Figure 4B).

We identified the features significantly predictive of lapatinib

resistance or sensitivity for all dynamic predictors, since they

all performed quite well in predicting lapatinib sensitivity (Figures

4B and S5A). Consistent with previous reports (Campbell et al.,

2004; Zhang et al., 2011), alternative activation of PI3K

(SERUM$PI3K, in contrast to EGF-dependent PI3K activation

via EGFR$PI3K and RAS$PI3K) and SRC correlated with lapati-

nib resistance, and strong EGFR/HER2 activity (SERUM$EGFR,

modeling the EGF-independent EGFR activation) correlated with

sensitivity (Figure 6A). Strikingly, the median expression levels of

one of the two phosphorylated forms of AKT correlated with la-

patinib resistance and the other with sensitivity. The variabilities

of p-STAT5 and p-STAT3weremore predictive of sensitivity than

were the median levels of expression (Figures 6A and S6F); me-

dian expression of the phosphorylated forms of STAT5 and

STAT3 were previously reported to be predictive of lapatinib,

canertinib, and afatinib sensitivity (Gschwantler-Kaulich et al.,

2016). Interestingly, p-MK2 median expression correlated with

lapatinib sensitivity, and the p38$MK2 and ERK$MK2 edge

fluxes strongly correlatedwith resistance and sensitivity, respec-

tively (Figures 6A and 6B). These results are indicative of the

importance of MK2 in the response of cells to lapatinib.

The edge flux was the only predictor that accurately identified

cell lines sensitive to pictilisib, a pan-PI3K inhibitor (Figures 4B,

4D, and S5A). S6K activation by mTOR (mTOR$S6K),

activation of STAT1 and STAT3 (EGFR$STAT3, SRC$STAT3,

and EGFR$STAT1), and cellular variability of MKK4, p90RSK,

andMKK3/6were pictisilib sensitivity predictors, whereas induc-

tion of the oncogene-induced senescence pathway (p38$p53)

was predictive of resistance (Figure S6G). ERK pathway activa-

tion and cellular variability of the phosphorylated STATs were

predictive of sensitivity to pictilisib (Figure S6G), PI3K-MTOR in-

hibitors (Figures 5C, S6C, and S6D), and the PI3K-inhibitor tase-
both the lower left and right heatmaps, the maximal differences are indicated on

regions labeled B, D, E, and F are shown in those panels.

(D) Values of the edge flux p38$MK2 (at stimulation time zero) plotted against CN

dashed line indicates the arbitrary threshold for high activity, boxes indicate the 25

inter-quantile range). Each data point represents a cell line, and the color intensity i

followed by Tukey honest significant differences computation: *p % 0.3, **p % 0

(E) IC50 values (–ln) for lapatinib plotted against CNA status of A1CF and ASAH2

dashed line indicates the arbitrary threshold for sensitivity (1).

(F) IC50 values (–ln) for lapatinib plotted against SNP status of rs2305037 (CBLB g

dashed line indicates the arbitrary threshold for sensitivity (1) and that colors ind
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lisib (Figure S7A). Pictilisib-specific effects were also observed:

cellular variabilities of p-p53 were predictive of sensitivity to pic-

tilisib but not to taselisib or the PI3K-MTOR drug group and

EGFR$PKC was only prominently predictive of resistance to pic-

tilisib (Figures 5C, S6C, S6D, S6G, and S7A). Off-target effects or

differences in targets or mechanism could explain such drug-

specific characteristics, and these must be considered when

designing clinical trials.

Using dynamic predictors, we were also able to predict sensi-

tivities of drugs that do not directly target a protein present in our

network, likely because these drugs indirectly affect the network.

For example, cellular variability was the only predictor of

response to fulvestrant (Figure 4B), a selective estrogen receptor

degrader used to treat hormone-receptor-positive breast cancer

(Nathan and Schmid, 2017). Estrogen signaling interplays with

both the ERK-MAPK and the PI3K-MTOR signaling pathways

(Tanos et al., 2012), which were monitored by the antibodies in

our mass cytometry panel. An analysis of feature importance re-

vealed that EGFR, SRC, and ERK play defining roles in the

response to this drug (Figure S7B). Hence, our predictors can

be used even when the abundances of direct targets are not

quantified, as long as they are regulated through the signaling

pathways that we model.

Signaling features identify genomic variants associated
with drug sensitivity
The identification of genomic aberrations that correlate with drug

response is an essential step toward personalized medicine.

Identification of these aberrations is challenging, and the effect

sizes often limited (Garnett et al., 2012; Menden et al., 2018).

Indeed, a quantitative trait locus (QTL) analysis (Clément-Ziza

et al., 2014) of sensitivities to dasatinib, fulvestrant, lapatinib,

pictilisib, taselisib, and uprosertib identified only one CNA

(TCF3 for dasatinib) and one SNP (FNBP1 (rs1023000) for upro-

sertib) associated with drug sensitivity (Figure 6C, green high-

lights on the lower right heatmap), in spite of restriction of the

search space to the COSMIC list of oncogenes (736 SNPs and

518 CNAs in 706 oncogenes) (Sondka et al., 2018) and a 30%

FDR threshold (Eduati et al., 2017). We speculated that we could

take advantage of our signaling models to improve QTL perfor-

mance. We ran QTL analyses on 46 signaling features predictive

of sensitivity to dasatinib, fulvestrant, lapatinib, pictilisib, taseli-

sib, and uprosertib (Table S7; Figure 6C). The analysis revealed

associations between signaling features and 55 SNPs and 38

CNAs (Figure 6C). For instance, A1CF/ASAH2B CNA status

was predictive of the lapatinib-predictive p38$MK2 edge flux

(Figures 6C and 6D) and the rs2305037 SNP (in the CBLB

gene) of p-STAT3 cellular variability (Figure S7C). Notably,

although we did not identify any genomic aberrations linked to
a low-to-high color scale capped at two and three, respectively. The data in

A status of A1CF/ASAH2B (n = 64 cell lines). Thick lines indicate medians, the

% and 75%quantiles, and whiskers extend between the median and ± (1.583

ndicates the amplification status on a low-to-high scale (blue-gray-red, ANOVA

.15, ***p % 0.05).

B (n = 42 cell lines). Plots and statistical analysis are as in (D), except that the

ene, n = 40 cell lines). Plots and statistical analysis are as in (D), except that the

icate the SNP status.
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lapatinib sensitivity directly, inclusion of signaling features re-

vealed that cell lines with amplification in A1CF/ASAH2B or

those homozygous for rs2305037 were generally more resistant

to lapatinib (Figures 6E and 6F). Furthermore, we identified ten

genomic aberrations linked to the median expression levels of

p-MKK3 and p-MKK6, which were, in turn, predictive of lapatinib

resistance (Figure 6A). Two of these genomic aberrations (EP330

and PPM1D) showed potential to differentiate the lapatinib

response (Figure S7D). CNAs ofPRDM2 andMACC1were linked

to fulvestrant sensitivity through their link to p-MKK4 median

expression and the MSK$NF-kB edge flux, respectively (Fig-

ure S7E). Additionally, the ERK$MK2 edge flux was associated

with the SNP rs697221 that causes a missense change in the

sequence of the gene DDIT3. ERK$MK2 was predictive of sensi-

tivity to all three PI3K targeted inhibitors studied (pictilisib, upro-

seritib, and taselisib). Overall, through our characterization of

signaling, we identified 21 genomic aberrations predictive of

drug sensitivity (none were identified for dasatinib, Figure 6C,

black highlights on the lower right heatmap). Thus, a QTL anal-

ysis on the signaling phenotype can identify gene variants pre-

dictive of drug sensitivity even when genetic effects on drug

sensitivity are too weak to be identified directly.

Since breast tumors are routinely clinically characterized for

gene variants, we went on to validate the drug sensitivity associ-

ations with gene variants found through our modeling approach.

