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Insight into genetic predisposition to chronic
lymphocytic leukemia from integrative epigenomics
Helen E. Speedy1,10, Renée Beekman 2,3,10, Vicente Chapaprieta 4, Giulia Orlando1, Philip J. Law 1,

David Martín-García2,3, Jesús Gutiérrez-Abril5, Daniel Catovsky1, Sílvia Beà 2,3, Guillem Clot 2,3,

Montserrat Puiggròs6, David Torrents6,7, Xose S. Puente 3,5, James M. Allan8, Carlos López-Otín 3,5,

Elias Campo2,3,4,9, Richard S. Houlston 1,11 & José I. Martín-Subero2,3,4,7,11

Genome-wide association studies have provided evidence for inherited genetic predisposition

to chronic lymphocytic leukemia (CLL). To gain insight into the mechanisms underlying CLL

risk we analyze chromatin accessibility, active regulatory elements marked by H3K27ac, and

DNA methylation at 42 risk loci in up to 486 primary CLLs. We identify that risk loci are

significantly enriched for active chromatin in CLL with evidence of being CLL-specific or

differentially regulated in normal B-cell development. We then use in situ promoter capture

Hi-C, in conjunction with gene expression data to reveal likely target genes of the risk loci.

Candidate target genes are enriched for pathways related to B-cell development such as

MYC and BCL2 signalling. At 14 loci the analysis highlights 63 variants as the probable

functional basis of CLL risk. By integrating genetic and epigenetic information our analysis

reveals novel insights into the relationship between inherited predisposition and the reg-

ulatory chromatin landscape of CLL.
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Chronic lymphocytic leukemia (CLL) is an indolent B-cell
malignancy that has a strong genetic component, as evi-
denced by the eight-fold increased risk in relatives of CLL

patients1. Our understanding of CLL predisposition has been
transformed by genome-wide association studies (GWAS), which
have identified alleles at 43 loci influencing risk2–9. Elucidating
the function of these risk loci is an important step toward the
development of testable hypotheses regarding the biological
processes involved in CLL predisposition and pathogenesis. Most
GWAS signals, however, map to the non-coding genome and
elucidating the mechanisms through which these non-coding
variants exert their effect has proven challenging10. Integration of
chromatin immunoprecipitation–sequencing (ChIP-seq), chro-
matin accessibility, DNA methylation, and gene expression pro-
files with GWAS data has revealed novel biological insights for
other diseases11. Thus far, understanding the molecular basis of
CLL susceptibility loci has been limited because genome-wide
information on the CLL regulome has not been available for a
large CLL series.

In this study, we sought to address this deficiency by analyzing
a large, genetically and epigenetically well-characterized CLL
series, together with epigenome data of the normal B-cell line-
age12–14. First, by characterizing the epigenomes of CLL and
different stages of B-cell differentiation we gained insight into the
developmental basis of CLL risk. Second, we explored the CLL
risk loci using histone modification profiles, chromatin accessi-
bility assessed by assay for transposase-accessible chromatin using
sequencing (ATAC-seq), DNA methylation, and gene expression
data in conjunction with DNA genotypes in the same CLL cases.
Furthermore, we used three-dimensional chromatin data to
explore physical interactions between the risk loci and their
candidate target genes. These analyses allowed for a detailed
interpretation of GWAS signals for CLL and to infer the mole-
cular mechanisms through which loci operate.

