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Combined radiotherapy and hyperthermia offer great potential for

the successful treatment of radio-resistant tumours through thermo-

radiosensitization. Tumour response heterogeneity, due to intrinsic, or

micro-environmentally induced factors, may greatly influence treatment out-

come, but is difficult to account for using traditional treatment planning

approaches. Systems oncology simulation, using mathematical models

designed to predict tumour growth and treatment response, provides a

powerful tool for analysis and optimization of combined treatments. We pre-

sent a framework that simulates such combination treatments on a cellular

level. This multiscale hybrid cellular automaton simulates large cell

populations (up to 107 cells) in vitro, while allowing individual cell-cycle

progression, and treatment response by modelling radiation-induced mitotic

cell death, and immediate cell kill in response to heating. Based on a cali-

bration using a number of experimental growth, cell cycle and survival

datasets for HCT116 cells, model predictions agreed well (R2 . 0.95) with

experimental data within the range of (thermal and radiation) doses tested

(0–40 CEM43, 0–5 Gy). The proposed framework offers flexibility for mod-

elling multimodality treatment combinations in different scenarios. It may

therefore provide an important step towards the modelling of personalized

therapies using a virtual patient tumour.
1. Introduction
Cancer is a complex disease, with a variety of approaches available for its treat-

ment. Treatment modalities are often combined to maximize response and to

overcome the limitations of individual modalities when used alone. One such

example is the combination of radiotherapy (RT) with hyperthermia (HT), i.e.

non-ablative sustained heating (41–508C applied for times up to � 1 h) for

the treatment of radiation-resistant tumours, or tumour sub-regions. Heat has

a radio-sensitizing effect on cell lines of both normal and malignant origin

[1–3]. Heating applied locally to a tumour may therefore enhance treatment

outcome without increasing the risk of normal tissue complications. The intra-

cellular mechanisms involved in thermo-radiosensitization are still subject to

investigation. However, it is believed that a major cause of this synergism is

an inhibition of DNA repair mechanisms by heat, leaving them more vulnerable

to radiation-induced DNA strand breaks [4–6]. Radiation induced cell death is

a highly regulated cellular process. Depending on factors such as the severity of

the damage, cell-cycle stage and cell type, a response cascade, which will not

only drive pro-survival repair pathways, but also trigger programmed cell

death, is activated [4,7–9]. Once DNA damage is recognized, cell-cycle
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checkpoint inhibition will prevent cycle progression to allow

time for damage repair. Depending on the cell’s current stage

in its cycle, the allowed duration of cell-cycle arrest, as well as

the availability of different DNA repair pathways, varies,

leading to differences in repair capacity between cell-cycle

stages. However, prolonged activation of repair and cell-

cycle arrest drive prodeath pathways, resulting, if repair is

unsuccessful, in cell kill via apoptosis, necroptosis or autop-

hagy depending on both the cell type and the severity of the

damage [4,7]. If the cell-cycle checkpoint functionality is

compromised, unrepaired DNA damage will be inherited by

daughter cells and may result in the formation of highly

aneuploid cells with abnormal phenotype (giant cells) that

eventually die or are unable to reproduce (mitotic catastrophe).

This mitotic cell death is therefore not instantaneous but may

take several cycles to manifest itself. Cellular senescence,

i.e. irreversible cell-cycle arrest, is another potential result of

severe DNA damage. Senescent cells do not proliferate but

remain metabolically active [4,7]. In order to predict the

dynamic treatment response of a tumour, or of a cell popu-

lation, in general, it is therefore important to consider these

various reaction pathways.

Systems oncology simulations [10–14] provide a powerful

tool for analysis and optimization of treatment combinations,

and make it possible to take inhomogeneities in the delivered

heating profiles into account. In general, two types of simu-

lation approaches, continuum and discrete models, are

considered. Continuum-based approaches describe macro-

scopic cell densities and substrate concentrations according

to reaction–diffusion processes using sets of partial and

ordinary differential equations (PDEs and ODEs) [11]. Dis-

crete approaches, such as cellular automaton models, track

individual cells or even sub-cellular elements [11]. These

are usually represented as lattice points on a simulation

grid with all actions being governed by a set of predefined

rules. Hybrid models combine both approaches and model

biophysical processes on scales ranging from cellular to

macroscopic using a mix of predefined transition rules and

PDE-driven processes, such as the diffusion of nutrients or

messaging molecules. Recent publications in the field of com-

putational modelling of cancer therapies span a broad range,

from modelling cell response in vitro [15–17] to modelling

angiogenesis and tumour vasculature effects [18,19], the pre-

diction of treatment outcome for patients [20,21] treated with

a variety of approaches, and even to describing the evolution

of different cancer types [22].

Although several studies have looked into modelling

radio- and chemo-therapy response [10,18,23], studies report-

ing the effects of combination treatments of radiation and

heat are few. Several groups have investigated the mathemat-

ical modelling of therapy outcome in terms of cell surviving

fractions [3,24–26].

We here present an implementation of a hybrid cellular

automaton model which simulates the response of cells to

heat, RT or combinations of the two, on several different

spatio-temporal scales. Temporally, the simulation covers

modelling a cell’s cycle progression (minutes), cellular div-

ision and treatment response (hours), up to the modelling

of the growth of the whole population over the course of a

treatment (days). Spatially, the simulation ranges from simu-

lating individual cells (mm) to dealing with macroscopic cell

culture dishes ( � 107 cells, cm scale). The multiscale nature of

the model therefore requires analysis of the effects of single
and combination treatments on individual cells, and on the

cell population as a whole. The aim of this model was the pre-

diction of response to the treatment of a large-cell population

in vitro, i.e. to predict the number and distribution of viable

cells over time, in order to provide an important first step

towards more complex modelling of tumours in vivo. This

requires finding a compromise between the simplest model

that summarizes a cascade of complex biological processes,

and a model that is sufficiently complex to describe the

observed biological behaviour and is based on known key

response pathways.
2. Methods
2.1. Model implementation
The model presented here is a significant development of the

previous model of Powathil et al. [23,27], with new implemen-

tation in Cþþ. This is a cellular automaton model for the

simulation of response to therapy using the recently developed

AlphaR survival model designed specifically for calculating cell

surviving fractions after multimodality treatments [26]. Besides

enabling the introduction of heat as a second treatment modality,

the simulation framework has been extended to include dynamic

modelling of mitotic cell kill after irradiation. Optimization of the

implementation has further allowed an extension of the simu-

lation to large cell populations (of the order of several million

cells). This is required for direct comparison between experimen-

tal and simulated data. We show that our model can predict the

dynamic growth of a treated cell population once key model

parameters have been adjusted using experimentally derived

in vitro data.