We tested genomic associations with drug sensitivity in patient-

derived tumor xenograft (PDTX) models of breast cancer, since

these mouse models closely mimic characteristics of patient tu-

mors (Bruna et al., 2016). We had overlapping data between our

cell lines and PDTX models for pictilisib, taselisib, and lapatinib,

including 32 PDTXmousemodels with corresponding CNA infor-

mation. After filtering for specific relationships coming from our

signaling models (i.e., drug sensitivity for amplification versus

loss or drug sensitivity for amplification versus wild type) with

at least eight observations in each dataset, we found that six

of the eight relationships had significant copy-number-depen-

dent differences in drug sensitivity in the cell line dataset. The

observed trends were in agreement between the in vitro (cell

lines) and in vivo (PDTX models) in 87% of cases (Figures 7A–

7E). The strongest trends (at a p value cutoff of either 0.2 or

0.5) found in the PDTX dataset were in agreement with our cell

line data (n = 2 and 3, respectively). This strong agreement is

notable considering the substantial biological variability between

the cell line and PDTX models. Although the small number of

comparisons, due to the limited availability of PDTX data, limits

the generalizability of our findings, these results nevertheless

strongly suggest the in vivo validity of the genotype-drug sensi-

tivity associations identified using our signaling model. In order

to probe whether such similarities in trends could have been ob-

tained by chance, and to further assess whether our signaling

models add value to the genotype-drug sensitivity association

analysis, we conducted the same comparison between in vitro

and in vivo systems for the top CNA-drug sensitivity associations

that had been predicted by direct QTL. After applying the same

filters, for the 30 relationships we could compare, the mouse

PDTX data agreed with the trends in the in vitro data in only

47% of cases (Figures 7F and S7F–S7H). Further, only one of

three strongest effects (p value < 0.5) in the in vivo data agreed

with the in vitro trends. Thus, the agreement is weaker than in
our model-derived associations. These results further

strengthen our observations that our signaling model identifies

biologically robust CNA-drug sensitivity associations.

DISCUSSION

We usedmass cytometry to interrogate signaling in a panel of 62

breast cancer cell lines and five cell lines generated from normal

tissue, to generate the largest multiplex single-cell signaling

dataset to date. Although clustering of proteomic data from un-

stimulated cells accurately separated luminal and basal pheno-

types, there was, unexpectedly, no clear separation between

luminal and basal phenotypes upon clustering based on

signaling parameters. This may reflect the targeted nature of

our measurements or may indicate that there is actually a contin-

uum of phenotypes rather than a clear luminal/basal separation.

The logic-based signaling network models condense the

signaling features enabling visualization and prediction of drug

sensitivity/resistance. We were surprised to find that the model

parameters did not predict the responses to drugs, whereas

the edge flux did, in a manner mostly independent of the specific

condition. This could be because the edge flux maintains the

signaling correlation structure and integrates information about

all conditions, such that its information content does not change

with time or treatment as drastically as for the other predictors. It

was not surprising that the edge flux was not highly predictive for

all drugs, since most drugs target processes not monitored by

our antibody panel. The predictive accuracy of the edge flux

was similar to or better than RNA-seq, despite the almost 300-

fold difference in the number of fitted features.

Using the edge flux, we were able to break down complex re-

lationships between signaling and drug sensitivity. We showed

that PKC, known to have complex functions in cancer progres-

sion (Garg et al., 2014), is among the most important hubs, gov-

erning both sensitivity and resistance to many drugs. PKC inputs

(SERUM$PKC, EGFR$PKC, SRC$PKC, and BTK$SRC) were

quite variable across cell lines, but downstream activity, as as-

sessed by model parameters, was similar across cell lines. We

also observed intriguing differential effects of ERK: its tumor sup-

pressor activity wasMEKdependent and involved 4EBP1 activa-

tion, whereas the tumor-promoting activity was FAK dependent

and involved MSK1 and MSK2 activation.

Features correlating with sensitivity have potential in patient

stratification. For example, cellular variability of p-STAT5 and

p-STAT3 were predictive of lapatinib sensitivity and could there-

fore be used as a stratification marker. This is consistent with

previous reports that inhibition of phosphorylation of JNK and

STAT5 by lapatinib was observed only in sensitive cell lines

(Gschwantler-Kaulich et al., 2016). PI3K mutational status is

often not predictive of response to PI3K-targeted drugs (Krop

et al., 2016; Schmid et al., 2016; Schöffski et al., 2018). The

edge flux and the median marker expression in our data suggest

important roles of p-MKK4 and p-STAT3 in defining pictilisib

sensitivity; both have potential as markers for improving patient

stratification.

Features correlating with resistance could aid in selection of

efficacious combination therapies. Information on variability at

the single-cell level allowed us to predict susceptibility to navito-

clax, fulvestrant, NU7441, and AS601245, drugs for which other
Cell Systems 12, 401–418, May 19, 2021 413
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Figure 7. Trends in drug sensitivity-CNA associations in cell line and PDTX data

(A) Trends in drug sensitivity-CNA associations predicted by our signaling model in cell line data and PDTX mice. Strong trends are highlighted in green and bold

green based on a p values % 0.5 and % 0.2 (ANOVA followed by Tukey honest significant differences computation).

(B) IC50 values (–ln) for lapatinib plotted against CNA status of ASXL1 (n = 42 cell lines and 11 PDTX mouse). The dashed line indicates the arbitrary threshold for

sensitivity (1). In vitro data (cell lines) are on the left and in vivo data (PDTX) on the right. Thick lines indicate medians, boxes indicate the 25% and 75% quantiles,

whiskers extend between the median and ± (1.583 inter-quantile range). Each data point represents a cell line or mouse model, and the color intensity indicates

the amplification status on a low-to-high scale (blue-gray-red, ANOVA: *p % 0.5, **p % 0.3, ***p % 0.05).

(C) IC50 values (–ln) for taselisib plotted against CNA status of FOXO3. Plots and statistical analysis are as in (B).

(D) IC50 values (–ln) for pictilisib plotted against CNA status of FOXO3. Plots and statistical analysis are as in (B).

(E) IC50 values (–ln) for taselisib plotted against CNA status of ECTL2L. Plots and statistical analysis are as in (B).

(F) Trends in drug sensitivity-CNA associations predicted by direct QTL in cell line data and PDTX mice. The top-ranking CNA are reported here after filtering for

those comparisons with at least four measurements in each experimental system. Plots and statistical analysis are as in (A).
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predictors were not informative. We observed a correlation

between fulvestrant resistance and high EGFR- and RAS-inde-

pendent activation of PI3K (SERUM$PI3K), which suggests ful-

vestrant with a PI3K inhibitor as a potential combination therapy

for fulvestrant resistance. Indeed, fulvestrant, which is used in

endocrine therapy, was recently shown to be effective in post-

menopausal women with endocrine-resistant, hormone-recep-

tor-positive, and HER2-negative advanced breast cancer when

used in combination with a PI3K inhibitor (Baselga et al., 2017).

Furthermore, the correlation of fulvestrant resistance to p-p38

and p-SRC cellular variability suggests that a combination of
414 Cell Systems 12, 401–418, May 19, 2021
fulvestrant with either a p38 or a SRC inhibitor should be effective

in treatment of ER-positive breast cancer. For lapatinib, the me-

dian expression of p-SRC was predictive of resistance; there-

fore, it would be interesting to test the effects of a combination

therapy of lapatinib with a SRC inhibitor.

Our study thus makes a case for further expanding drug sensi-

tivity predictors with single-cell measurements, and we expect

that a comprehensive signaling network model, which includes

more markers covering more signaling pathways, more cell lines,

and integrates signaling single-cell heterogeneity, will further

increase drug sensitivity prediction accuracy. However,
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measurements of patient-derived cellswould bepractically unfea-

sible, and translation of this knowledge to scalable and robust bio-

markers such as genomic signatures is needed before this type of

modeling will impact patient care. As a proof of concept, we

identifiedgenomic aberrations that correlatedwithour drug-sensi-

tivity-predictive signaling features.We identified the known lapati-

nib-sensitivity-predictive EP300 CNA (Mahmud et al., 2019) and

the interesting PPM1D CNA, which encodes a serine threonine

phosphatase amplified in approximately 8% of breast cancers

(Lambros et al., 2010) and is a defining feature of IntClust1 breast

cancer, an aggressive ER+ subtypewith higher risk for late relapse

(Curtis et al., 2012; Rueda et al., 2019). Furthermore, the lapatinib-

predictive p38$MK2 edge flux linked amplification of the breast

cancer oncogeneA1CF (Yan et al., 2017), and ofASAH2B to lapa-

tinib resistance. Interestingly, the long non-codingASAH2B-2was

recently shown to promote breast cancer cell growth via the PI3K

pathway (Li et al., 2018), supporting our findings. Furthermore, the

fulvestrant-sensitivity-predictive MSK$NF-kB edge flux could be

linked to the breast-cancer-proposed biomarker MACC1 (Huang

et al., 2013). The same genomic aberrations were not directly pre-

dictive of drug sensitivity, showing the importance of our charac-

terization of cellular signaling. Our findings are consistent with

the notion that multiple, potentially patient-specific mutations

converge on common pathways. Thus, while individual effects of

mutationsmay be too weak to yield statistically significant associ-

ations, multiple mutations may modify the same pathways, which

enabled us to detect pathway—drug sensitivity associations.