Results
The active chromatin landscape at CLL risk loci. The majority of
GWAS risk loci map to non-coding regions of the genome and
influence gene regulation10. Hence, to gain insight into the biolo-
gical basis underlying genetic CLL predisposition, we evaluated
profiles of three histone marks related to active regulatory elements
at each locus in CLL cells (determined by H3K27ac, H3K4me3,
and H3K4me1 ChIP-seq marks). We first considered each of the
42 non-HLA risk loci solely on the basis of the strongest single-
nucleotide polymorphism (SNP) association with CLL in our
recent meta-analysis2 (Supplementary Data 1). One third (14/42)
of the risk SNPs localize to either active promoters or enhancers in
CLL cells (Fig. 1a). Moreover, on the basis of linkage dis-
equilibrium (LD; r2 ≥ 0.2) with the sentinel SNP, 93% (39/42) of
the risk loci featured SNPs mapping to an active regulatory element
(Fig. 1a and Supplementary Data 2; P= 1.3 × 10−8, Fisher’s exact
test). Specifically, on average 81% (34/42) of the LD-defined CLL
risk loci showed enrichment of active promoters and/or enhancers
per CLL sample (Fig. 1b, Supplementary Data 3). This enrichment
of CLL-related active regulatory elements at CLL risk loci contrasts
with the significantly lower enrichment observed at both colorectal
(CRC)15 and breast cancer (BC)16 GWAS loci (Fig. 1b, Supple-
mentary Data 3). Chromatin state enrichment in CLL essentially
defines five groups of risk loci characterized by: (i) active regulatory
elements only (n= 15 loci), (ii) active regulatory elements and
transcribed regions (n= 10 loci), (iii) weak regulatory elements
only (n= 10 loci), (iv) weak regulatory elements and transcribed
regions (n= 3 loci), and (v) poised and inactive regions (n= 4 loci)
(Fig. 1a).

Since the epigenome of B cells varies according to their
maturation state12,17, we examined H3K27ac profiles at the risk
loci in CLL and a range of normal B-cell subpopulations (Fig. 1c,
Supplementary Data 4). H3K27ac signals at 10 risk loci
(represented by 30 H3K27ac peaks) were significantly increased
in CLL cells as compared to normal B-cell subpopulations, a
significant higher number than expected (P= 3.5 × 10−3, Fisher’s
exact test, 11 peaks based on 1000 permutations). These included
five regions of de novo activation previously documented in
CLL12 (Supplementary Data 5). Overall, 93% of the LD-defined
risk loci (39/42, represented by 282 H3K27ac peaks) displayed
differential H3K27ac profiles across CLL and the different normal
B-cell subpopulations, also significantly more than that expected
(P= 3.0 × 10−3, Fisher’s exact test, 239 peaks based on 1000
permutations). Collectively, our data show that CLL risk loci are
enriched for CLL-related regulatory elements being CLL specific
or having differential regulation across CLL and B-cell develop-
ment, as exemplified by the loci marked by the SNPs rs11637565
and rs35923643 (Fig. 1d).

To gain further insight into the regulatory mechanisms
underpinning the CLL risk loci, we performed a quantitative
trait locus (QTL) analysis using 487 genotyped CLL cases14, with
corresponding H3K27ac ChIP-seq profiles (n = 97)12, chromatin
accessibility data assessed by ATAC-seq (n = 99)12, and 450k
Illumina DNA methylation profiles (n= 486)14 (Fig. 2a and
Supplementary Data 6). Nine of the risk loci were typified
by H3K27ac, 14 risk loci by chromatin accessibility, and 28 risk
loci by DNA methylation QTLs (Fig. 2a, b and Supplementary
Data 7). Within overlapping H3K27ac and accessibility QTLs (13
accessibility QTL peaks overlap with 10 of the H3K27ac QTL
peaks, covering 5 risk loci), the direction of effect of associated
epigenetic changes was concordant. Furthermore, overlapping
DNA methylation QTLs within these regions showed opposite
effects, i.e., higher DNA methylation with lower activity/
accessibility (Supplementary Data 7). These data are consistent
with risk alleles mediating their effects by influencing chromatin
activity.

Biological mechanisms and significance of CLL risk loci. We
next focused on the underlying biological mechanisms through
which genetic variants at CLL risk loci shape the regulatory
genome. Both our study (Fig. 1a) and published data2,16,18

