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Visualizing cellular imaging data using PhenoPlot

Heba Z. Sailem!, Julia E. Sero! & Chris Bakal

Visualization is essential for data interpretation, hypothesis formulation and communication
of results. However, there is a paucity of visualization methods for image-derived data sets
generated by high-content analysis in which complex cellular phenotypes are described as
high-dimensional vectors of features. Here we present a visualization tool, PhenoPlot, which
represents quantitative high-content imaging data as easily interpretable glyphs, and we
illustrate how PhenoPlot can be used to improve the exploration and interpretation of
complex breast cancer cell phenotypes.
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sing microscopy and computer vision methods, research-

ers can now quantify cellular and subcellular phenotypes,

signalling states, and the spatial organization of single
cells’2. Detecting and describing the similarities and differences
between cellular phenotypes becomes increasingly difficult as the
number of cell images increases, even when the images and the
quantification of these images are available. For example, while
the manual examination of raw images can often detect subtle
differences in phenotypes, human beings are prone to bias and
such differences may or may not exist numerically. This means
that a disparity may exist between what the observer believes
to be the phenotype, and the quantitative phenotype itself.
Conversely, an experimentalist may not be able to see some of the
phenotypic differences that are detected by computational
analysis in raw images, as humans cannot easily discern aspects
such as pixel intensities, ‘texture’ (distribution of pixel intensities)
and subtle changes in label localization®. Moreover, many images
may be acquired across different channels, which increases the
number of dimensions the analyst needs to work with. Finally, it
is difficult for observers to appreciate how different features, such
as area, shape and the intensity of different labels are quan-
titatively related to each other. Thus, the success of any image-
based study relies heavily on the ability of the experimentalist to
relate images with numerical data.

Visualization can greatly facilitate data analysis and inter-
pretation, which are still major bottlenecks in gaining biologically
meaningful knowledge from imaging data. Coordinate-based
graphs and heatmaps? are the most frequently used methods
for representing imaging measurements, but they have a number
of drawbacks. Coordinate-based graphs such as bar charts
and scatter plots are restricted to three dimensions, while
parallel coordinates can represent many dimensions but may
suffer from occlusion between data points®. On the other hand,
heatmaps use coloured objects (typically boxes) to represent
many dimensions®, but it can be difficult for humans to discern
the extent to which different hues reflect differences in
phenotypes®. Critically in the context of image-based data sets,
neither coordinate-based graphs nor heatmaps are intuitive
representations of cellular phenotypes, as they do not use
pictorial representations of individual features. It may therefore
be difficult for experimentalists to understand what any given cell
or population looks like, or to relate numbers to images, using
heatmaps or scatter plots.

Glyph-based methods use a collection of visual elements such
as size, colour, texture and/or orientation to depict multi-
dimensional data’. For example, star glyphs use radial bars with
length proportional to variable values®. Another example is the
facial glyphs proposed by Chernoff et al.®? to represent around
20 variables. Chernoff faces exploit humans’ ability to detect
differences between faces and allow quick identification of which
samples are different from one another. However, facial glyphs
are rarely used to represent cellular data because they imply
emotional expressions that might not be relevant to the
represented data®10, Like other visualization methods, the
available glyph-based methods are not intuitive representations
of cellular phenotypes and do not address the question of how
samples differ in terms of their visual phenotypes.

We design and develop PhenoPlot, a glyph-based approach, to
represent multidimensional cellular measurements in an intuitive
manner. PhenoPlot is a free and open source Matlab toolbox that
comes with a graphical user interface (GUI). Currently,
PhenoPlot allows the visualization of up to 21 variables. We
illustrate the utility of PhenoPlot in profiling the morphology of
breast cancer cell lines and show how PhenoPlot can be a useful
tool in understanding and interpreting multidimensional cellular
imaging data.
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Results

PhenoPlot design. PhenoPlot employs many visual elements,
such as differently sized, coloured and structured objects, to
represent multiple dimensions independently of XY coordinates.
Supplementary Table 1 lists all PhenoPlot elements that the user
can choose for plotting depending on the features measured. Like
other visualization tools, such as heatmaps and star and facial
glyphs, data scaling is required in PhenoPlot. In the example
shown (Fig. 1a), the cell body, nucleus, and perinuclear regions
are represented using ellipses. The length and width of each of
these objects are represented as the major and minor dimension
of the ellipse, respectively. Dimensional variables (that is, length
and width) should be scaled together to a 0.1-1 interval to
maintain the aspect ratio between different dimensions and
implicitly represent additional dimensions (for example, cell
width-to-length ratio). In Fig. 1a, the number of nuclei is plotted
as subcircles within the nuclear ellipse. The relative area of cell
protrusions, such as lamellipodia, is represented on the top of the
cell as a half-ellipse whose major dimension is proportional to the
relative protrusion area (Fig. la). Intensities of the cell, nucleus
and perinuclear regions are represented by mapping average
intensity values of fluorescent markers to different colour hues.