In summary, we have used single-cell dynamic measurements

of cellular signaling responses to generate mechanistic signaling

network models that were predictive of breast cancer cell line

resistance and sensitivity to PI3K-MTOR and other drugs. We

used our models to identify genomic variants predictive of drug

sensitivity. We envision that a similar approach will eventually

deliver robust drug-patient matches.
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Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons,

J., Centeno, E., Garcı́a-Garcı́a, J., Sanz, F., and Furlong, L.I. (2017). DisGeNET:

a comprehensive platform integrating information on human disease-associ-

ated genes and variants. Nucleic Acids Res. 45, D833–D839.

Pozniak, Y., Balint-Lahat, N., Rudolph, J.D., Lindskog, C., Katzir, R., Avivi, C.,

Pontén, F., Ruppin, E., Barshack, I., and Geiger, T. (2016). System-wide clin-

ical proteomics of breast cancer reveals global remodeling of tissue homeo-

stasis. Cell Syst. 2, 172–184.

Reiter, L., Rinner, O., Picotti, P., H€uttenhain, R., Beck, M., Brusniak, M.Y.,

Hengartner, M.O., and Aebersold, R. (2011). mProphet: automated data pro-

cessing and statistical validation for large-scale SRM experiments. Nat.

Methods 8, 430–435.

Remy, G., Risco, A.M., Iñesta-Vaquera, F.A., González-Terán, B., Sabio, G.,
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Antibodies

p-MAP2K3 (Thr222), Polyclonal Assay Biotech Cat# A8139; RRID: AB_10683086

Ki-67, Clone B56 BD Biosciences Cat# 550609; RRID: AB_393778

cleaved Caspase3, Clone C92-605 BD Biosciences Cat# 550821; RRID: AB_393906

p-AKT (Thr308), Clone D25E6 Cell Signaling Technologies Cat# 13038S; RRID: AB_2629447

p-CREB/ATF1 (Ser133 of CREB/Ser63 of

ATF1),

Clone J151-21

BD Biosciences Cat# 558436; RRID: AB_647204

p-STAT5 (Tyr694), Clone 47/Stat5 BD Biosciences Cat# 612567; RRID: AB_399858

p-SRC (Tyr418), Clone SC1T2M3 eBioscience Cat# 14-9034-82; RRID: AB_2572916

p-FAK (Tyr397), Polyclonal Cell Signaling Technology Cat# 3283; RRID: AB_2173659

p-MEK1/2 (Ser221), Clone 166F8 Cell Signaling Technology Cat# 2338; RRID: AB_490903

p-MAPKAPK2 (Thr334), Clone 27B7 Cell Signaling Technology Cat# 3007; RRID: AB_490936

p-p70S6K (Thr389), Clone 1A5 Cell Signaling Technology Cat# 9206; RRID: AB_2285392

p-MKK4 (Ser257/Thr261), Clone C36C11 Cell Signaling Technology Cat# 4514; RRID: AB_2140946

p-STAT1 (Ser727), Polyclonal Cell Signaling Technology Cat# 9177; RRID: AB_2197983

p-p53 (Ser15), Clone 16G8 Cell Signaling Technology Cat# 4030; RRID: AB_10694347

p-NFkB (Ser529), Clone K10-895.12.50 BD Biosciences Cat# 558393; RRID: AB_647284

p-p38 (Thr180/Tyr182), Clone 36/p38 BD Biosciences Cat# 612289; RRID: AB_399606

p-AMPKa (Thr172), Clone 40H9 Cell Signaling Technology Cat# 5256; RRID: AB_10705605

p-AKT (Ser473), Clone D9E Cell Signaling Technology Cat# 5012; RRID: AB_2224726

p-ERK1/2 (Thr202/Tyr204), Clone 20A BD Biosciences Cat# 612359; RRID: AB_399648

p-MARCKS (Ser167/170), Clone D13E4 Cell Signaling Technology Cat# 8722; RRID: AB_10999091

cyclin B1, Clone GNS-11 BD Biosciences Cat# 554178; RRID: AB_395289

p-GSK3b (Ser9), Clone D85E12 Cell Signaling Technology Cat# 5558; RRID: AB_10013750

GAPDH, Clone 6C5 Thermo Fisher Scientific Cat# AM4300; RRID: AB_2536381

p-MKK3/6 (Ser189 of MKK3/Ser207 of

MKK6), Clone D8E9

Cell Signaling Technology Cat# 12280

p-PDK1 (Ser241), Clone J66-653.44.22 BD Biosciences Cat# 558395; RRID: AB_647291

p-BTK/ITK (Tyr551 of BTK/Tyr551 of ITK),

Clone 24a/BTK

BD Biosciences Cat# 558034; RRID: AB_2067823

p-p90RSK (Ser380), Clone D5D8 Cell Signaling Technology Cat# 12032

p-SMAD2/3 (Ser465/467 of SMAD2/

Ser423/425 of SMAD3), Clone D27F4

Cell Signaling Technology Cat# 8828; RRID: AB_2631089

b-catenin (Non-phospho Ser33/37/Thr41),

Clone D13A1

Cell Signaling Technology Cat# 8814; RRID: AB_11127203

p-STAT3 (Tyr705), Clone 4/P-STAT3 BD Biosciences Cat# 612356; RRID: AB_399645

p-JNK (Thr183/Tyr185), Clone G9 Cell Signaling Technology Cat# 9255; RRID: AB_2307321

p-HH3 (Ser28), Clone HTA28 BioLegend Cat# 641002; RRID: AB_1227659

p-S6 (Ser235/Ser236), Clone N7-548 BD Biosciences Custom made

cleaved PARP, Clone F21-852 BD Biosciences Cat# 552596; RRID: AB_394437

p-RB (Ser807/811), Clone D20B12 Cell Signaling Technology Cat# 8516; RRID: AB_11178658

p-4EBP1 (Thr37/46), Clone 236B4 Cell Signaling Technology Cat# 2855; RRID: AB_560835

Chemicals, Peptides, and Recombinant Proteins

Paraformaldehyde Electron Microscopy Sciences Cat#15710

Iridium Fluidigm Cat#201192A
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Lanthanide (III) metal isotopes as

chloride salts

Fluidigm N/A

Recombinant Murine EGF Peprotech Cat#315-09

Sodium deoxycholate Sigma-Aldrich Cat#D6750; CAS #302-95-4

TryPLE SELECT 10x Life Technologies Cat#50-591-353

TCEP (tris(2-carboxyethyl)phosphine

hydrochloride)

Pierce Cat#20490; CAS#51805-45-9

Iodoacetamide Sigma-Aldrich Cat#I1149; CAS#144-48-9

Ammonium bicarbonate Sigma-Aldrich Cat#09830; CAS#1066-33-7

Lysyl endopeptidase Wako Pure Chemical Industries Cat#125-05061

GDC-0941 LC Laboratories Cat#G-9252

Rapamycin LC Laboratories Cat#R-5000

Lapatinib LC Laboratories Cat#L-4899

Enzastaurin LC Laboratories Cat#E-4506

CI-1040 Selleckchem Cat#S1020

Formic acid 98-100% AppliChem Cat#A38580500

Critical Commercial Assays

MaxPAR X8 Multimetal labeling kit Fluidigm Cat# 201300

BCA protein assay Pierce Cat#23228

CellTiter-Glo 3D Cell Viability assay Promega Cat#G9681

HRM calibration kit Biognosys AG Cat#Ki-3003

Deposited Data

Integrated raw data and preprocessed data This paper; and Mendeley data and Sage https://doi.org/10.17632/gvh2vtg86r.1 and

https://doi.org/10.17632/gvh2vtg86r.1

Mass spectrometry proteomics data This paper; and ProteomeXchange

Consortium

PRIDE: PXD017199

Breast carcinoma-related genes Piñero et al., 2017 http://www.disgenet.org

Drug sensitivity data Simm et al., 2017; Yang et al., 2013 https://www.cancerrxgene.org/