indicate that cancer GWAS risk variants map to regulatory
regions, suggesting that germline genotypes may mediate their
affect through altered transcription factor (TF) binding. In view
of this, we assessed whether TF binding may be affected by
genetic variation at chromatin-accessible regions of CLL risk
loci. We used motifbreakR to predict disruption of TF-binding
motifs and examined lymphoblastoid cell line (LCL) ChIP-seq
data from the ENCODE project (Supplementary Data 8). This
analysis revealed disruption of SPI1- and NFKB-binding sites at
the risk alleles of SNPs rs13149699 (r2= 0.81 with sentinel SNP
rs57214277) and rs539846 (r2= 0.95 with sentinel SNP
rs8024033), respectively, as previously reported2,19. We also
detected disruption of SPI1-binding sites at risk alleles of five
other risk loci, associated with sentinel SNPs rs1002015,
rs11637565, rs142215530, rs210143, and rs6489882, as well as
disruption of other TFs relevant for B-cell development,
including PAX5 and MEF2 TF family members (Fig. 3, Sup-
plementary Data 8). Furthermore, we observed increased
binding affinities of the TFs previously associated with de novo
active regions in CLL, that is, FOX, NFAT, and TCF/LEF family
members12, at risk alleles of 16 risk loci, associated with sentinel
SNPs rs11637565, rs4368253, and rs4869818, among others
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(Fig. 3, Supplementary Data 8). These findings underline the
role of these TFs in CLL pathogenesis.

In addition, as risk variants may exert their pathogenic effect by
altering the accessibility of affected alleles, we studied the existence
of allelic imbalance at ATAC-seq peaks. The power to detect allelic
imbalance in chromatin accessibility was restricted to sites with

common variants and relatively large effects. Nevertheless, 10% of
the risk loci (4/42) showed evidence of allelic imbalance for
chromatin accessibility at a total of 9 SNPs (Supplementary Data 9).
Eight of these SNPs (89%) overlapped with accessibility QTLs, a
significantly larger fraction than for SNPs that did not show allelic
imbalance (35/180, 19%, P= 3.1 × 10−5, Fisher’s exact test).
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We finally sought to infer the biological relevance of risk loci
using two complementary approaches. First, we performed a gene
expression QTL (eQTL) analysis to identify candidate target
genes using GeneChip Human Genome U219 gene expression
data from 452 CLL cases14. Since genomic spatial proximity and
long-range chromatin looping interactions are central to the
regulation of gene expression, eQTL analysis was performed
considering the expression levels of genes located within
respective topologically associating domains (TADs)20 spanning
the LD regions (Supplementary Data 1). We detected 36 eQTLs
(defined by 62 probe sets assigned to 37 target genes) associated
with 23 risk loci (Fig. 2a, b and Supplementary Data 7). Included
were many genes with established roles in CLL oncogenesis (e.g.
LEF1), B-cell development (e.g. IRF8), or apoptosis (e.g.
BCL2L11, CASP8, FAS, BMF). Of note, three genes highlighted
by the eQTL analysis, LEF1 (rs7690934), IPCEF1 (rs4869818),
and DMRTA1 (rs1679013), have been previously identified as
target genes of de novo active regions in CLL (Supplementary
Data 5) and show higher expression in CLL compared with
normal B cells12. Such observations suggest a role for these genes
in both CLL predisposition and pathogenesis. Overall, 36 of the
42 risk loci (86%) showed a significant QTL in at least one of the
four layers analyzed (Fig. 2b).

Second, we made use of in situ promoter capture Hi-C (CHi-
C) data to examine chromatin looping interactions linking the
LD-defined risk loci to promoters of candidate target genes. We
analyzed CHi-C information from CLL cells as well as from
naive and total B cells12,21 (Supplementary Data 10). As well as
confirming the interaction between the rs2466029-associated
LD region and MYC at 8q24.2122, the looping interactions
implicate a number of other genes with established roles in B-
cell development. Notably, these include BCL2 as the target
gene of rs77551289/rs4987852 variation at 18q21.33 and BCL6
as the target gene of rs73192661 variation at 3q28. Overall,
there was supportive evidence from the CHi-C data for
chromatin interactions between the LD-defined CLL risk loci
with promoters of 15 of the 37 candidate genes (41%) identified
in the eQTL analysis, including TLE3 as a target of the
rs11637565 LD region as well as UBR5 as a target of the
rs2511713LD region (Fig. 4).