To increase the number of dimensions that can be represented
in PhenoPlot, we devised the concept of ‘Proportional Filling’ that
exploits the principle of visual closure where humans can easily
perceive the value of partially filled object!!. Given a variable
scaled between 0 and 1, we represent the feature using a glyph
and the value by filling part of the glyph in proportion to the
variable value with a specified symbol or colour. For example, if
we measure the neighbour fraction (NF), that is, the fraction of
the cell border that is in contact with other cells, then we can
represent NF as the fraction of cell ellipse border that is thickened
or overlaid by a symbol (Fig. 1a). Other representations include
the proportion of the cell ellipse that is filled with a symbol, which
can be used to represent cellular texture, the number of
mitochondria or the number of vesicles (Fig. 1a). Similarly, the
proportion of the nucleus ellipse filled with a symbol can be used
to represent nuclear texture. We also added three organelle glyphs
(ellipse, rectangle and line), where the height of the filled portion
of the organelle is proportional to the variable value (Fig. 1a,b).
These organelle glyphs can be used to represent an organelle
intensity, quantity or texture. In total, eight features are provided
that exploit proportional filling.

PhenoPlot allows the customization of different element
colours and line styles and the specification of cell positions in
a two-dimensional plane. Importantly, many PhenoPlot elements
are colour independent, which increases its usability. A figure
legend will be drawn automatically using the user input for
feature names. Figure 1b shows the appearance of PhenoPlot
elements representing different values for 15 variables (Supple-
mentary Table 2). Unlike other visualization methods such as bar
charts (Supplementary Fig. 1la), heatmaps (Supplementary
Fig. 1b), star glyphs (Supplementary Fig. 1c and Supplementary
Table 3) and Chernoff faces (Supplementary Fig. 1d and
Supplementary Table 3), PhenoPlot represents particular cellular
features intuitively (for example, cell shape, texture features or
nuclear morphology).

Profiling breast cancer cell lines morphology with PhenoPlot.
To demonstrate the utility of PhenoPlot, we generated Pheno-
Plots to describe the phenotypes of 19 breast cell lines, which are
predominantly derived from human tumours (Supplementary
Table 4). For each cell line, nuclear and cell bodies were fluor-
escently labelled, fixed, and imaged by confocal microscopy
(Methods). Nine features were plotted for each cell including the
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Figure 1 | PhenoPlot design. (a) Illustration of the main visualization elements in PhenoPlot. Each element can represent a feature quantified from

raw image data. Examples of the features that these elements can represent are shown in parentheses. (b) PhenoPlots of 15 variables. The PhenoPlot
elements used here are main ellipse (length and width), main ellipse filling, inner sub-ellipse (length and width), inner sub-ellipse filling, inner sub-ellipse
colour, relative protrusion area, spikes (fraction and height), membrane process, line organelle, ellipse organelle and rectangle organelle as detailed in

Supplementary Table 2.

length and the width of the cells and nuclei; the area of cellular
protrusions; NF, which measures the fraction of cell border in
contact with other cells; cellular ruffliness, which reflects the
irregularity of the cell border; and the cellular and nuclear tex-
tures, which describe the distribution of pixel intensity in these
regions (see Methods). Hierarchical clustering was used to group
cell lines with similar morphologies into five clusters
(Supplementary Fig. 2). We used PhenoPlot to visualize the
average measurements for each cluster and produce intuitive
representations based on the measurements of 155,811 cells
(Fig. 2a, top row). Using PhenoPlot, we are able to better visualize
aspects of cell morphology that are otherwise difficult for the
human observer to appreciate. For example, the PhenoPlot of
cells in cluster 1 shows that they are round, poorly spread, have
high NF, low nuclear texture index and do not form protrusions
(Fig. 2a). In contrast, the PhenoPlot of cells in cluster 2 shows
that cells have extensive ruffles, low NF and high values of cellular
and nuclear texture index. On the basis of the high value of
protrusiveness, ruffliness and texture, we infer that the cells in
cluster 2 are likely to be highly motile. This notion is consistent
with the fact that hs578T and MDA-MB-157 cells are derived
from metastatic breast cancer and are known to be invasive!?.
PhenoPlot shows that cells in cluster 3 are far less ruffly and
textured and have higher NF than cells in cluster 2, suggesting
that they are less motile. On the basis of their PhenoPlots, cells in
cluster 4 appear to have an intermediate phenotype between
clusters 1 and 2, while cells in cluster 5 seem to be similar to cells
in cluster 3, but less spread. Thus, PhenoPlots provide effective
and intuitive pictorial representations of cellular phenotypes that

allow the interpretation of quantitative results and their relation
to cellular images.