RNA-seq data Marcotte et al., 2016 Gene Expression Omnibus (GEO):

GSE73526 and GSE74702

Original code GitHub https://github.com/saezlab/

breastCancerCytof

Code used for the generation of the figures GitHub https://github.com/BodenmillerGroup/

Signaling-Network-Landscape-of-Breast-

Cancer

Experimental Models: Cell Lines

184A1 Benjamin G. Neel Lab (Marcotte et al., 2016) ATCC CRL-8798

184B5 ATCC ATCC CRL-8799

AU-565 ATCC ATCC CRL-2351

BT-20 ATCC ATCC HTB-19

BT-474 ATCC ATCC HTB-20

BT-483 ATCC ATCC HTB-121

BT-549 ATCC ATCC HTB-122

CAL120 DSMZ ACC 459

CAL148 DSMZ ACC 460

CAL-51 Benjamin G. Neel Lab (Marcotte et al., 2016) ACC-302

CAL85-1 DSMZ ACC 440

CAMA-1 ATCC ATCC HTB-21

DU4475 ATCC ATCC HTB-123

EFM-19 Benjamin G. Neel Lab (Marcotte et al., 2016) ACC 231

EFM-192A DSMZ ACC 258

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

EVSA-T DSMZ ACC 433

HBL100 Joe W. Gray Lab (Heiser et al., 2012) N/A

HCC1143 DSMZ ACC 517

HCC1187 ATCC ATCC CRL-2322

HCC1395 ATCC ATCC CRL-2324

HCC1419 ATCC ATCC CRL-2326

HCC1428 ATCC ATCC CRL-2327

HCC1500 ATCC ATCC CRL-2329

HCC1569 ATCC ATCC CRL-2330

HCC1599 ATCC ATCC CRL-2331

HCC1806 ATCC ATCC CRL-2335

HCC1937 ATCC ATCC CRL-2336

HCC1954 ATCC ATCC CRL-2338

HCC202 ATCC ATCC CRL-2316

HCC2157 ATCC ATCC CRL-2340

HCC2185 Joe W. Gray Lab (Heiser et al., 2012) N/A

HCC2218 ATCC ATCC CRL-2343

HCC3153 Gray

HCC38 ATCC ATCC CRL-2314

HCC70 ATCC ATCC CRL-2315

HDQ-P1 DSMZ ACC 494

Hs 578T ATCC ATCC HTB-126

JIMT-1 DSMZ ACC 589

KPL-1 Benjamin G. Neel Lab (Marcotte et al., 2016) ACC 317

LY2 Joe W. Gray Lab (Heiser et al., 2012) N/A

MA-CLS-2 CLS 300271

MCF10A ATCC ATCC CRL-10317

MCF10F ATCC ATCC CRL-10318

MCF12A ATCC ATCC CRL-10782

MCF7 ATCC ATCC HTB-22

MDA-kb2 ATCC ATCC CRL-2713

MDA-MB-134-VI ATCC ATCC HTB-23

MDA-MB-157 ATCC ATCC HTB-24

MDA-MB-175-VII ATCC ATCC HTB-25

MDA-MB-231 ATCC ATCC HTB-26

MDA-MB-361 ATCC ATCC HTB-27

MDA-MB-415 ATCC ATCC HTB-128

MDA-MB-436 ATCC ATCC HTB-130

MDA-MB-453 ATCC ATCC HTB-131

MDA-MB-468 ATCC ATCC HTB-132

MFM-223 DSMZ ACC 422

MPE600 Joe W. Gray Lab (Heiser et al., 2012) N/A

MX1 CLS 300296

OCUB-M RIKEN RCB0881

SK-BR-3 ATCC ATCC HTB-30

T47D ATCC ATCC HTB-133

UACC3199 ATCC ATCC CRL-2983

UACC-812 ATCC ATCC CRL-1897

UACC-893 ATCC ATCC CRL-1902

ZR-75-1 ATCC ATCC CRL-1500

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

ZR-75-30 ATCC ATCC CRL-1504

ZR-75-B Joe W. Gray Lab (Heiser et al., 2012) N/A

184A1 Benjamin G. Neel Lab (Marcotte et al., 2016) ATCC CRL-8798

184B5 ATCC ATCC CRL-8799

AU-565 ATCC ATCC CRL-2351

BT-20 ATCC ATCC HTB-19

BT-474 ATCC ATCC HTB-20

Experimental Models: Organisms/Strains

NSG mice obtained from Charles Rivers (Bruna

et al., 2016)

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ

AB040, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

AB521M, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

AB551, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

VHIO244, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

VHIO179, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

VHIO124, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

VHIO098, Primary Carlos Caldas Lab (Bruna et al., 2016) N/A

VHIO093, Primary Carlos Caldas Lab (Bruna et al., 2016) N/A

STG335, Primary Carlos Caldas Lab (Bruna et al., 2016) N/A

STG331, Primary Carlos Caldas Lab (Bruna et al., 2016) N/A

STG321, Primary Carlos Caldas Lab (Bruna et al., 2016) N/A

STG316, Primary Carlos Caldas Lab (Bruna et al., 2016) N/A

STG282, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

STG282, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

STG201, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

STG195, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

STG143, Primary Carlos Caldas Lab (Bruna et al., 2016) N/A

STG139, Primary Carlos Caldas Lab (Bruna et al., 2016) N/A

IC007, Primary Carlos Caldas Lab (Bruna et al., 2016) N/A

HCI010, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

HCI009, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

HCI005, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

HCI001, Primary Carlos Caldas Lab (Bruna et al., 2016) N/A

CAMBMT1, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

AB636, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

AB630, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

AB582, Primary Carlos Caldas Lab (Bruna et al., 2016) N/A

AB559, Primary Carlos Caldas Lab (Bruna et al., 2016) N/A

AB555B, Metastatic Carlos Caldas Lab (Bruna et al., 2016) N/A

Software and Algorithms

Cytobank Cytobank https://www.cytobank.org/

Concatenation tool Cytobank https://support.cytobank.org/hc/en-us/

articles/206336147-FCS-file-

concatenation-tool

Normalizer Finck et al., 2013 https://github.com/nolanlab/bead-

normalization/releases

Single cell debarcoder Zunder et al., 2015 https://github.com/nolanlab/single-cell-

debarcoder

t-SNE Van Der Maaten and Hinton, 2008 https://github.com/jkrijthe/Rtsne

OmniPath T€urei et al., 2016 http://omnipathdb.org/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Spectronaut v. 11.0 Biognosys AG https://biognosys.com/

Proteome discoverer v. 2.2 ThermoFisher Scientific https://www.thermofisher.com/us/en/

home.html

RFQTL R package Michaelson et al., 2010 http://cellnet-sb.cecad.uni-koeln.de/

resources/qtl-mapping/

flowCore R package Bioconductor http://www.bioconductor.org/packages/

release/bioc/html/flowCore.html

MSstats R package Bioconductor https://www.bioconductor.org/packages/

release/bioc/html/MSstats.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Bernd

Bodenmiller (bernd.bodenmiller@uzh.ch).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The mass spectrometry proteomics source data have been deposited at ProteomeXchange Consortium via the PRIDE partner re-

pository and are publicly available under the accession number PRIDE: PXD017199. The mass cytometry data and other analyses

including all cell-line-specific logic-based models and drug sensitivity predictions source data have been deposited at Sage and

Mendeley Data and are publicly available at SAGE: https://www.synapse.org/#Synapse:syn20825065 and Mendeley Data:

https://doi.org/10.17632/gvh2vtg86r.1, respectively. Furthermore, this paper analyzes existing, publicly available data. These data-

sets’ accession numbers are provided in the key resource table.

Logic-based dynamic models and drug sensitivity prediction original code is publicly available at GitHub (https://github.com/

saezlab/breastCancerCytof).

The scripts used to generate the figures reported in this paper are available at GitHub (https://github.com/BodenmillerGroup/

Signaling-Network-Landscape-of-Breast-Cancer).