Discussion
Characterization of the regulatory elements that are perturbed by
CLL GWAS risk variants is central to efforts to define the
mechanisms through which these variants operate and to
reconstruct the biological networks that underlie CLL tumor-
igenesis. However, genome-wide epigenomic characterization of
CLL in combination with the availability of genetic data in large
CLL series has so far been lacking. Here we have addressed this
deficit by using a large, genetically well-characterized CLL series14

for which genome-wide data of multiple epigenetic layers were
recently generated12. We combined the genetic and epigenetic
data to determine in unprecedented detail genotype-dependent
patterns of chromatin accessibility, activity, and DNA methyla-
tion in CLL. Overall, our approach has allowed us to infer
potential functional variants at 14 of the CLL risk loci (Supple-
mentary Data 11). Moreover, our analyses underline that risk loci
in CLL affect genes that participate in interconnecting cellular
pathways that are central to B-cell function, including immune
response (SP140, BCL6, OAS1, and IRF8)23–26, apoptosis
(BCL2L11, CASP8, CFLAR, FAS, BMF, and BCL2)27, and Wnt
signaling (UBR5, TLE3, and LEF1)28,29. This information serves
to illustrate the value of delineating the functional mechanisms
and target genes underlying risk loci as such data can have an
impact on the successful development of new therapeutic agents.
In this respect, it is notable that the recently introduced CLL
treatment Ibrutinib inhibits BTK30, a kinase with a key role in B-
cell function, while Venetoclax targets the antiapoptotic activity
of BCL231. In conclusion, our approach has allowed us to gen-
erate a refined regulatory map of CLL risk loci offering a more
granular annotation of their functional impact, which will facil-
itate future experimental validation of potential causal variants.

Methods
Patients. The clinical and biological characteristics of the 502 CLL patients studied
are detailed in Supplementary Data 6. Cases were defined as IGHV-mutated when
the identity of immunoglobulin genes was <98%. Tumor samples were obtained
pre-therapy. All patients gave informed consent for their participation in the study
following the International Cancer Genome Consortium (ICGC) guidelines and the
ICGC Ethics and Policy committee32, and this study was approved by the clinical
research ethics committee of the Hospital Clinic of Barcelona.

Fig. 1 Linking chronic lymphocytic leukemia (CLL) risk loci to chromatin states. a Top panel: graphical representation of a risk locus with a sentinel single-
nucleotide polymorphism (SNP; representing the SNP with the strongest association in relation to CLL development) and its linkage disequilibrium (LD)
region (shaded blue), containing all the SNPs that are within LD0.2 (LD with r2≥ 0.2) with the sentinel SNP. Lower panel: frequency of chromatin states in
CLL (n= 7 biologically independent samples) at the exact position of the sentinel SNPs of the 42 CLL risk loci and in their LD regions (LD0.2 regions), as
well as the median log2(fold change) of the different chromatin states in CLL in the LD0.2 regions. On the left, the sentinel SNPs are indicated, and on the
right the different chromatin state subgroups (groups 1–5) of the risk loci, as referred to in the main text, as well as the size of the LD0.2 regions in
kilobases. b Boxplots of fraction of CLL (n= 42 independent regions), colorectal (CRC, n= 75 independent regions), and breast cancer (BC, n= 165 regions
independent regions) risk loci enriched for active regulatory elements in CLL cases (n= 7 biologically independent samples). Mean, median, minimum and
maximum fraction of regions, and number of data points for CLL: 0.81, 0.81, 0.74, 0.86, 7; for CRC: 0.52, 0.53, 0.45, 0.59, 7; and for BC: 0.53, 0.52, 0.50,
0.56, 7. Corrected P value, test statistics (W), median difference, and 95% confidence interval for CLL vs. CRC: 6.4 × 10−3, 49, 0.28, 0.23–0.34, for CLL vs.
BC: 6.4 × 10−3, 49, 0.29, 0.23–0.33, and for CRC vs. BC: 1.0, 24, 0.01, −0.03 to 0.05. P values were calculated using Wilcoxon rank-sum test (two-sided)
and corrected using the Bonferroni multiple testing correction. **P-value < 1.0 × 10−2, n.s. non significant. c Upper panel: Distribution of non-individual
H3K27ac peaks with specific activation patterns in CLL as compared to normal B cells. Lower panel: Mean H3K27ac signal in CLL and normal B cells in all
non-individual H3K27ac peaks of the selected risk loci. On the right, the different H3K27ac state subgroups are indicated, using the same color codes as
the upper panel. Sample sizes were for CLL: n= 7 biologically independent samples and for NBC-PB, NBC-T, GCBC, MBC, and PC-T: n= 3 biologically
independent samples. d Representation of chromatin states in seven CLL cases and normal B cells (one representative samples for each subpopulation) in
the LD0.2 regions of the sentinel SNPs rs11637565 (left panel) and rs35923643 (right panel). The black arrows represent the sentinel SNPs, the red arrows
indicate SNPs that are in LD0.2 with the sentinel SNP that are located in active regulatory elements (ActProm, StrEnh1, StrEn2) in at least one CLL case.
Red arrows may point to clusters of SNPs in close proximity to each other. Genomic regions represented (GRCh38) are chr15:69,671,700–69,756,772 (left
panel) and chr11:123,470,881–123,525,966 (right panel). ActProm active promoter, WkProm weak promoter, PoisProm poised promoter, StrEnh1 strong
enhancer 1, StrEnh2 strong enhancer 2, WkEnh weak enhancer, Txn_Trans transcription transition, Txn_Elong transcription elongation, Wk_Txn weak
transcription, H3K9me3_Repr H3K9me3 repressed, H3K27me3_Repr H3K27me3 repressed, Het;LowSign heterochromatin;low signal, NBC-PB naive B cell
from peripheral blood, NBC-T naive B cell from tonsil, GCBC germinal center B cell, MBC memory B cell, PC-T plasma cell from tonsil
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Datasets. Whole-genome sequencing (WGS) and SNP6.0 array data (Thermo
Fisher Scientific) of, respectively, 146 and 502 patients were obtained from Puente
et al.14. Chromatin state segmentations (200 bp bins) of 7 CLLs and 15 normal B-
cell samples as well as variance-stabilized (vst) data signals of H3K27ac and ATAC-
seq determined by DESeq2 (corrected for signal proportion of tags (SPOT) score)
(97 and 99 CLL patients, respectively) were derived from Beekman et al.12 (http://
resources.idibaps.org/paper/the-reference-epigenome-and-regulatory-chromatin-
landscape-of-chronic-lymphocytic-leukemia). DNA methylation data of 486 CLLs
(Illumina 450k arrays) and GC-RMA normalized gene expression data of 452 CLL
patients (GeneChip Human Genome U219 arrays) were derived from Puente
et al.14.