2.1.1. Growth modelling
Digital cells are represented as voxels on a two- or three-dimen-

sional lattice depending on the experimental set-up to be

simulated. Thus, the diameter of a cell corresponds to the edge

length of a voxel. The following discussion of in vitro exper-

iments is restricted to the representation of cell monolayers in

culture dishes, which are simulated as flat, two-dimensional

lattices.

In agreement with the known cell-cycle progression of real

cells [28,29], each virtual cell follows the well-known four-stage

cycle through G1, S, G2 and M-phases. Cycle stages are assigned

according to an individual cell-cycle timer that is incremented in

each time frame according to the predefined growth rate of that

cell type. To account for variation in cycle duration for cells

within a population, growth rates are assigned using a normal

distribution, with a mean growth rate corresponding to the exper-

imentally determined rate for the specific cell type, and a standard

deviation of 5% of this value. Upon division, a cell’s neighbour-

hood (i.e. Von Neumann (directly adjacent voxels), or Moore

(directly and diagonally adjacent voxels) neighbourhoods) is

scanned for free spaces up to third-order neighbours. Moore

and Von Neumann neighbourhoods are applied alternately to

give circular growth of the cell colony. From all free spaces, an

empty voxel is randomly selected for the new position of the

daughter cell, with positions closest to the parental cell being occu-

pied first. For simplicity, during these relatively short-term studies

(up to two weeks), all cells are assumed to have an infinite life

span and unlimited division potential in the absence of external

damage, resulting in exponential population growth. However,

experimental cellular growth curves in vitro (i.e. number of cells

present as a function of time) are characterized by an initial lag

period during which the cells attach and adapt to their new

environment, followed by exponential growth. A lag phase of

2 h was therefore introduced into our simulations. During this

http://rsif.royalsocietypublishing.org/


G1

S

G2

M

da
ug

ht
er

 c
el

l

pa
re

nt
 c

el
l

space?

cell cycle tim
er

0 h

tS

tdouble

tG2

tM

normal growth

rsif.royalsocietypublishing.org
J.R.Soc.Interfa

3

 on January 30, 2018http://rsif.royalsocietypublishing.org/Downloaded from 
phase, digital cells do not progress through their cycle, but may

die if treatment is delivered during this time.

In a culture dish, a cell population eventually reaches conflu-

ence, and proliferation decreases due to a lack of space and

increased competition for nutrients. This results in a plateau in

the growth curve. A fifth stage, G0, is introduced to account for

this behaviour. G0 represents a reversible resting stage (quies-

cence). It is entered if a cell is no longer able to divide due to a

lack of free space nearby. Quiescent cells arrest their cycle until

neighbouring spaces are vacated, or the cell is killed. For a simu-

lated culture dish of a predefined geometry, the number of cells

at which the plateau is reached depends only on the number of

voxels present, thus making it necessary to adapt the voxel

size to model the shape of a simulated plateauing growth

curve correctly. This will be described in detail in §3.1.1.

Figure 1 shows a flow chart which describes the simulation of

normal cell growth.
G0 arrestdivision

noyes

neighbouring space has
been freed

Figure 1. Flow chart showing the implementation of normal cell growth.
According to its cycle timer a virtual cell follows a four-stage cycle consisting
of G1, S, G2 and M-phases. Once the cycle timer exceeds the threshold time
tstage, the cell is assigned to a new cycle stage. Once the cycle timer reaches
the doubling time tdouble, the cell will either divide into two cells in stage G1

or enter the reversible quiescent stage G0, if no free neighbouring spaces are
available. (Online version in colour.)

ce
15:20170681
2.2. Treatment response modelling
2.2.1. Radiotherapy
Radiation is simulated as being delivered homogeneously to all

cells in each fraction. Cell survival after radiation, SRT, is esti-

mated as a function of dose d using the AlphaR model [26],

extended by a cycle stage-dependent weighting factor g to

account for differences in radiation sensitivity at each stage [23].

� log (SRT) ¼
g((a0 � aR)dþ bd2) d � DT ¼ aR

2b

g a0d� a2
R

4b

� �
d . DT:

8<
: ð2:1Þ

The AlphaR model uses three cell line and treatment-dependent

parameters: a0, aR and b. These describe a combination of cellu-

lar damage (a0), damage repair (aR) and reduction of the repair

capacity with increasing dose (b). DT represents a threshold dose

above which no damage repair is possible. Whereas for doses

lower than DT, survival is described by a linear-quadratic (LQ)

exponential function, the cell survival curve is described by a

single exponential for doses exceeding this threshold.

The advantage of the AlphaR model over others, such as the

LQ model [30], is its applicability to multimodality therapies. In

particular, HT cell survival curves, which are characterized by a

strong shoulder followed by an exponentially linear decay, are

well described by this model. More information on the cell

survival model used is provided in [26].

As for most cell survival models, the AlphaR model relates to

survival as measured by clonogenic assays [31]. This assay is

conducted several days post treatment, and therefore does not

give information about the dynamics of cell damage and

repair. In the range of doses used therapeutically, radiation-

induced cell killing is not instantaneous, but occurs as a conse-

quence of the cell’s inability to undergo division successfully

[4,7,8]. This means that irradiated cells may continue to prolifer-

ate, become senescent or form giant cells with multiple nuclei

(mitotic catastrophe) before undergoing apoptosis. It is impor-

tant to take this into account as growth restrictions due to

space or nutrient limitations, as well as processes such as re-

oxygenation (where three-dimensional growth is considered)

will be affected by these dying cells.