Any additional information required to reproduce this work is available from the Lead Contact.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Cells were obtained from suppliers or collaborators listed in Table S4.With the exception of BT-474 cells, all were grown according to

the supplier’s recommendation, and the maximum passage number was kept low (<15). Culture conditions are provided in Table S5.

All cells were free of mycoplasma. For passaging, cells were incubated with 0.25% trypsin (Gibco) at 37 �C for 1 to 9minutes depend-

ing on the cell line.

Patient derived tumor xenograft mouse models
The generation of viable cells from PDTX model tumors was done as previously described (Bruna et al., 2016). Briefly, surgically re-

sected primary breast cancer tissue, metastasis biopsies, and pleural effusions sampleswere obtained from consenting patients with

the appropriate approval by the National Research Ethics Service, Cambridgeshire 2 REC (REC reference number: 08/H0308/178).

While tissue samples were embedded in matrigel and implanted subcutaneously into 2-4 female severe immune compromised NSG

mice, pleural effusion samples were centrifuged, washed twice with water, before resuspension in 50% matrigel:FBS solution and

subcutaneous injection into mice. PDTXs were implanted into multiple hosts to allow in vivo expansion and xenograft samples

were cryopreserved in liquid nitrogen and freezing media (FBS/10%DMSO). All animal experiments were conducted in compliance

with the rigorous Home Office framework of regulations (Project License P1266F82E). All members of the Caldas team in Cambridge

adhere to Home Office Regulations and the CI has a governing committee overseeing all activities in this area.
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METHOD DETAILS

Cell line stimulation
Cells were plated either in 150-mm or 100-mm dishes to achieve about 60% confluency at the time of analysis (maximum number of

passages: 15). Cells were grown for 48 to 72 hours and then washed twice with PBS before starving them in serum-free medium

without additives overnight before fixation for the time point zero profiling, stimulation, or treatment with inhibitor. For stimulation,

EGF (Peprotech) and fetal bovine serum (FBS, Gibco) were added to final concentrations of 100 ng/ml and 10% v/v, respectively.

For analysis of cells in the unstimulated state, starvation medium was replaced by complete medium. For experiments with inhibitor,

the inhibitor was added 15 minutes before the addition of EGF and FBS. Inhibitors were diluted into starvation medium at approx-

imately 100 fold the reported IC50 (Table S3). At 1 hour before a time point, 5-iodo-2’-deoxyuridine was added to the medium at

the final concentration of 4 mM. At 5 minutes before a time point, the dish was washed and then incubated with 2X TrypLE� Express

(Life Technologies) to induce cell detachment. At the time point, dishes were scraped and paraformaldehyde (PFA, from Electron

Microscopy Sciences) was added to the cell suspension to 1.6% v/v, and cells were incubated at room temperature for 10 minutes.

If EGF stimulation was not necessary, cells were harvested and crosslinked with PFA either immediately after or 15 minutes after in-

hibitor addition. PFAwas then quenched with 40%w/v bovine serum albumin (BSA, Sigma) and after centrifugation, methanol chilled

to -20 �Cwas used to resuspend the cells for long-term storage at -80 �C. Two individual experimental replicates (referred to as A and

B) with partly overlapping time points (Table S2) were performed for each cell line. For each replicate, the experimental procedures

were performed on different days.

For the proteomic samples, cells were grown and collected in parallel with the replicates A and B. The third biological replicate

(referred to as C) was grown independently and was passaged two more times to test for proteome stability over a limited number

of cell divisions. Cells were plated in 150-mm dishes, grown for 48 to 72 hours, washed twice with PBS before addition of fresh com-

plete growth medium overnight, washed, incubated with TrypLE�, and scraped. The sample was then washed with cold starvation

medium, re-suspended in cold PBS, and sodium deoxycholate (DOC, from Sigma-Aldrich) was added to a final 5% w/w. The lysis

was completed by on-ice sonication (2x30 seconds) and snap freezing in liquid nitrogen, before long-term storage at -80 �C.

Mass cytometry
Antibody conjugation

The isotope-labeled antibodies (Table S1) were generated using the MaxPAR antibody conjugation kit (Fluidigm) using the manufac-

turer’s standard protocol. After conjugation, antibody concentrations were determined based on absorbance at 280 nm.Candor PBS

Antibody Stabilization solution was used to dilute antibodies prior to long-term storage at 4 �C. Antibody target specificity was pre-

viously confirmed (Lun et al., 2017) and optimal concentrations were determined by titration.

Barcoding and staining protocol

The crosslinked and methanol-permeabilized cells were washed once with CSM (PBS with 0.5% w/v BSA, 2 mM EDTA) and once

with PBS. Cells were incubated in PBS containing a barcoding reagent designed for a 126-well barcoding, containing four out of

the nine metals used. Palladium (105Pd, 106Pd, 108Pd, 110Pd, Fluidigm) was used in conjunction with the chelating agent bromoace-

tamidobenzyl-EDTA (Dojindo); indium (113In, 115In, Fluidigm), yttrium, rhodium, and bismuth (89Y, 103Rh, 209Bi, Sigma Aldrich) were

chelated to maleimido-mono-amide-DOTA (Macrocyclics). The samples were randomly distributed across the wells and incubated

for 30 minutes at room temperature at 100 nM metal concentrations except for bismuth (20 nM), indium isotope 113 (200 nM), and

rhodium (2 mM). After incubation, the sample waswashed four timeswith CSM (Bodenmiller et al., 2012), pooled, and stained with the

metal-conjugated antibody mix at 4 �C for 1 hour. The antibody mix was removed by washing cells three times with CSM. For DNA

staining, iridium-containing nucleic acid intercalator (191Ir and 193Ir, Fluidigm) diluted in PBSwith 1.6%PFAwas added to the cells to a

final concentration of 500 mM, and cells were incubated at 4 �C overnight. The following day, the intercalator solution was removed,

cells washed sequentially with CSM, PBS, and ddH2O and stained for cell volume with 12.5 mg/ml bis(2,2’-bipyridine)-4’-methyl-4-

carboxybipyridine-ruthenium-N-succidimyl ester-bis(hexafluorophosphate) (96Ru, 98-102Ru, 104Ru, Sigma Aldrich) in 0.1 M sodium

hydrogen carbonate, pH 8.3 (Sigma Aldrich) for 10 minutes at room temperature. Subsequently, samples were washed once

each with CSM, PBS, and ddH2O. After the last washing step, cells were resuspended in cell running buffer (Fluidigm) and EQTM

Four Element Calibration Beads (Fluidigm) were added in a 1:10 ratio (v/v). Subsequently, samples were filtered through a 35-mm

strainer just before the mass-cytometry measurement.

Mass cytometry analysis
Samples were analyzed on an upgraded CyTOF2 (Fluidigm) using the Super Sampler (Victorian Airship) introduction system. The

manufacturer’s standard operation procedures were used for acquisition at a cell rate of�300 cells per second. After the acquisition,

all FCS files from the same barcoded sample were concatenated as previously described (Bodenmiller et al., 2012), data were then

normalized, and bead events were removed (Finck et al., 2013). A doublet-filtering scheme and single-cell deconvolution algorithm

(Zunder et al., 2015) were used to achieve doublet removal and for de-barcoding of cells into their corresponding wells. Subse-

quently, data were processed using Cytobank (Kotecha et al., 2010). Additional gating on the DNA channels (191Ir and 193Ir) was

used to remove remained doublets, debris, and contaminating particulates. FCS files were exported and loaded into R for down-

stream analysis (flowCore Bioconductor/R-package).
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Firstly, compensation for channel crosstalk was performed using single-stained polystyrene beads (Chevrier et al., 2018). Sec-

ondly, samples that were measured multiple times were combined and the coefficients of variation (cellular variability) were

computed. Thirdly, signal intensities per channel were arcsinh-transformed (asinh(x+1), flowCore Bioconductor/R-package) and

the median computed. Fourthly, to control for batch effects, all cell lines were processed, stained, and measured together with

five samples that served as technical replicates. The technical replicates were generated in large batches from two cell lines

(HCC70 and MDA-MD-453) prepared at different time points to ensure negative and positive controls for each measured marker.

The simultaneous processing enabled direct quantitative comparisons within a cell line and the technical replicates enabled identi-

fication of batch effects and were used in batch-correction quality control. Both the t-SNE algorithm (Van Der Maaten and Hinton,

2008) (RtsneR-package) and principal component analysis (PCA, sparsepcaR-package) were used for identification of batch effects.