Definition of risk loci. Sentinel SNPs at the 42 non-HLA risk CLL GWAS loci
were obtained from Law et al.2. Sentinel SNPs at 169 BC risk loci were obtained
from Michailidou et al.16. Sentinel SNPs at 78 CRC risk loci were obtained from
Schmit et al.15. LD regions were defined by r2 ≥ 0.2 with each sentinel SNP. LD
metrics were calculated using LDlink33 for the European populations of the 1000
Genomes project (Phase 3 data). Three BC risk loci (rs554219, 4:84370124,
rs373038216) were absent in the 1000 Genomes data and therefore excluded (LD
regions could not be calculated). One BC risk locus (rs8176636) could not be
mapped to the GRCh38 genome build and was therefore excluded. Three CRC risk
loci were excluded (rs7758229, rs6061231, rs11064437) as they have only been
reported in Asian populations.

Linking risk loci to chromatin states. Chromatin states at risk loci were assigned
using the chromatin state segmentations as previously defined12. For each CLL

sample, the chromatin state enrichment at a CLL risk region, E, was calculated as

Eij ¼ log2
Cj;i

Cj;B
ð1Þ

where i is a CLL risk allele, j is a chromatin state, Cj;i is the fraction of the LD region
(r2 ≥ 0.2) of i covered by chromatin state j, and Cj;B is the fraction of the back-
ground regions covered by chromatin state j. These background regions were
determined as the merged LD regions (r2 ≥ 0.2) of all SNPs in the 1000 Genomes
Project and UK10K34, excluding regions containing CLL, BC, or CRC risk loci
(Supplementary Data 12). The difference in chromatin state enrichment for CLL
risk loci with BC and CRC risk loci was calculated using Wilcoxon rank-sum test.
No covariates were tested. To account for multiple testing, a Bonferroni correction
was applied.