Previous simulations have accounted for this observation by

artificially increasing the surviving fraction predicted by the cell

survival model (e.g. [23,27,32]). However, such an implemen-

tation does not reflect actual cellular behaviour, and has not

been verified experimentally. In our model, we approximate

the dynamics of radiation-induced cell killing using a series of

random events as outlined in the decision tree shown in

figure 2. Each cell that receives radiation in the simulation, will

die with a probability 1-SRT (SRT being the calculated surviving

fraction). However, radiation-induced cell kill is not simulated
as being instantaneous, rather, the dying cells are assigned a ran-

domly selected delay period between irradiation and time of

death. These delays to cell death are sampled from an exponen-

tial distribution with exponent kdelay which has to be determined

from experimental data (see §2.4). During the delay period, cells

keep proliferating, but any daughter cells created will die at the

same time as their parent. Besides normal proliferation, dying

cells can also enter mitotic catastrophe at the end of M-phase,

with a probability pmitoticCat. Cells undergoing mitotic cell

death either form giant cells with their size increasing at each

attempted division, or they become senescent with probability

psenescence, i.e. they cease to proliferate but are still viable. This

allows for a small population of surviving, but non-proliferating

cells. It should be stressed that, although motivated by exper-

imental observations, this simulation provides a mathematical

construct that provided the best balance between a biologically

motivated description and simplifying approximations to build

a time efficient simulation. The actual underlying biological pro-

cesses may, however, be far more complex, and it was the aim of

this study to provide a deliberately simple implementation with

few model parameters to vary.
2.2.2. Cellular heat response
For the experimental procedure described below, heat treatments

are simulated as temporally homogeneous exposures, such as are

performed in a thermal cycler. The biological effect of these treat-

ments depends on treatment temperature and duration. To

compare different heating profiles, and to quantify the effects

of the applied heat distribution at a cellular level, the ‘thermal

dose’ concept [33] is used. Thermal dose is defined in terms of

the equivalent time at a constant temperature of 438C (measured

in units described as CEM43) required to yield the same number

of surviving cells as from a different arbitrary combination of

http://rsif.royalsocietypublishing.org/


HT only
N > SHT

RT only
N > SRT
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delay timer assigned

instantaneous
death

death (delay timer = 0)

giant cell:
occupy another

voxel

senescence:
exit cell cycle

proliferating stop dividing

M-phase:
1–pmitoticCat pmitoticCat

M-Phase: 
psenescence 1–psenescence

RTHT

N > SHT
SHT > N > SRTHT

mixed response

Figure 2. Decision tree used to simulate treatment response to radiation, heat and combination treatments for each individual cell. According to a random number
N[0, 1] drawn for each cell, a decision is made whether the cell lives (N � S) or dies. The respective surviving fractions after heat alone, SHT, radiation alone, SRT, or
combination treatment, SRTHT, were calculated using equations (2.1), (2.3) and (2.4). Whereas heated cells (HT) are assumed to die instantaneously, irradiated cells
(RT) are assigned a time delay before death which is sampled from an exponential distribution. Until this time point is reached, dying cells either keep dividing (with
probability 1 2 pmitoticCat), or undergo mitotic catastrophe and become either a giant cell (with probability 1 2 psenescence) or a senescent cell (with probability
psenescence). For combination treatments (RTHT), cells die instantaneously if N . SHT, or follow radiation-induced delayed cell death if SHT . N . SRTHT. (Online
version in colour.)
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heating time and temperature. It is calculated using a two-case

model distinguishing between heating above and below a

threshold temperature of 438C to account for the activation of

different biological processes at these temperature levels: for a

number of heating steps i, heating times ti at a temperature Ti

are expressed in terms of equivalent heating time at 438C, t43.

t43 ¼
X

i

ti � R43�Ti with R ¼ 0:25 TX � 43�C
0:5 TX . 43�C:

�
ð2:2Þ

For the calculation of the total thermal dose from a treatment,

time steps ti with temperatures exceeding 408C are taken into

account. In a similar manner to the implementation of the

cellular response to radiation, the AlphaR model surviving

fraction is used to evaluate the fate of an HT as a function of

thermal dose, SHT(t43). For this, the dose parameter d in equation

(2.1) is replaced by the total thermal dose, t43, according to

equation (2.2).

� log(SHT(t43))

¼
g((a0,HT�aR,HT)t43þbHTt2

43) t43�DT¼ aR,HT

2bHT

g a0,HTt43�
a2

R,HT

4bHT

� �
t43 . DT:

8<
:

ð2:3Þ

The model parameters a0, aR and b are replaced by the cell line-

specific parameters determined from HT cell survival curves,

a0,HT, aR,HT and bHT. In the simulation, HT-induced cell killing

is modelled to occur instantaneously, and no further cell-cycle

delay is applied.

2.2.3. Combination treatments
Similar to the implementation of heat alone, and radiation alone

induced cell killing, cell surviving fractions resulting from com-

bined RT and HT treatments, SRTHT(d, t43), with thermal dose

t43, and radiation dose d, are first calculated. As reference data

were only available for the LQ branch of the AlphaR model in
this case, surviving fractions are calculated as follows:

SRTHT(d, t43) ¼ SHT(t43) � e�(aRTHT(t43)dþbRTHT(t43)d2),

aRTHT(t43) ¼ aRT þ a � t43

and bRTHT ¼ bRT:

9>=
>; ð2:4Þ

Here, SHT(t43) is the surviving fraction due solely to the heat treat-

ment. Heat-induced radio-sensitization is described by a thermal

dose-dependent parameter aRTHT that increases linearly with ther-

mal dose according to a cell line-dependent slope a, whereas bRTHT

is assumed to be constant. aRT (aRT¼ a0,RT 2 aR,RT), and bRT refer

to radiation only treatments. These thermal dose dependencies

were analysed in detail in [26] for the cell line used here, and in

[34–36] using a very similar parametrization for different cell lines.

In simulating the dynamic cell kill in response to combi-

nation treatments, cells are immediately ‘killed’ according to

the surviving fractions derived from the heat contribution of

the treatment, i.e. a fraction of 1 2 SHT cells is removed from

the grid. Of the remaining cells, 1 2 SRTHT(d, t43)/SHT(t43)

(equation (2.4)) are assigned a time delay before cell death

sampled from an exponential distribution as described for the

simulation of RT alone cell kill (see flow chart in figure 2).
2.3. Experimental procedure for calibration and
validation experiments

A number of experiments were performed to calibrate the simu-

lation framework used to model the response of the colorectal

carcinoma cell line HCT116. These included growth curves,

cell-cycle analysis and clonogenic cell survival assays (published

in [26]).