While the cellular variability showed no detectable batch effect, themedian showed an overall loss in signal strength between the first

fifteen measured cell lines and the rest (likely due to antibody aging). Centering the two batches to the common average (mtotal) for

eachmedian value (xcentered = x - mbatch + mtotal) prevented the formation of batch-specific clusters by both PCA and t-SNE. Fifthly, the

biological replicates (time course A and B, which had only partially overlapping time points) were integrated into one consensusmea-

surement. The two time courses were centered by subtracting the means of the individual time courses and addition of the overall

mean. Finally, the unmeasured time points were linearly interpolated using the R function approxfun (the same process was used for

missing or slightly different time points) and the averages between the two biological replicates were computed. For the time point

60 minutes, sampled only in time course B, the value for the time course B was taken directly without extrapolating a value for the

second time course.

Mass spectrometry
Digestion

Cell lysates from independent biological replicates were aliquoted in equivalent volumes containing 100 mg of proteome sample

(quantified with a BCA assay). The samples were then reduced with 5 mM Tris(2-carboxyethyl)phosphine (ThermoFisher Scientific)

for 30 minutes at 37 �C and then alkylated in the dark for 30 minutes at 25 �C with 40 mM iodoacetamide (Sigma Aldrich). Samples

were diluted with 0.1 M ammonium bicarbonate (Sigma Aldrich) to a final concentration of 1% DOC before overnight digestion at 37
�C with lysyl endopeptidase (Wako Chemicals) and sequencing-grade porcine trypsin (Promega) at an enzyme-substrate ratio of

1:100 for both. Trypsin was inactivated by adding formic acid (AppliChem) to a final concentration of 1% v/v, and the precipitated

DOC was removed by centrifugation. The acidified peptide mixtures were loaded into 96-well elution plates (Waters), desalted,

and eluted with 80% acetonitrile. Samples were dried in a vacuum centrifuge, solubilized in 0.1% formic acid, and analyzed by

mass spectrometry.

Spectral library sample preparation
The spectral libraries were obtained from all cell lines with at least three biological replicates (12 cell lines) or with eight fractions from

two independent cell line pools. The cell lines pools were composed of 27 and 28 cell lines, respectively. The four central fractions

weremeasured twice. The fractionation was performed using the Pierce� high pH, reversed-phase peptide fractionation kit (Thermo

Fisher Scientific), and iRT peptides (Byognosis AG) were added.

Peptide separation
Digested sampleswere analyzed on anOrbitrapQExactive Plusmass spectrometer (Thermo Fisher Scientific) equippedwith a nano-

electrospray ion source and a nano-flow LC system (Easy-nLC 1000, Thermo Fisher Scientific). Peptide separation was performed on

a 40 cm x 0.75 mm i.d. column (New Objective, PF360-75-10-N-5) in-house packed with 1.9-mmC18 beads (Dr. Maisch Reprosil-Pur

120) and heated to 50 �C. Buffer A was 0.1%w/v formic acid, and buffer B was 0.1%w/v formic acid in acetonitrile. The flow rate was

300 nL/min. The gradient was as follows (buffer B in buffer A): linear from 5% to 25% over 100minutes, 25% to 40%over 10minutes,

and 40% to 90% over 5 minutes, finishing with isocratic 90% for 5 minutes.

Spectral library data-dependent acquisition
For the spectral library, the 55 samples were analyzed by shotgun LC-MS/MS data dependent acquisition (DDA) by injection of 1 mL

peptide digests at a concentration of 1 mg/mL. TheMS1 spectra were acquired from 350 to 1,500m/z at a resolution of 70,000, and the

20 most intense precursors exceeding 1,300 ion counts were selected for fragmentation at 25 eV normalized collision energy. The

MS2 spectra were acquired at a resolution of 17,500with maximally 100,000 ions, collected for 55msmaximally. All multiply charged

ions triggered MS-MS scans followed by a 30-second dynamic exclusion, and singly charged precursor ions and ions of undefinable

charged states were excluded from fragmentation.

Data-independent acquisition
After addition of iRT peptides (Biognosys AG), 1 mL of peptide digest from each biological replicate was injected independently at a

concentration of 1 mg/mL and measured in data-independent acquisition (DIA) mode. The DIA-MS method was as previously

described (Piazza et al., 2018). Briefly, an MS1 survey scan was performed from 350 to 1,500 m/z at a resolution of 70,000 with

AGC target of 33106 and a 120-ms injection time. The twenty variable-width windows optimized to equally distribute the number

of precursor ions had a 1 m/z overlap. MS2 spectra were acquired at a resolution of 35,000 with a fixed first mass of 150 m/z and
Cell Systems 12, 401–418.e1–e12, May 19, 2021 e7



ll
OPEN ACCESS Article
an AGC target of 13106. In order to mimic DDA fragmentation, the normalized collision energy was 25 eV based on the doubly

charged center m/z of the isolation window. The maximum injection times were automatically chosen to maximize parallelization re-

sulting in an approximate 3-second duty cycle.

Peptide identification and spectral library
The DDA spectra were searched against the canonical Human Uniprot fasta database (version August 2018) using the Sequest HT

database search engine in Protein Discoverer (version 2.2.0.388, Thermo Fisher Scientific). We allowed for up to two missed cleav-

ages, excluded cleavage of KP and RP peptide bonds and applied a full tryptic digestion rule. Cysteine carboxyamidomethylation

(+57.021 Da) andmethionine oxidation (+15.995) were allowed as static and dynamicmodifications, respectively. Monoisotopic pep-

tide tolerance was set to 10 ppm, and fragment mass tolerance to 0.02 Da. The identified proteins were filtered using the high peptide

confidence setting (1% false discovery rate (FDR) on peptide level). For generation of the spectral library the DDA spectra analyzed as

described above were imported in the software Spectronaut Pulsar (11.0.18108.11.30271 Asimov, Biognosys AG) (Bruderer

et al., 2015).

Breast cancer-associated proteins
The list of curated breast carcinoma-related genes was downloaded from the human disease discovery platform Disgenet (http://

www.disgenet.org/, curated_gene_disease_associations.tsv file, downloaded on April 12, 2018) (Piñero et al., 2017). We included

in the list genes annotated to the following breast-cancer disease categories: ’Malignant neoplasm of breast’, ’Breast Cancer, Fa-

milial’, ’Hereditary Breast and Ovarian Cancer Syndrome’, ’Breast Carcinoma’, ’Breast Neoplasms, Male’, ’Invasive Ductal Breast

Carcinoma’, ’Inflammatory Breast Carcinoma’, and ’Breast Diseases’. The list includes a total of 53 genes among which 38 are asso-

ciated with significant changes in protein abundance in one or multiple cell lines.

Signaling model
We utilized the logic-based ordinary differential equation (ODE) formalism (Terfve et al., 2012) to model the signaling network of each

cell line. This is a semi-mechanistic approach that combines perturbation data with prior knowledge, such as protein-protein inter-

actions. The goal was to describe the signal transduction upon perturbation through protein activation cascades.

Logic-based dynamic models
First, we built a prior knowledge network (PKN) that contains nodes (protein markers); signed, directed edges (interactions of the pro-

teins fromOmnipath); and logical gates (AND, OR) reported in a simple interaction file (SIF) that contains three columns: source node,

interaction type (activation or inhibition), and target node (T€urei et al., 2016) (Figure S3A and Table S6). This PKNwas built around the

measured and perturbed proteins in the experiments andwas used for all cell lines. Next, the PKNwas translated into a dynamic ODE

model using the CNORode modeling package (https://github.com/saezlab/CNORode) that is part of the CellNOpt family (Terfve

et al., 2012). The node I property xi ˛ [0,1], i = 1 . N in the network, the differential equation was written as in Equation 1.

dxi
dt

= tiðBiðf1;iðxÞ;.fj;iðxÞ;.fN;iðxÞÞ� xiÞ (Equation 1)

ti is the responsiveness parameter of the node xi, and a larger value results in a faster response to change in the node. Bi is the

continuous Boolean function: Bi : [0,1]
N -> [0,1]. This function accounts for the AND and OR gates of the incoming edges on

node i (Wittmann et al., 2009). fij(x) is the transfer function from node j to node i; it describes how node I depends on node j, here

we use a version of the previously described Hill-type function (Eduati et al., 2017) as shown in Equation 2.

fijðxÞ = 1� ð1� xÞnij
ð1� xÞnij + k

nij
ij

�
1 + k

nij
ij

�
(Equation 2)

This function has a sigmoidal-shape characterized by the free parameters kij and nij. The trajectories are constrained in the [0-1]

interval. The extreme case of 0 means that the corresponding node is inactive or inhibited, and 1 means that the node is fully acti-

vated. In order to compare the experimental measurements with the simulation results, the data were scaled to the [0-1] interval. Each

marker was scaled separately across all cell lines and conditions, but different markers were not compared due to differences in

sensitivity. First, the median data were scaled to the 0-1 range using the 99% interquartiles, as described in Equation 3.