Comparison of H3K27ac signal among CLL and normal B cells. Differential
signal intensity of non-individual H3K27ac peaks was calculated using DESeq235.
H3K27ac counts at these loci were mined from Beekman et al.12. The analysis was
performed by contrasting CLL with each of the normal subpopulations samples
using nbinomWaldTest, correcting for the SPOT score; per sample, its condition
(CLL or the corresponding normal B-cell subpopulation) and the SPOT score were
introduced into the model as per Beekman et al.12. Regions with a false discovery
rate (FDR) < 0.01 were considered significantly enriched.

Assignments of genotypes. Genotypes of (i) 42 sentinel SNPs, (ii) 225 bi-allelic
SNPs located in ATAC-seq peaks analyzed in the QTL analysis being in LD with
the sentinel SNP, and (iii) 94,233 bi-allelic background SNPs were assigned from
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Fig. 2 Quantitative trait locus (QTL) analysis and results overview. a Workflow describing the generation of genotypes for 42 non-HLA risk single-
nucleotide polymorphisms (SNPs) in 487 chronic lymphocytic leukemia (CLL) patients for use in QTL analyses. The genotypes were assigned using a
combination of directly genotyped (n= 4 independent SNPs) or imputed (n= 38 independent SNPs) SNP6.0 array data (502 independent CLL patients)
and whole-genome sequencing (WGS) data (n= 146 independent CLL patients). Fourteen of the 502 CLL cases were excluded owing to non-European
ancestry, excessive heterozygosity, or sample relatedness. Five of the 38 imputed SNPs were subject to poor imputation with an information measure
<0.85. The imputation fidelity check using the WGS data resulted into the exclusion of one CLL case with >10% discordance between the imputed and
WGS data. In the lower part of the panel, summary results for each type of analysis are shown. b Per locus overview of QTL analysis results. Loci are
denoted by their respective sentinel SNPs (with their location in GRCh38) and shaded boxes indicate the presence of ≥1 significant QTL at false discovery
rate <0.05 for each of the four layers analyzed: assay for transposase-accessible chromatin using sequencing (QTLs marked by dark red shading);
H3K27ac (orange); DNA methylation (blue); gene expression (green). In addition, on the right, the candidate target genes identified by expression QTL
analysis are indicated
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SNP6.0 array data (using normal DNA) and WGS data (using normal and/or
tumor DNA). The first set of peaks was used for QTL analyses, the latter two for the
allelic imbalance analysis (see also Supplementary Data 9 and the paragraph on
allelic imbalance in this “Methods” section). Genotyping data from the 502 CLL cases
were subject to standard quality control36, resulting in the exclusion of 14 cases prior
to imputation because of non-European ancestry (using the HapMap version 2 CEU,
JPT/CHB, and YRI populations as reference), excessive heterozygosity, or related-
ness. SNPs with a call rate <95%, a minor allele frequency <1%, or displaying
significant deviation from Hardy–Weinberg equilibrium (i.e., P < 10−6) were also
excluded. Whole-genome imputation was performed using the IMPUTE2
v2.3 software37 with a merged reference panel consisting of data from the 1000
Genomes Project (phase 1 integrated release 3, March 2012) and UK10K34. No
genotypes were assigned to poorly imputed SNPs with an information measure
<0.85 (sentinel SNPs, n= 5; SNPs for allelic imbalance, n= 31; SNPs with low
information measures were not included in the background set of 94233 SNPs). No
genotypes were assigned to SNPs residing in regions with copy number alterations
in the corresponding CLL samples (as determined from the SNP6.0 array data of
the matched tumor DNA). Imputation probabilities were converted to SNP gen-
otypes using PLINK v1.938, using an uncertainty threshold of >0.1 to preclude
genotype assignment. In order to check the fidelity of imputation and to look for
potential mismatches in the CLL samples, we examined WGS data from 146 CLL
cases for the sentinel SNPs (the cases overlapping with the 488 patients prior to
imputation) and 38 CLL cases for the SNPs for the allelic imbalance analysis and
the background SNPs (the cases overlapping with the 99 samples with ATAC-seq
data). For the WGS data, SNPs were called with the MAQ consensus model
implemented in SAMtools in those coordinates with at least 10 reads with a
minimum mapping quality of 30 and base quality of 3014. No genotypes were
assigned for the WGS data to SNPs showing discordant genotypes between normal
and tumor DNA. One CLL sample (CLL618) where the genotypes assigned by
imputation and WGS showed <90% concordance for the sentinel SNPs was
excluded from all subsequent analyses. For the SNPs where genotypes assigned by
imputation and WGS showed <90% concordance, we used WGS data only (n= 0
for sentinel SNPs and SNPs for allelic imbalance analysis; n= 563 for the 94,233
background SNPs). Upon discordance between the genotypes of the imputation
and the WGS data for the remaining SNPs and samples, we used the WGS assigned
genotypes. We also used WGS to add missing genotypes that had failed to be
assigned following imputation (SNP information measure <0.85 or genotype
probability <0.90), generating matrices of 42 sentinel SNPs genotyped in up to 487