Discriminating between phenotypes of different clusters and
making inferences regarding underlying biological process is
challenging when using either images of a ‘representative cell’
(which is a cell with features closest to the average of all cells in
the cluster), or images containing many cells (Fig. 2a middle and
bottom rows and Supplementary Fig. 3). For example, cells in
clusters 2 and 3 appear to have similar large, spread, flat shapes as
determined by raw images (Supplementary Fig. 3), even though
cells in cluster 2 exhibit far more ruffles than cells in cluster 3
(Fig. 2a top and b,c). Moreover, it is difficult for humans to
appreciate from raw images that cluster 4 cells are the most
‘textured’ of all cells in the data set (Supplementary Fig. 3). It is
also difficult for humans to appreciate the relationships between
variables using raw images. For example, cluster 2 and 3 cells are
both spread, but the ratio of ruffles to protrusiveness is very
different (Fig. 2a top).

By comparison, typical visualization methods such as heatmaps
or bar charts are not intuitive representations of phenotypes and
are not easy to relate to cell images. For example, heatmaps
represent the variables using colour shades of boxes (Fig. 2b), but
these boxes do not reflect the visual appearance of the feature.
Thus, it is difficult to picture how cells look from a heatmap,
especially when many dimensions are displayed. Although bar
charts are effective in identifying differences between the values of
a few variables, it is difficult for the analyst to interpret a
biological phenotype from this representation (Fig. 2c). Further-
more, it is difficult to understand the relationship between
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Figure 2 | Visualization of morphological clusters of 19 breast cell lines. (a) Top row: PhenoPlot of the average of nine morphological features for each
cluster. Middle row: representative image of a single cell from each cluster outlined in white and red, where red indicates the cell border in contact
with other cells (NF). Scale bars, 50 um. Bottom row: selected raw cell image from each cluster. Scale bars, 50 um. (b) Heatmap of the average of nine
morphological features for each cluster. (¢) Bar chart of the average of nine morphological features for each cluster.

variables using heatmaps or bar charts, because features are
compared individually.

PhenoPlot is a flexible visualization method. Like other glyph-
based approaches, PhenoPlots are independent of XY coordi-
nates. This makes PhenoPlot a flexible tool that can be combined
with other visualization methods. Furthermore, extra dimensions
can be visualized using the position of PhenoPlots in a two-
dimensional plane. For example, projecting PhenoPlots of average
measurements for the different breast cell lines in the first two
principal components (PCs) of the data facilitates the identifica-
tion of phenotypic similarities and differences between cell lines
(Fig. 3a). Figure 3a shows that cell lines on the left-hand side have
epithelial-like shapes (low protrusiveness, less spread, and high
NE), cells on the right-hand side have mesenchymal-like shapes
(highly protrusive and ruffly, more spread, and low NF), while
cell lines with intermediate morphologies are in the middle.
Moreover, interesting relationships can be easily identified from
this representation. For example, mesenchymal-like cell lines
have higher nuclear texture than epithelial-like cell lines except
for MCF10A and SUM159, and some of the cell lines with
intermediate morphology have increased nuclear texture values.

4

This observation can trigger further experiments to investigate
the nature of nuclear texture differences between epithelial and
mesenchymal phenotypes. Conversely, a typical scatter plot
provides no information on the nature of differences between cell
lines (Fig. 3b). Thus, PhenoPlot is a flexible method that can assist
data analysis and identification of new hypotheses and comple-
ment other analysis and visualization techniques.

Discussion

Visualization is essential for understanding and interpreting
complex data extracted from cellular images. The currently
available general-purpose visualization tools, such as heatmaps or
parallel coordinates, are difficult to relate to biological phenom-
ena. These methods are usually accompanied by qualitative
examination of cellular images to identify cells representative of
the quantitative phenotypes!®4, which is a tedious task that
requires biological expertise, and is prone to bias. Many examples
in the literature employ pictorial representations to explain
biological phenotypes, but these examples are usually drawn
manually and are generally not quantitative!>"17. PhenoPlot
formalizes a general pictorial representation of cells using various
visual encodings and novel visualization techniques to concisely
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Figure 3 | PhenoPlots projected in the first two PCs. (a) PhenoPlots of the average morphological measurements for 19 breast cell lines where the cell
position in the two-dimensional plane is based on the first two PCs (PCA is applied to the same morphological measurements in Supplementary Fig. 2).
(b) Average measurements of breast cell line morphology projected in the first two PCs.

and quantitatively represent high-content data. PhenoPlot is
available as a Matlab toolbox, which allows the integration
of the visualization step with data exploration and data analysis
steps. To increase PhenoPlot usability, we developed a simple
GUI that can be easily used by biologists. We propose that
PhenoPlot can facilitate exploration, understanding, memory and
communication of cellular imaging data.