For all experiments, HCT116 cell monolayers were grown at

378C in McCoy’s 5A medium (Gibco, Paisley, UK) supplemented

with 10% fetal bovine serum (PAN Biotech, UK) and 1% anti-

biotics (50 U ml21 each of penicillin, streptomycin B and

amphotericin B (Sigma Aldrich, Poole, UK)) in a humidified

atmosphere containing 5% CO2. Cells were passaged twice

http://rsif.royalsocietypublishing.org/


Table 1. AlphaR-model parameters (with their time and temperature dependence) used to simulate the treatment response of HCT116 cells.

a 5 a0 2 aR a0 b

RT 0.5 Gy21 — 0.042 Gy22

HT 0 0:05 � e0:67�C�1�(T�43�C) min�1 a2
0

1:95 min�2

RTHT 0:5 Gy�1 þ 0:015 � t43 Gy�1 min�1 — 0.042 Gy22

Table 2. Summary of all parameters used in this simulation framework
together with the method used for parameter estimation.

parameter calibration method

a, a0, aR,b clonogenic assay

growth rate growth curve

number of cells in plateau phase growth curve

cell-cycle distribution flow cytometry

initial number of cells N0 haemocytometer count

pmitoticCat, psenescence, kdelay fit of R2
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weekly using the gentle detaching agent Accutase (Gibco,

Paisley, UK). Regular screening for mycoplasma and bacterial

contamination was undertaken, and cells in exponential growth

phase between passages 10 and 20 were used for experiments.

For treatments, cells were detached, concentrated to give a

suspension of 5 � 106 cells ml21 and transferred to sterile, thin-

walled PCR tubes (VWR, Lutterworth, UK) in 60ml volumes.

For irradiation, tubes containing cells were embedded in a solid

water sample holder and irradiated using a small animal radiation

research platform (SARRP, X-Strahl, Camberley, UK) at a dose rate

of 63 mGy s21. Heating to 468C for 5 min was performed in a

Biorad Tetrad2 DNA Engine PCR thermal cycler (Hercules, CA,

USA) using the techniques described in [26,37]. Cells were kept

on ice before, between and after treatments to minimize cellular

activity during waiting periods. For combination treatments,

cells were first irradiated, and then heated within 20 min of this

irradiation. It was confirmed experimentally that if heating was

applied within 30 min, the delay between irradiation and heating

made no difference to the subsequent clonogenic cell survival [26].

For fractionated treatments, plates seeded with the required

number of cells were irradiated every 24 h using an X-ray cabinet

(X-Strahl, Camberley, UK, dose rate 63 mGy s21).

2.3.1. Growth curves
Cell growth curves were acquired by seeding triplicates of treated

cells in 24- or six-well plates depending on the expected number

of surviving cells. Seeding densities ranged from 2 � 104 cells/

24-well plate to 5.4 � 105 cells/six-well plate depending on the

treatment given. Cell number was determined at various time

points (24–200 h) after treatment by counting detached cells in

a haemocytometer. A minimum of 100 cells in a minimum of

three 1 � 1 mm2 were counted for each replicate. For each data

point, the average cell count and corresponding standard devi-

ations of three replicates were taken. Growth curves were also

acquired at comparable cell densities in 96-well plates. Cells in

96-well plates were fixed with ice-cold 10% trichloroacetic acid,

and subsequently stained with sulforhodamine B (Sigma

Aldrich, Poole, UK) before being imaged with bright-field

microscopy to study cell morphologies.

2.3.2. Cell-cycle analysis
For cell-cycle analysis, cells were detached, washed in ice-cold

phosphate-buffered saline and fixed in ice-cold 70% ethanol.

Fixed cells were treated with RNase to minimize non-specific

background staining, and stained with the DNA-intercalating

dye propidium iodine (PI, Sigma Aldrich, Poole, UK) for

15 min at room temperature in the dark prior to analysis using

flow cytometry in an LSRII analyser (BD, Franklin Lakes, NJ).

DNA content of at least 104 cells was measured in this way

and data were collected using DiVa (BD, Franklin Lakes, NJ).

The resultant histograms were fitted by the Watson pragmatic

model in FlowJow to obtain cell-cycle distribution proportions.

2.3.3. Clonogenic assays
Clonogenic cell survival data have been published in [26] for

HCT116 cells. Table 1 summarizes all parameters used for calcu-

lating clonogenic surviving fractions for possible treatment
scenarios for this cell line. For RT and RTHT treatments, the

LQ arm of the AlphaR model was sufficient to describe the cell

survival data obtained for the radiation doses used here. There-

fore, no individual values for a0, and aR are needed, and the

difference between these parameters, (i.e. a ¼ a0 2 aR), is

given. For HT treatments a0 ¼ aR (see [26] for details).

2.4. Parameter fitting upon model calibration
Where it was not possible to measure model parameters exper-

imentally, these were adjusted to yield the best overall

agreement in terms of coefficients of determination R2 between

simulated and reference data during calibration of the model.

For model validation, no further changes were made to the par-

ameters used. Table 2 gives an overview of all parameters used

in this simulation and the method used for their determination.
3. Results
3.1. Model calibration
3.1.1. Cell-cycle distribution and growth
The simulation framework was first calibrated to model the

growth and treatment response of the colorectal carcinoma

cell line HCT116. Cellular growth curves were used to deter-

mine cell doubling time and voxel size, while flow cytometry

was used to obtain information about the cell-cycle distribution.

Figure 3 shows the resulting histogram of the cellular

DNA content separated into G1, S and G2/M phase, as well

as a table of the percentage of cells in, and duration of,

each cycle phase. As flow cytometry cannot distinguish

between cells in M- or G2-phase (because they have the

same DNA content), it was assumed that the 25% of cells

in both phases is split into 20% G22 , and 5% M-phase.