~x =
x � x:005

x:995 � x:005
(Equation 3)

Values >1 or <0 were set to 1 and 0, respectively. For each experimental condition, the corresponding states in the model were

adjusted. For instance, application of the stimulation was modeled by setting the input nodes to 1, and inhibition was modeled by

setting the inhibited nodes to 0.

Cell line-specific parameter estimation
All the cell-line models were built from the same PKN, and 67 cell line-specific ODE models were generated. In these models there

were four types of unknown parameters: initial conditions for unmeasured states (11 parameters), node responsiveness parameters
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(ti) for each node (40 parameters), edge parameters n (88 parameters), and edge parameters k (88 parameters). In order to reduce

complexity, we fixed the values of the n parameters to 3, since they influence the outputs the least. Then we trained the ODEmodels

using the CNORode package, following the standard approach with minor improvements. In short, the package relies on the MEI-

GOR optimization toolbox to find the parameter values that results in the best fit (measured by the root mean squared error,

RMSE) (Terfve et al., 2012). We applied L2 regularization in the optimization as previously introduced to the CNORode (Eduati

et al., 2017) to cope with non- identifiability of estimated parameters and to reduce overfitting. We evaluated five cell-line models

for tuning the regularization parameter. The value of 1x10-5 for the regularization parameter resulted in a good balance between spar-

sity and fit (data not shown). Each model was trained using the global optimiser enhanced Scatter Search (eSS) together with the

Dynamic Hill Climbing local search algorithmwith 10 optimizations, 20minutes each (as implemented in theMEIGOR package). After

the optimization, themodel simulation was plotted against the data to evaluate the fitting quality. To control for themodel quality both

the r2 aswell as the root mean square error (RMSE) were evaluated. The biological variance was computed as the RMSE between the

median and the single biological replicates. The random model was made the same way as the cell line models for all cell lines, but

parameters were randomly generated and not optimized.

Mutation matrix
To determine the mutational status, the SNP-specific genotype as defined by the Illumina HumanOmni1-Quad v1.0 Multi-UseMani-

fest File (http://emea.support.illumina.com/downloads/humanomni1-quadv1_mu_product_files.html, downloaded on July 18, 2019)

was mapped to the NCBI 37.1 (GRCh37) genome build taking into account ambiguous IUPAC notations and indel information. Sub-

sequently, a cell line 3 SNP mutation matrix was constructed, where elements denote the fraction of alleles for which the cell line

genotype mismatches the reference genotype for the respective SNP. Finally, two gene-level mutation matrices were obtained by

first mapping the SNP entries to genes using the pyensembl package (Ensembl release 55) and then counting the values exceeding

the threshold q (q = 0.5 for a ‘‘dominant’’ matrix and q = 1 for a ‘‘recessive’’ one) for each cell line and gene.

Drug sensitivity prediction
Wepredicted the response (-ln IC50) usingMacau for each drug (409 vectors of -ln IC50 values for 347 individual compounds) in 48 cell

lines (training) with data available in the GDSC dataset (Simm et al., 2017; Yang et al., 2013). A 5-fold cross-validation and 40 itera-

tions were used to obtain an average prediction performance (performance score) and an adjusted p-value for each predictor (Ben-

jamini and Hochberg, 1995). As input for the drug response prediction we selected the RNA-seq filtered for exons (Marcotte et al.,

2016), the protein abundance ratio, the estimated parameters (model parameters), the single-cell coefficient of variation (cellular vari-

ability), the median marker expression (median), and the edge flux.

RNA-seq data
The RNA-seq data are from a published dataset that used the same cell lines (Marcotte et al., 2016). For these cell lines, RNA-seq

results tend to be consistent as long as the cells are at low passage (Peter Sorger, personal communication). The cell lines in our study

were either from the same batch as the RNA-seq study (Table S4) or were purchased at a comparable passage number as that in our

study. The passage number averaged 8 in our study andwas 10 or lower in the RNA-seq study (RichardMarcotte and Benjamin Neel,

personal communication). Furthermore, the correlation between RNA-seq and proteomics data was in the expected range (data

not shown).

Edge flux
The edge fluxes were computed as the time-dependent edge strengths, or in other words the transfer function from node j to node I

determined as describe by Equation 2, for each specific condition (treatment and time). This equation describes howmuch a node is

influenced by its upstream nodes at a certain time and treatment condition. The edge flux value depends on themodel parameters as

well as on the activity of the influencing/upstream nodes (x, Equation 3) and can be seen as the signaling flux of the edges at a specific

time and treatment condition. For the AND-gated edges, the edge flux is the product of two f-functions (Equation 2). For instance,

AKT,RAS$MEKS221 integrates positive RAS as well as negative AKT influence and is therefore influenced by both fAKT(xAKT) and

fRAS(xRAS) as follows: AKT,RAS$MEKS221 = (1-fAKT) * fRAS.

Macau
Macau is a machine-learning approach based on scalable Bayesian multi-relational factorization with side information using Markov

chain Monte Carlo Macau (MCMC) sampling that incorporates information in rows and/or columns to improve the accuracy of the

predictions (Simm et al., 2017). Cell line-specific information was transformed into a matrix of L latent dimension (set to 10 as we

only used cell line features) by a link matrix. Drug response was then computed by a matrix multiplication of the two latent matrices,

from drug (Ldrug) and cell lines (Lcell) sides. Macau employs Gibbs sampling to sample both the latent vectors and the link matrix,

which connects the additional information to the latent vectors. For MCMC sampling, we chose a burn in of 400 samples, then

collected 600 samples. After collection of each sample, we predicted drug response by multiplying the two latent matrices and

then averaged across all 600 samples.We used a 5-fold cross-validation and iterated 40 times for an average prediction performance
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(performance score) (Simm et al., 2017; Yang et al., 2018). For prediction of responses of cells lines not part of the training exercise,

we used the same strategy except that inside the cross validation loop we predicted not on the test set but on the 19 hold-out

cell lines.

Identification of predictive genomic aberrations
Mapping of quantitative trait loci (QTLs) was conducted using random forest ensemble learning (Michaelson et al., 2009), an

approach that has been shown to outperform legacy and other multi-locus QTL mapping methods (Michaelson et al., 2010). Briefly,

a random forest classifier was trained on genetic markers to predict relevant signaling features, and resulting marker selection fre-

quencies were used as a measure for the strength of the respective QTL. Separate analyses were conducted for genotype matrices

assembled from publicly available SNP (for 61 cell lines) and CNA (for 64 cell lines) data obtained using Illumina HumanOmni1-Quad

BeadChips (Marcotte et al., 2016). Gene-level CNA data was discretized by thresholding CBS-segmented log-R ratios at �0.2 and

0.2. Genetic markers were filtered for mutations in cancer-driver genes (Forbes et al., 2011; Sondka et al., 2018). Markers with

missing values for more than half of the cell lines and markers with a major allele frequency larger than 0.9 were excluded, resulting

in 736 SNPs and 518 CNAs. The proportion of genotypic variance included in the estimated population-structure covariates was set

to 0.75. Mapping scores were computed by training 10 random forests (representing independent imputations of missing marker

values), each comprising 1,000 trees. To determine the significance of identified QTLs, an empirical null distribution of marker selec-

tion frequencies was estimated by repeating this step 5,000 times for 100 independent phenotype vector shuffles, totaling 5 billion

randomized trees per analyzed experimental condition. The product of zero-clipped permutation importance (PI) and average in-

crease in node purity (RSS), normalized across traits, was used as a readout for feature importance. Finally, empirical p-values

adjusted for multiple testing were computed and checked for convergence by plotting them against the number of batches at varying

intervals (Benjamini and Hochberg, 1995). All computations were conducted using modified versions of the RFQTL and RandomFor-

est R packages and executed in parallelized fashion on local cloud infrastructure (Michaelson et al., 2010). Due to the small dataset

used we selected a permissive adjusted p-value cutoff of 0.3. The same method, cutoffs, and selection of genomic aberrations were

used for a QTL analysis on the IC50 values (–ln) for pictilisib, fulvestrant, and lapatinib in 42 and 40 cell lines for the CNAs and SNPs,

respectively.