To maximize the effectiveness of PhenoPlot in communicating
research results, visualization principles should be considered.
These include the use of colour to make the most relevant
features to the biological question more salient!8, the application
of the Gestalt principle of proximity!! by plotting cells in PC
space and the removal of dimensions that do not convey
information to the reader!”

‘An image is worth a thousand words’, but the challenge in
high-content imaging is to summarize thousands of images in a
few figures. To our knowledge, PhenoPlot is the first method that
is specifically designed to represent cellular imaging data in an
intuitive way so that it can be easily linked to the biological
phenotype. This allows the effective visualization of multiple
dimensions, which can reveal complex relationships that might
otherwise be missed. Furthermore, PhenoPlot can aid the
understanding and interpretation of quantitative results. Impor-
tantly, extensive biological expertise is not required to understand
the visual elements in PhenoPlot, which make it a useful tool in
science communication.

Methods

Implementation. The PhenoPlot toolbox was developed using Matlab 2012a.
PhenoPlot includes a GUL The source code of PhenoPlot, demo files and the
data sets used in this manuscript are provided in the Supplementary Software
at http://www.icr.ac.uk/our-research/researchers-and-teams/dr-chris-bakal/
resources.

Experimental methods for breast cancer lines data set. MCF10A breast
epithelial and AU565 breast tumour cells were obtained from ATCC (LCG
Standards). MDAMB231, HCC70, HCC1143, HCC1954, MCF7, T47D, BT474,
CAMAL1, MDAMB453 and hs578T breast tumour and MCF12A non-tumour cells
were obtained from the laboratory of Alan Ashworth (Breakthrough Breast Cancer,
ICR). SUM149, SUM159, MDAMBI157, JIMT1, SKBR3 and ZR75.1 breast tumour
cells were obtained from the laboratory of Jorge Reis-Filho (Breakthrough Breast
Cancer, ICR).

All cell lines were cultured in DMEM:F12 Glutamax medium supplemented
with 5% heat-inactivated fetal bovine serum, unless otherwise indicated.

Cells were seeded in 384-well plates at concentrations ranging from 1,000 to
3,000 cells per well, depending on the size and proliferation rate of the cell line.
Cells were fixed on day 3 after plating. Before fixation, 10 pM dihydroethidium
(2-hydroethidium, dihydroethidium (DHE); Invitrogen) was added to all wells.
Cells were fixed with 4% formaldehyde at room temperature for 10 min, washed
with PBS and permeabilized with PBS/0.1% Triton-X-100 for 10 min at room
temperature. Nuclear DNA was stained with 4',6-diamino-2-phenylindole (DAPI;
Sigma). Sequential image acquisition was performed with a x 20 air objective using
an automated spinning disc confocal microscope, the Opera HCS (PerkinElmer).
Fourteen wells and 12 fields per well were imaged per condition.

Image processing. Customized image analysis scripts were developed and applied
using Acapella Studio 2.7 (PerkinElmer).

Nuclei were detected using the DAPI channel, and the cytoplasm was detected
based on the DHE channel using the nucleus object as a seed. Cell and nucleus
length, width and area and NF were extracted using Acapella functions. Twenty
texture features (eight SER, eight Gabor?’ and four Haralick?!) were calculated for
both the DAPI channel in the nuclei region and the DHE channel in the cell core
region. Protrusions were calculated as follows. For each cell, the average pixel
intensity in the DHE channel was calculated and the largest subobject with more
than 70% of the cell average intensity was selected as the cell core and the rest of
the cell was selected as protrusion area. Ruffliness was calculated as an SER Edge
texture feature in the cell membrane divided by the cell form factor, which we
found to be representative of cell edge ruffling. In total, 52 features were extracted.
Mitotic cells (cells with high DAPI intensity judged on experiment and cell line
bases), small objects and border objects were filtered out.

Computational analysis. All computational analysis steps were performed using
Matlab.
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Feature transformation. To obtain a texture features index, we scaled texture
features and then applied PCA to the nucleus and cell texture features individually.
We used the first PC from each set as compressed texture index.

For the hierarchical clustering and PCA, standard normalization was used so
that all features were on the same scale. Euclidean distance and average linkage
were used for the hierarchical clustering.

To generate the PhenoPlots in Figs 2a and 3a, dimensional features (cell length
and width, and nucleus length and width) were scaled together to a 0.1-1 interval
(to maintain aspect ratio) by subtracting the minimum of all dimensional features
and dividing by the range of all dimensional features, and then multiplying the
result by 0.9 and adding 0.1. The scaling for dimensional features start at 0.1 to
avoid losing an object when it has relatively the lowest length or width. All other
features were scaled between 0 and 1. Supplementary Table 5 lists the features used
for the represented elements.
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