Figure 4 shows the corresponding growth curve for 2.3 � 104

cells seeded in a 24-well plate (15.6 mm well diameter) along

with the calibrated simulation. Data points and error bars corre-

spond to mean and standard deviation values from three

replicates of a single experiment. An average doubling time of

19.5+1 h was measured for HCT116 cells. A good simulation

of the growth curve plateau was obtained for voxel sizes of

9.6 � 9.6mm2 and 12� 12mm2 if cells in 24-well or six-well

http://rsif.royalsocietypublishing.org/


phase

120

90

60

co
un

t

30

0

0 50 K 100 K

nuclear DNA content (channel number)

150 K 200 K 250 K

% total
population duration (% total cycle)

G1 41 32

S 34 34

G2 20a 26

M 5a 8

(b)(a)

aDNA content of G2- and M-phase cells is measured
simultaneously in one peak. We split this proportion into
20% G2 and 5% M-phase.

Figure 3. (a) Histogram of the cellular DNA content obtained by flow cytometry. From a fit of the experimental data using the Watson pragmatic model, the
proportions of singlets corresponding to cells in G1-phase (first peak, purple), cells in the process of reproducing their DNA in S-phase (middle part, yellow), and
doublets corresponding to cells in G2- or M-phase are determined (second peak, green). The experimental data (black) and the model fit ( pink) are shown.
(b) Table of cell-cycle distribution, and cycle stage duration as obtained by flow cytometry analysis of untreated HCT116 cells. (Online version in colour.)

50 100 150 200
time (h)

0

0.5

1.0

1.5

2.0

2.5

no
. c

el
ls

× 106

total
G1

S
G2

M
G0

experiment

Figure 4. Simulated and experimentally determined growth curves for
untreated HCT116 cells in 24-well plates; 2.3 � 104 cells with a doubling
time of 19.5 h on a 15.6 mm diameter circular two-dimensional grid (corre-
sponding to a diameter of 1625 voxels) were simulated using the cell-cycle
distribution information given in figure 3. The experimental data points (black
circles, means and standard deviations), as well as the simulated total cell
numbers and simulated contributions from the different cell-cycle stages
(solid lines) are shown.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170681

6

 on January 30, 2018http://rsif.royalsocietypublishing.org/Downloaded from 
plates were simulated. Differences in voxel size determined from

the plateau cell density in the two well types may be due to

changes in nutrient medium volume-to-surface-ratios, as well

as to variations in frequency of medium change for different

samples.

3.1.2. Treatment response
The simulation is first adapted to match the growth of

HCT116 cells irradiated with 5 Gy. This was achieved by
adjusting the exponent kdelay, and the probability pmitoticCat

that characterize the distribution of delay times to cell

death, and the probability of undergoing mitotic catastrophe

after radiation treatments. Figure 5a,b shows the resulting

growth of 2.6 � 105 irradiated cells seeded in a six-well

plate with the corresponding simulation assuming (a) instan-

taneous cell kill or (b) controlled delayed cell kill via mitotic

catastrophe using kdelay ¼ 0.009 h21, and pmitoticCat ¼ 0.2.

Neither psenescence nor g significantly changed the simulation

result for these conditions. The probability of cellular senes-

cence, psenescence, was fixed at a value of 5% since we have

assumed a small contribution from senescent cells. The sensi-

tivity between different cycle stages was assumed to be a

constant ratio of 1.5, meaning that surviving fractions Sphase

differ by powers of 1.5 relative to each other: SS ¼ 1.5 .

SG1 ¼ 1.52 . SG2 ¼ 1.53 . SM. This corresponds to factors, g,

ranging from 0.85 (least sensitive, S-phase) to 1.39 (most sen-

sitive, M-phase).

It is clear that a simulation which assumes instantaneous

cell death would greatly underestimate the total number of

cells, whereas in vitro and in silico experiments are in very

good agreement within the boundaries of the 95% confidence

intervals of the calculated surviving fraction (S5Gy ¼

0.04(0.03,0.05)) when delayed cell kill is assumed. Photo-

graphs of fixed, irradiated and untreated cells at three

different growth stages (initially seeded, subconfluent (96 h)

and confluent wells (144 h)) are shown in figure 5c. In the

irradiated samples, giant cells are clearly visible at the sub-

confluent, and confluent stages.
3.2. Model validation and application
HCT116 growth curves for heated (5 min at 468C), irradia-

ted (2 Gy, 5 � 2 Gy, 5 � 3 Gy), and combination treated cells

(2 Gy irradiation, and heating for 5 min at 468C) are simulated

and compared to the corresponding experimental growth
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curves (figure 6). The calculated surviving fractions are

shown with 95% confidence intervals: S2Gy ¼ 0.31 (0.25,

0.37), S3Gy ¼ 0.15 (0.10, 0.20), S5 min ,46 C ¼ 0:26 (0:07,0:44),

S2 Gyþ5 min ,46 C ¼ 0:03 (0:01,0:05). For all treatment scenarios,

simulation and experimental data are in good agreement.

Although there seems to be a small offset between simulated

and measured growth curves for cells treated with 2 Gy in a

single fraction, this may be explained by a small deviation of

the experimental surviving fraction from the average surviv-

ing fraction calculated by the AlphaR model. However, the

experimental result lies well within the 95% confidence

bounds of the predicted growth curves. In particular, for frac-

tionated treatments, the overall shape of the growth response

curve is well described for both 2 and 3 Gy fractions. Having

shown that the simulation framework accurately predicts

different homogeneous irradiation and heat treatments, it

can now be used, for example, to predict the growth response

to different fractionation combinations of radiation and heat.

Since the simulation uses a stochastic succession of events,

the average and standard deviations of 500 runs are taken
for each simulated treatment course. Figure 7 shows the influ-

ence of choosing a different time point for heat application

within the overall treatment schedule involving 30 fractions

of 2 Gy radiation in combination with a single combined treat-

ment (thermal dose of 40 CEM43). Depending on the time of

adding the heat fraction, the overall treatment success in terms

of time until tumour regrowth may be changed slightly due to

the alterations in the proportions of quiescent and proliferat-

ing cells. Based on this observation, this simulation

framework may help to identify the best treatment order for

RTHT therapies for different proportions of proliferating

and quiescent cells at treatment onset.