Drug sensitivity determination in PDTX models
The PDTXmodel tumors drug screeningwas done as previously described (Bruna et al., 2016). Briefly, single-cell suspensions gener-

ated from PDTX tissues were cultured into 384-well plates (25,000 cells/well). Drugs were added 24 hours after seeding and cell

viability reading intensities were obtained six days post-treatment using the CellTiter-Glo 3D Cell Viability assay (Promega). The

dose-response fitting was performed using isotonic regression and the IC50 values were predicted by fitting a smoothing spline to

the isotonic regression line.

QUANTIFICATION AND STATISTICAL ANALYSIS

Identification of general trends in cytometry data
To characterize the general signaling response across all 67 cell lines we performed a two-way ANOVA comparing treatment and

time (with an interaction term). The obtained p-valueswere corrected formultiple hypothesis testing using the Benjamini and Yekutieli

multiple hypothesis correction, and, if relevant, the significant relationships (FDR 5%) were further characterized using Tukey honest

significant differences computation. The increase in heterogeneity following inhibition was quantified by comparing the average stan-

dard deviation of the median fold change at 60 minutes with ANOVA followed by Benjamini and Yekutieli multiple hypothesis correc-

tion for the six treatments.

Mass spectrometry data analysis
DIA-MS targeted data extraction

Targeted data extractions of DIA-MS acquisitions were performed with Spectronaut Pulsar (11.0.18108.11.30271 Asimov, Bio-

gnosys AG) with default settings (Bruderer et al., 2015). Retention time prediction was set to dynamic with correction factor 1 for

XIC extraction window determination. Non-linear calibration was used for retention time correction, and MS2 level interference

correction was enabled (Bilbao et al., 2015). The FDR was set to 1% at peptide precursor level and was estimated with mProphet

(Reiter et al., 2011). The method compares time-resolved MS/MSmaps measured with the DIA-MSmethod as previously described

(Gillet et al., 2012).

Quantification

Subsequently the data were analyzed with MSstats (using Tukey’s median polish, R package version 3.10.6) for differential protein

abundance in comparison to five cell lines derived from normal breast tissue (184A1, 184B5, MCF10A, MCF10F, andMCF12A) (Choi

et al., 2014). For quantification, only proteotypic peptides, which are uniquely present in the sequence of one protein, were used. The

default settings for SpectronauttoMSstatsFormat and the dataProcess functions were used with the exception that the normalization

was provided by Spectronaut Pulsar and zero intensities were censored. For each cell line comparison, MSstats (with the groupCom-

parison function) was used to determine model-based estimates of fold changes. The adjusted p-values were determined using the

Benjamini-Hochberg method to control the FDR at the cut-off level of 0.05 (Benjamini and Hochberg, 1995). Proteins with a fold
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change of at least 2 were considered as differentially abundant. For plotting, -Inf, NA, and Inf values were set to the dataset’s min-

imum, zero, and maximum, respectively.

Gene ontology enrichment analysis
The Gene Ontology (GO) enrichment analysis was performed using the GOATOOLS Python-based library (Klopfenstein et al., 2018).

The background set corresponds to all human proteins (https://www.ncbi.nlm.nih.gov/genome/51, genome annotation file down-

loaded on May 12, 2015). The option propagate_counts was set to False to avoid propagation of the annotations of a gene from

the assigned GO category to all parent GO terms. The p-value was calculated using Fisher’s exact test and then adjusted for multiple

testing using the Benjamin-Hochberg correction method (Benjamini and Hochberg, 1995). We next calculated the specificity of the

enriched GO terms by computing their information content (IC) as follows: IC = �log (frequency), where frequency is the number of

genes annotated to the current GO term divided by the total number of associations between genes and GO terms in the full branch.

The semantic similarity between all the enriched GO terms was then calculated as the inverse of the semantic distance (number of

branches separating the terms). The IC and semantic similarity values were finally used to filter the list of GO-enriched categories

selecting the more informative GO term (highest IC) among pairs of terms showing a semantic similarity higher than 0.5. To visualize

the results of the functional enrichment analysis across the 62 tumor-derived cell lines, GO terms with a number of associated genes

larger than 500 or smaller than 100 as well as terms commonly enriched in less than 10 cell lines were excluded to reduce the

complexity and the redundancy of the plot while preserving the biological outcome.

Drug sensitivity feature importance
The procedure for estimating the feature importance was as follows:

1. For every MCMC sample, we:
a. Extracted the latent vector Vdrug 1 for a given drug number 1. This latent vector represented a subset of Ldrug for a specific

drug 1.

b. Extracted the link matrix of the cell-line side, Linkcell.

c. Computed the element-wise multiplication: Vdrug 1 * Linkcell. The resulting matrix represents the feature importance of the

predictors for each latent dimension.

2. For each predictor, averaged across all L latent dimensions, we:

a. Took the average feature importance across all cross validations and over 40 iterations.

b. Generated random permutations of the feature importance matrix for all drugs 1,000 times, where we shuffled the predic-

tors for each cell line independently. We then derived an empirical null distribution for each feature importance value. If the

value was positive, we defined the p-value as the number of cases in the null distribution greater than the value of interest

divided by the number of permutations. If the value was negative, we defined the p-value as the number of cases in the null

distribution smaller than the value of interest divided by the number of permutations.
Features predictive of overall sensitivity
To determine features that significantly predicted overall sensitivity we performed an ANOVA with H0: effect size > 0.01 or < -0.01

across all drugs and conditions for the predictors: median, cellular variability, and edge flux. The obtained p-values were corrected

for multiple hypothesis using Benjamini and Yekutieli (features * 2).

Features predictive of pathway sensitivity
Drugs were binned in different classes according to the target pathway (Yang et al., 2013). Upon selection of ten interesting classes

we looked for features predictive for these specific dug classes with an ANOVAwith H0: effect size > 0.01 or < -0.01. The threshold for

large effect size was arbitrarily set at 0.1. The obtained p-values were corrected for multiple hypothesis testing using Benjamini and

Yekutieli (features * 2), and the significant relationships (FDR 5%) were further dissected using Tukey honest significant differences

computation.

Comparison of the two QTL approaches
The genomic features (independently for SNPs and CNAs) passing the 0.3 adjusted p-value cutoff were subsequently tested for ef-

fects on the drug sensitivity (IC50 values (–ln) for pictilisib, fulvestrant, and lapatinib) by using ANOVA. The ANOVA was performed

only when the genomic feature identified by QTL was linked to a signaling feature predictive of the sensitivity of the specified

drug (p-value % 0.005 and effect size R ± 0.02, see the section ‘‘Feature Importance’’). The p-values obtained by the ANOVA

were then corrected for multiple hypothesis testing for each drug individually (Benjamini and Hochberg, 1995).

Comparison of PDTX to the cell line data
We assessed the associations between CNAs and drug sensitivity that had been predicted by our cell line-based signaling model as

follows. First, we filtered both the in vitro (cell line) and in vivo (PDTX) data for only those comparisons of CNA-call status with at least

four drug sensitivity measurements in each dataset. Second, for those gene-drug relationships passing this threshold, we performed
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an ANOVA followed, if necessary, by Tukey honest significant differences computation to define which specific relationships (i.e.,

drug sensitivity for amplification versus loss or drug sensitivity for amplification versus wild type) were affected. We conducted

the same type of analysis for the top CNA-drug sensitivity associations that had been predicted by direct QTL. For this comparison,

we considered the three best gene candidates (ranked by q-value) from the QTL analysis; in the cases where there were multiple

genes with the same q-value, we included all genes at that rank. We then proceeded with the comparison using the same filtering

and testing criteria as for the genotype-drug sensitivity associations as described above.
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