cases for QTL analyses (Fig. 2a) and of 225 SNPs as well as 94233 background
SNPs genotyped in up to 99 cases for allelic imbalance analysis.

QTL analysis. QTL analyses were performed using genotype data for the sentinel
SNPs in conjunction with ATAC-seq (n= 99)12 H3K27ac (n= 97)12, methylation
(n= 486)14, and gene expression data (n= 452)14 from CLL cases. Input data were
vst-normalized data signals (corrected for SPOT score) for ATAC-seq and
H3K27ac, M-values for DNA methylation, and GC-RMA-normalized for gene
expression. ATAC-seq and H3K27ac QTL analyses were performed for peaks
present in at least 10% (with a minimum of two) of the patients in one or more of
the following subgroups: homozygous non-risk, heterozygous risk, or homozygous
risk based on the sentinel SNP genotype. eQTL analysis was restricted to expressed
probes (GC-RMA levels >4.5) again in at least 10% (with a minimum of two) of the
patients in one or more of the following subgroups: homozygous non-risk, het-
erozygous risk, or homozygous risk based on the sentinel SNP genotype. To
account for confounding factors, we implemented the probabilistic estimation of
expression residuals (PEER) method39 using 10, 10, 45, and 65 factors for ATAC-
seq, H3K27ac, methylation, and gene expression data, respectively. Inverse normal-
transformed PEER-computed residuals were used as input for QTL analyses, which
were conducted using Matrix eQTL, under a linear model40. TADs for the eQTL
analysis were defined using in situ Hi-C data from the LCL GM1287841 and were
mined from Beekman et al.12 (http://resources.idibaps.org/paper/the-reference-
epigenome-and-regulatory-chromatin-landscape-of-chronic-lymphocytic-
leukemia).

Promoter CHi-C. Raw data of previously generated in situ promoter capture Hi-C
(CHi-C) on CLL, naive, and total B cells was used12,21. Reads were aligned to the
GRCh37 build using bowtie2 v2.2.642 and identification of valid di-tags was per-
formed using HiCUP v0.5.943. To declare significant contacts, HiCUP output was
processed using CHiCAGO v1.1.844. As advocated, interactions with a score ≥5.0
were considered to be statistically significant.

Allelic imbalance. A beta-binomial test was used to assess the allelic imbalance at
all bi-allelic SNPs that (i) were in LD (r2 ≥ 0.2) with the sentinel SNP and located in
ATAC-seq peaks used for the QTL analysis (n= 225), and (ii) had at least 3
heterozygous samples and at least 10 reads, leading to a final number of 189 SNPs
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Fig. 3 Transcription factor (TF)-binding motif analysis. Examples of altered TF-binding motifs at potential functional risk loci. The affected nucleotides in the
different motifs are marked by an asterisk. The sequence surrounding the single-nucleotide polymorphism (SNP) is located under the motif graphs, with
the different possible alleles of the potential functional SNP indicated below each other
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to be assessed. Reads with mapping bias were removed using WASP45 and bwa
0.7.1546. In brief, the nucleotide sequence of the reads overlapping the investigated
SNPs was modified to investigate potential mapping bias. More specifically, the
nucleotides at known SNP positions within these reads were substituted by
nucleotides of the other possible allele(s). Reads that after modification failed to
remap in the same position in the genome were discarded. PCR duplicates were
removed using the WASP script rmdup_pe.py. Thereafter, for each analyzed SNP
the number of reads containing the two different possible alleles was determined,
pooling all heterozygote samples. To control for possible errors in genotyping,
counts from samples at SNPs were only used if they presented a reference allele
count ratio of 0.1–0.9 in comparison to the total counts of the reference and the
alternative allele together. The beta-binomial parameters were estimated using bi-
allelic SNPs not in LD with the sentinel SNP that were located (i) within ATAC-seq
peaks used for the QTL analysis and (ii) within genome-wide ATAC-seq peaks
harboring a peak in at least 10% of the CLL patients (94233 SNPs in total, SNPs
within the HLA locus, the immunoglobulin loci, and imprinted regions were
excluded). The maximum likelihood estimations were α= 20.5 and β= 20.3. The P