We also demonstrate that using instantaneous rather than

delayed cell killing in response to RT may change the overall

treatment outcome prediction of fractionated RT treatments

alone (figure 7b) due to different numbers of regrowing

cells in the two simulations. If instantaneous cell kill is con-

sidered, more space is available to allow cell division

compared with the delayed cell kill simulation, where more

cells remain quiescent for a longer period of time.

http://rsif.royalsocietypublishing.org/


50 100 150
time (h)

0

2

4

6

8
no

. c
el

ls
×106

46°C 5 min

100 150
time (h)

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0
×106

2 Gy

100 150
time (h)

×106

5 min 46°C + 2 Gy

100 150 200
time (h) time (h)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4
0 50 100 150 200

no
. c

el
ls

×106 ×106

5 × 2 Gy every 24 h 5 × 3 Gy every 24 h

50 50

0 50

(a) (b) (c)

(d) (e)

Figure 6. Comparison of experimental and simulated growth curves for HCT116 cells treated with different modalities: (a) heating at 468C for 5 min
(S5 min ,46 C ¼ 0:26 (0:07, 0:44), 3 � 105 cells seeded in six-well plates). (b) 2 Gy radiation (S2Gy ¼ 0.31 (0.25, 0.37), 2.4 � 104 cells seeded in 24-well plates).
(c) Combination of 2 Gy radiation and heating for 5 min at 468C (S2 Gyþ5 min ,46 C ¼ 0:03 (0:01,0:05)), 1.2 � 105 cells seeded in six-well plates). (d ) Five fractions
of 2 Gy radiation given every 24 h (S2Gy ¼ 0.31 (0.25, 0.37)), 5.4 � 105 cells seeded in six-well plates). (e) Five 3 Gy fractions of radiation given every 24 h (S3Gy ¼ 0.15
(0.11, 0.19)), 5.4 � 105 cells seeded in six-well plates). Cells were simulated as having a mean doubling time of 19.5 h. The experimental data points (black circles,
means and standard deviations) are shown, as well as the simulated total cell numbers (solid lines) and simulation of the 95% confidence bounds of the surviving
fractions used (dashed lines). (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170681

8

 on January 30, 2018http://rsif.royalsocietypublishing.org/Downloaded from 
4. Discussion
The cellular automaton model presented provides flexibility

for application to the study of a number of different situ-

ations, both in vivo and in vitro. We have successfully

calibrated the model for single and multimodality therapies

of heat and ionizing radiation and could accurately predict

treatment response for one particular cell line. This was

achieved by introducing a delay before cell death, rather

than solely instantaneous death, to describe the cellular

response to irradiation. This is an important difference

between our, and previous [27], implementations.

Cellular growth curves offer the possibility of testing the

simulation in terms of the dynamic development of a treated

population over time, rather than providing an absolute sur-

viving fraction only at the fixed time point post treatment

provided by clonogenic assays. Since most cell survival

models, such as the AlphaR or the LQ, are based on clono-

genic cell survival data, they predict the long-term

surviving fraction, but cannot give any information on how

the population develops towards this endpoint. Growth

curves, on the other hand, provide dynamic information,

but it can be difficult to extrapolate from them to the overall

surviving fraction. Therefore, a combination of surviving frac-

tion, as measured by clonogenic assays, and growth curve

data captures a more complete picture. It is, however, diffi-

cult to measure cell growth within the first few hours after
cell seeding due to the lag between cell seeding, their attach-

ment and exponential growth. Although there might well be

differences in the lag time of treated and untreated cells, all

experiments have here been allocated a constant lag period

of 2 h, resulting in slight differences between experiment

and simulation during the initial growth phase. While correct

modelling of the initial growth phase may be difficult due to

this lag time, the exponential and plateau phase of growth

curves are accessible for model calibration. However, the pla-

teau cell density depends strongly on the nutrients provided,

i.e. the frequency of medium renewal and its overall volume.

When fresh medium is continuously provided, cells in a con-

fluent layer may continue to grow. These new cells may attach

on top of other cells. As only a perfect monolayer of virtual

cells of rigorously controlled size and shape is considered in

this simulation, the voxel size used must be carefully adapted

to the properties of the dishes. Although the voxel size, and

therefore the maximum number of cells per well may be of

importance for simulating fully confluent cells in vitro, the

effects may be less important for tumours in vivo.

Figures 5 and 7b show that it is essential to consider the

impact of delayed reproductive cell death, because instan-

taneous cell death greatly underestimates the number of

living cells during the first days after treatment. This may

influence simulation results, e.g. when studying the effects

of tissue reoxygenation and tumour growth response, since

immediate removal of all dying cells would allow faster
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repopulation and enhanced reoxygenation of the tumour

compared to delayed cell kill simulations. For long-term

studies of single treatment fractions, these delayed effects

should be negligible since the surviving population will

eventually provide the majority of proliferating cells. The par-

ameters used to describe the dynamics of delayed cell kill

(kdelay, pmitoticCat and psenescence) have here been customized

to fit the data from HCT116 cells. Although it might be poss-

ible that some, or all, of these parameters are similar for other

cell types, their accurate modelling would require re-cali-

bration of these parameters.

The calculation of surviving fractions strongly depends

on the biological model parameters used, i.e. a0, aR and b,

in the case of the AlphaR model. These parameters are subject

to relatively large uncertainties and individual experiments

often deviate from the predicted average surviving fraction.

This may be a feature of clonogenic assays, which are very

sensitive to experimental error (e.g. from cell counting and

pipetting uncertainties), and strongly depend on the exper-

imental conditions, such as incubation time, cell-cycle

distribution and density, and cell health in general. This

results in relatively large intra- and inter-experimental differ-

ences, leading to the large reported confidence bounds of the

surviving fractions for HT and combination treatments.

All biological results presented were obtained for a com-

mercially available human cancer cell line. As all reference

experiments were performed by us on the same batch of

cells, rather than using previously published data from a

number of sources, our calibration benefits from a consistent

dataset, which is immune to errors arising from differences in

experimental techniques between different laboratories.

Based on the current results, simulations of other cell types

may either be calibrated using the techniques presented

here, or a sensitivity analysis of the parameters used could

be performed to understand the importance of individual

parameters on the overall simulation outcome (see electronic

supplementary material, appendix A). This would allow
study of the effects of heterogeneous cell populations such

as seen in tumours in vivo.

Although the model provides good predictions within the

calibrated dose range, it should be stressed that doses outside

the range of standard therapies, in particular ablative thermal

doses and large single fraction RT treatments, have not yet

been studied, and may be subject to different cellular

response mechanisms which are not captured by this

implementation. Also, a number of other parameters that

influence the overall cell surviving fraction, e.g. the

irradiation dose rate or time interval between HT and RT

treatments, are not yet included. A recent publication by

van Leeuwen et al. [38] touched on this discussion and pro-

posed an exponentially decaying influence of heat-induced

radiosensitization as a function of time between HT and RT

application. However, there is ongoing discussion concerning

the decay rate of heat-induced radiosensitization which is

considered to be cell line dependent, and may be greatly

influenced by physiological factors such as blood flow lead-

ing to different parameter estimations between in vivo and

in vitro applications even for the same tumour type. Van

Leeuwen et al. recommended using a decay rate of the

order of 2 h. Since in our simulation, RT and HT are con-

sidered to be given simultaneously, and consecutive

radiation fractions are given at least 24 h apart from one

another, we believe that our results remain valid, given we

have included no time factor in the framework at this stage.

Further experimental validation would be required if more

complex heating and radiation schedules using shorter time

intervals between treatment fractions, or longer time gaps

between heat and radiation application, are of interest.

One particularly interesting application of the model is,

therefore, the verification of the thermal dose concept for

temperatures exceeding 488C. Owing to the exponential

relation of thermal dose on treatment temperature, even

small deviations from the proposed mathematical descrip-

tions translate into large differences in thermal dose and
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cell survival in this temperature range. With uniform heating

approaches, it is impossible to verify the thermal dose con-

cept for very high temperatures accurately, since thermal

dose uncertainties originating from heating and cooling

gradients are difficult to account for in such cases. The

proposed framework can be applied to the simulation of

different cell distributions in order to calculate an overall

probability for the expected cell survival.

Moreover, while the combination of focused ultrasound

mediated heating [39,40] with RT provides a promising

approach on paper, it is difficult to verify experimentally at

a cellular level. For treatment and experiment planning, as

well as for determining effective dose and exposure prescrip-

tions, it is essential to first quantify the biological effects at a

cellular level. Systems oncology simulations may provide a

very useful tool for analysis of the effects of different,

inhomogeneous (in space and time) heat and radiation distri-

butions, for which the averaged cell surviving fractions for a

subset of carefully selected scenarios can be verified exper-

imentally. The simulation framework presented here was

designed specifically for such applications. It is possible to

simulate the whole experimental procedure of an in vitro
focused ultrasound experiment, as well as to analyse the

expected overall treatment response of the cell population.
5. Conclusion
We have demonstrated a cellular automaton model that is

suitable for accurate modelling of the dynamic response to

separate, or combined, heat and RT treatments. The inclusion
of delayed rather than instantaneous, cell kill after irradiation

may impact on simulations which aim to study the effects of

reoxygenation and tumour progression, and should therefore

be taken into account. We have presented a simple

implementation for enabling such modelling, and verified

our framework against a consistent experimental dataset

thus making this simulation framework a reliable basis for

future applications where the effects and optimized treatment

protocols for combination treatments in vivo are studied.
Data accessibility. The code for the framework is part of an ongoing PhD
project, which will rely on its further development of the code.
Making the code publicly available is an unacceptable risk to the
novelty of the students project but we can provide copies to individ-
uals upon request.

Authors’ contributions. S.B. performed the majority of experiments, data
analysis and model implementation, as well as drafting the article.
G.P. assisted and advised on the model implementation. P.Z.
helped in optimizing the simulation framework for a computation-
ally effective implementation. J.I. conducted part of the biological
experiments. G.P., M.C., I.R., S.N., U.O. and G.t.H. supervised the
study and provided critical revision of the manuscript.

Competing interests. We declare we have no competing interests.

Funding. This work was financially supported by Cancer Research UK.
Research at The Institute of Cancer Research is supported by Cancer
Research UK under Programme C33589/A19727. P.Z. is supported
by Cancer Research UK under Programme C33589/A19908. We
thank the Focused Ultrasound Foundation for funding the work of
Jannat Ijaz and Ian Rivens.

Acknowledgements. The authors thank Yuen-Li Chung for providing
HCT116 cells. We acknowledge NHS funding to the NIHR Biomedi-
cal Research Centre at The Royal Marsden and The Institute of
Cancer Research.
References
1. Horsman M, Overgaard J. 2007 Hyperthermia: a
potent enhancer of radiotherapy. Clin. Oncol. 19,
418 – 426. (doi:10.1016/j.clon.2007.03.015)

2. Kampinga HH. 2006 Cell biological effects of
hyperthermia alone or combined with radiation or
drugs: a short introduction to newcomers in the
field. Int. J. Hyperthermia 22, 191 – 196. (doi:10.
1080/02656730500532028)

3. Dikomey E, Jung H. 1991 Thermal radiosensitization in
cho cells by prior heating at 41– 468C. Int. J. Radiat.
Biol. 59, 815 – 825. (doi:10.1080/09553009114550711)

4. Lauber K, Brix N, Ernst A, Hennel R, Krombach J,
Anders H, Belka C. 2015 Targeting the heat shock
response in combination with radiotherapy:
sensitizing cancer cells to irradiation-induced cell
death and heating up their immunogenicity. Cancer
Lett. 49, 1 – 21. (doi:10.1016/j.canlet.2015.02.047)

5. Kampinga HH, Dikomey E. 2001 Hyperthermic
radiosensitization: mode of action and clinical
relevance. Int. J. Radiat. Biol. 77, 399 – 408. (doi:10.
1080/09553000010024687)

6. Roti JLR. 2008 Cellular responses to hyperthermia
(40 – 468C): cell killing and molecular events.
Int. J. Hyperthermia 24, 3 – 15. (doi:10.1080/
02656730701769841)

7. Roos WP, Thomas AD. Kaina B. 2016 DNA damage
and the balance between survival and death in
cancer biology. Nat. Rev. Cancer 16, 20 – 33.
(doi:10.1038/nrc.2015.2)