values were corrected for multiple testing (FDR < 0.1). The central tendency of
allelic imbalance was defined per SNP by calculating the allele ratio of the reference
allele, while its 95% confidence intervals was calculated using the normal
approximation.

TF motif and binding analysis. To investigate TF-binding site disruption, the
motifbreakR package47 was used. Scores were calculated using the relative entropy
algorithm. P values were calculated using the score, given the score distribution
using the position weight matrices. SNPs were also annotated for bound TFs using
ENCODE48 ChIP-seq data for LCLs.

GWAS datasets. Meta-analysis of three GWAS datasets (UK-CLL1, UK-CLL2
and the NHL-GWAS Consortium)2,3 was conducted as previously described2,3.
NHL-GWAS Consortium data were a subset of those previously published2,7,8 and
were downloaded from dbGAP phs000801.v2.p1 (sub-study phs000802.v2.p1).
After standard QC procedures, final GWAS datasets comprised of UK-CLL1:
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Fig. 4 Characterization of quantitative trait loci (QTLs) and looping interactions at the 15q23 and 8q22.3 chronic lymphocytic leukemia (CLL) risk loci. (Top
panels) Boxplots illustrating associations between a rs11637565 and b rs2511713 genotypes and chromatin accessibility (assay for transposase-accessible
chromatin(ATAC) QTL), histone H3 lysine 27 acetylation (H3K27ac QTL), DNA methylation (methylation QTL), and candidate target gene transcript
levels (expression QTL) in CLL patients (number of independent CLL samples for ATAC: n= 99, H3K27ac: n= 97, DNA methylation: n= 486, and
transcript levels: n= 452). (Lower panels) Chromosomal positions of sentinel single-nucleotide polymorphisms (SNPs; rs11637565/rs2511713, gray dots),
QTL peaks/probes, and coding genes (black rectangles). The linkage disequilibrium (LD) regions, encompassing SNPs in LD r2≥ 0.2 with the sentinel SNPs
are indicated by light blue rectangles. Also shown are looping interactions (pink arcs) from the LD regions to the promoters of TLE3 and UBR5. Pink
rectangles represent interacting HindIII fragments. Topologically associating domains (dark blue rectangles, TAD) containing all features are truncated for
clarity; their extension beyond the figure boundaries is indicated by arrowheads
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503 CLL cases and 2698 controls; UK-CLL2: 1304 CLL cases and 2501 controls;
and NHL-GWAS: 1751 cases and 2494 controls. Imputation of untyped SNPs in
the GWAS datasets was performed using IMPUTE2 v2.3 software and a merged
reference panel consisting of data from 1000 Genomes Project (phase 1 integrated
release 3 March 2012) and the UK10K, as previously described2,3. Tests of asso-
ciation between imputed SNPs and CLL were performed using logistic regression
under an additive genetic model in SNPTESTv2.549. Meta-analysis was performed
using the fixed-effects inverse-variance method based on the β estimates and
standard errors from each study using META v1.650.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All raw data for this study were mined from previous studies12,14,21 and has been
deposited at the European Genome-Phenome Archive (EGA; http://www.ebi.ac.uk/ega/),
which is hosted at the European Bioinformatics Institute (EBI), under accession numbers
EGAS00000000092, EGAD00001004046, EGAS00001000272, and EGAS00001001911.
Furthermore, processed data matrices can be found in http://resources.idibaps.org/paper/
insight-into-genetic-predisposition-to-chronic-lymphocytic-leukemia-from-integrative-
epigenomics.

Code availability
Custom code related to the present article can be found in http://resources.idibaps.org/
paper/insight-into-genetic-predisposition-to-chronic-lymphocytic-leukemia-from-
integrative-epigenomics.
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