8. Lauber K, Ernst A, Orth M, Herrmann M, Belka C.
2012 Dying cell clearance and its impact on the
outcome of tumor radiotherapy. Front. Oncol. 2,
116. (doi:10.3389/fonc.2012.00116)

9. Pawlik TM, Keyomarsi K. 2004 Role of cell cycle in
mediating sensitivity to radiotherapy. Int. J. Radiat.
Oncol. Biol. Phys. 59, 928 – 42. (doi:10.1016/j.ijrobp.
2004.03.005)

10. Enderling H, Chaplain MaJ, Hahnfeldt P. 2010
Quantitative modeling of tumor dynamics and
radiotherapy. Acta Biotheor. 58, 341 – 53. (doi:10.
1007/s10441-010-9111-z)

11. Lowengrub JS, Frieboes HB, Jin F, Chuang Yl, Li X,
Macklin P, Wise SM, Cristini V. 2010 Nonlinear
modelling of cancer: bridging the gap between cells
and tumours. Nonlinearity 23, R1 – R9. (doi:10.
1088/0951-7715/23/1/R01)

12. Deisboeck TS, Wang Z, Macklin P, Cristini V. 2011
Multiscale cancer modeling. Annu. Rev. Biomed.
Eng. 13, 127 – 155. (doi:10.1146/annurev-bioeng-
071910-124729.Multiscale)

13. Hatzikirou H, Chauviere A, Bauer AL, Leier A,
Lewis MT, Macklin P, Marquez-Lago TT, Bearer EL,
Cristini V. 2012 Integrative physiological
oncology. Wiley Interdiscip. Rev. Syst. Biol.
Med. 4, 1 – 14. (doi:10.1002/wsbm.158.
Integrative)

14. Wang Z, Deisboeck TS. 2014 Mathematical modeling
in cancer drug discovery. Drug Discov. Today 19,
145 – 50. (doi:10.1016/j.drudis.2013.06.015)

15. Richard M, Kirkby K, Webb R, Kirkby N. 2007 A
mathematical model of response of cells to
radiation. Nucl. Instrum. Meth. B 255, 18 – 22.
(doi:10.1016/j.nimb.2006.11.077)

16. Ribba B, Colin T, Schnell S. 2006 A multiscale
mathematical model of cancer, and its use in
analyzing irradiation therapies. Theor. Biol. Med.
Model. 3, 1 – 19. (doi:10.1186/1742-4682-3-7)

17. Kam Y, Rejniak KA, Anderson ARA. 2012 Cellular
modeling of cancer invasion: Integration of in silico
and in vitro approaches. J. Cell. Physio. 227,
431 – 438. (doi:10.1002/jcp.22766)

18. Grogan Ja, Markelc B, Connor AJ, Muschel RJ, Pitt-
Francis JM, Maini PK, Byrne HM. 2016 Predicting
the influence of microvascular structure on tumour
response to radiotherapy. IEEE Trans. Biomed.
Eng. 64, 504 – 511. (doi:10.1109/TBME.2016.
2606563)

19. Perfahl H, Byrne HM, Chen T, Estrella V, Alarcon T,
Lapin A, Gatenby RA, Gillies RJ, Lloyd MC, Maini PK,
Reuss M, Owen MR. 2011 Multiscale modelling of
vascular tumour growth in 3D: The roles of domain

http://dx.doi.org/10.1016/j.clon.2007.03.015
http://dx.doi.org/10.1080/02656730500532028
http://dx.doi.org/10.1080/02656730500532028
http://dx.doi.org/10.1080/09553009114550711
http://dx.doi.org/10.1016/j.canlet.2015.02.047
http://dx.doi.org/10.1080/09553000010024687
http://dx.doi.org/10.1080/09553000010024687
http://dx.doi.org/10.1080/02656730701769841
http://dx.doi.org/10.1080/02656730701769841
http://dx.doi.org/10.1038/nrc.2015.2
http://dx.doi.org/10.3389/fonc.2012.00116
http://dx.doi.org/10.1016/j.ijrobp.2004.03.005
http://dx.doi.org/10.1016/j.ijrobp.2004.03.005
http://dx.doi.org/10.1007/s10441-010-9111-z
http://dx.doi.org/10.1007/s10441-010-9111-z
http://dx.doi.org/10.1088/0951-7715/23/1/R01
http://dx.doi.org/10.1088/0951-7715/23/1/R01
http://dx.doi.org/10.1146/annurev-bioeng-071910-124729.Multiscale
http://dx.doi.org/10.1146/annurev-bioeng-071910-124729.Multiscale
http://dx.doi.org/10.1002/wsbm.158.Integrative
http://dx.doi.org/10.1002/wsbm.158.Integrative
http://dx.doi.org/10.1016/j.drudis.2013.06.015
http://dx.doi.org/10.1016/j.nimb.2006.11.077
http://dx.doi.org/10.1186/1742-4682-3-7
http://dx.doi.org/10.1002/jcp.22766.Cellular
http://dx.doi.org/10.1109/TBME.2016.2606563
http://dx.doi.org/10.1109/TBME.2016.2606563
http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170681

11

 on January 30, 2018http://rsif.royalsocietypublishing.org/Downloaded from 
size and boundary conditions. PLoS ONE 6, e14790.
(doi:10.1371/journal.pone.0014790)

20. Enderling H, Chaplain MAJ. 2014 Mathematical
modeling of tumor growth and treatment. Curr.
Pharm. Des. 20, 4934 – 4940. (doi:10.2174/
1381612819666131125150434)

21. Rockne RC et al. 2015 A patient-specific
computational model of hypoxia-modulated
radiation resistance in glioblastoma using
18F-FMISO-PET. J. R. Soc. Interface 12, 20141174.
(doi:10.1098/rsif.2014.1174)

22. Osborne JM. 2015 Multiscale model of
colorectal cancer using the cellular Potts
framework. Cancer Inform. 14, 83 – 93. (doi:10.
4137/CIN.S19332)

23. Powathil GG, Swat M, Chaplain MAJ. 2015 Systems
oncology: towards patient-specific treatment
regimes informed by multiscale mathematical
modelling. Sem. Cancer Biol. 30, 13 – 20. (doi:10.
1016/j.semcancer.2014.02.003)

24. Scheidegger S, Fuchs HU, Zaugg K, Bodis S, Füchslin
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