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Abstract (249/250 max) 

Purpose: This Phase 1, open-label study (Study 1, D3610C00001; NCT01226316) was 

the first-in-human evaluation of oral AZD5363, a selective pan-AKT inhibitor, in patients 

with advanced solid malignancies. The objectives were to investigate the safety, 

tolerability and pharmacokinetics of AZD5363, define a recommended dosing schedule, 

and evaluate preliminary clinical activity.  

 

Experimental design: Patients were aged ≥18 years with WHO performance status 0–

1. Dose escalation was conducted within separate continuous and intermittent (4 

days/week [4/7] or 2 days/week [2/7]) schedules with safety, pharmacokinetic and 

pharmacodynamic analyses. Expansion cohorts of approximately 20 patients each 

explored AZD5363 activity in PIK3CA-mutant breast and gynecologic cancers.  

 

Results: Maximum tolerated doses were 320 mg, 480 mg and 640 mg for continuous 

(n=47), 4/7 (n=21) and 2/7 (n=22) schedules, respectively. Dose-limiting toxicities were 

rash and diarrhea for continuous, hyperglycemia for 2/7, and none for 4/7. Common 

adverse events were diarrhea (78%) and nausea (49%) and, for CTCAE grade ≥3 

events, hyperglycemia (20%). The recommended Phase 2 dose (480 mg bid, 4/7 

intermittent) was assessed in PIK3CA-mutant breast and gynecologic expansion 

cohorts: 46% and 56% of patients, respectively, showed a reduction in tumor size, with 

RECIST responses of 4% and 8%. These responses were less than the pre-specified 

20% response rate; therefore, the criteria to stop further recruitment to the PIK3CA 

cohort were met.   

  

Conclusions: At the recommended Phase 2 dose, AZD5363 was well tolerated and 

achieved plasma levels and robust target modulation in tumors. Proof-of-concept 
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responses were observed in patients with PIK3CA-mutant cancers treated with 

AZD5363.  
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Statement of translational relevance (144/150 max) 

AZD5363 is a potent, selective inhibitor of AKT, a key node in the PI3K/AKT/mTOR 

pathway that is activated in a wide range of malignancies. In vivo, AZD5363 inhibited 

tumor growth in xenograft models. Preclinically, sensitivity to AZD5363 has been 

strongly related to the presence of PIK3CA mutations, which are relatively common in 

breast and gynecologic cancers. Our study, the first-in-human study of AZD5363, 

showed that at an identified recommended Phase 2 dose, AZD5363 was well tolerated 

and achieved plasma levels and robust target modulation in tumors. The study is also 

the first report of a biomarker-stratified cohort (PIK3CA mutations in breast and 

gynecologic cancers) of patients treated with an AKT inhibitor. Results suggest that 

future efforts in developing this class of drugs for the treatment of solid tumors, including 

PIK3CA-mutated breast and gynecologic cancers, will need to be in combination with 

other anticancer drugs.   
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Introduction  

AKT is a serine/threonine protein kinase that functions as a key node in the 

phosphatidylinositol-3-kinase (PI3K)/AKT network (also known as the PI3K/AKT/mTOR 

pathway), with a fundamental role in cell survival and proliferation (1). AKT is over-

expressed or activated in a wide range of solid and hematologic malignancies, and 

aberrant AKT signaling is also associated with resistance to established cancer 

therapies, as well as advanced disease and/or poor prognosis (2).  

 

AZD5363 is a potent, selective inhibitor of the kinase activity of all three AKT isoforms 

(AKT1, -2, and -3) (3). In vitro, AZD5363 inhibited tumor cell proliferation and 

phosphorylation of the AKT substrates PRAS40 and GSK3β, as well as the downstream 

pathway protein S6. In vivo, AZD5363 inhibited tumor growth in xenograft models and 

remained pharmacodynamically active for at least 24 hours (3). Preclinically, sensitivity 

to AZD5363 has been strongly related to the presence of PIK3CA mutations (4, 5), a 

trend that has also been observed with other inhibitors of the PI3K/AKT/mTOR pathway 

(6). PIK3CA mutations are found in breast and gynecologic cancers, and evaluation of 

AZD5363 in these settings is warranted (1). 

 

We report the first-in-human study of AZD5363, which evaluated safety, 

pharmacokinetics (PK), and pharmacodynamics (PD) in three schedules and 

recommended a Phase 2 dose for future development. We also report the first 

evaluation of an AKT inhibitor used as a single agent in a PIK3CA-mutated breast and 

ovarian cancer population. 
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Materials and methods 

Study design  

This is a multipart, Phase 1, open-label, multicenter study of oral AZD5363 in patients 

with advanced solid malignancies (Study 1; NCT01226316; Supplementary Figure 1). 

Parts A and B were, respectively, the dose-escalation and -expansion phase. Part C 

focused on an expansion cohort of patients with a PIK3CA tumor mutation. An additional 

expansion cohort of patients with an AKT1 tumor mutation (Part D) will be reported 

separately. 

 

Patients 

All patients were aged ≥18 years with a WHO performance status of 0–1 and minimum 

life expectancy of 12 weeks. Patients in Part C had advanced estrogen receptor positive 

(ER+) or human epidermal growth factor receptor 2 positive (HER2+) breast cancer 

(based on local testing) (7) or gynecologic (ovarian, cervical, or endometrial) cancer, 

with any PIK3CA mutation detected by local or central testing, and at least one 

measurable lesion. Additionally for Part C, where known, other solid tumors (ie not 

breast or gynecologic) should be negative for mutations of KRAS, NRAS, HRAS, and 

BRAF. Key exclusion criteria are summarized in the supplementary material. 

 

Study objectives 

The primary objective of Parts A and B was to investigate the safety and tolerability of 

oral AZD5363 and to define a recommended monotherapy dose and schedule for further 

clinical evaluation. Secondary objectives included PK evaluation of AZD5363 and 

preliminary assessment of antitumor activity. The objectives of Part C were to investigate 

safety, tolerability, PK, and antitumor activity of the defined AZD5363 dosing schedule in 

patients with ER+ or HER2+ breast cancer or gynecologic cancer harboring a PIK3CA 
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mutation. Exploratory objectives of Study 1 overall included the characterization of the 

PD effects of AZD5363 in paired tumor biopsies and in platelet-rich plasma (PRP; Parts 

A and B). 

 

Study design and treatment 

Part A – dose escalation 

Cohorts of 3–6 unselected patients received a single starting dose of 80 mg of AZD5363 

and, after a 3- to 7-day washout, AZD5363 twice daily (bid). The dosing cycle was 21 

days, excluding the run-in dose. Upon reaching a continuous dose considered 

appropriate by the Safety Review Committee (SRC), two intermittent dosing schedules 

were initiated in parallel: 4 days on, 3 days off every week (4/7) and 2 days on, 5 days 

off every week (2/7). Dose escalation continued for each schedule until a non-tolerated 

dose was attained (≥2/6 dose-limiting toxicities [DLTs]) and a maximum tolerated dose 

(MTD) was identified. Definitions of DLTs are provided in the supplementary material. 

 

Part B – dose expansion 

To confirm selection of the recommended dose for the schedules explored in Part A, the 

safety profile and tolerability were evaluated in up to nine additional unselected patients. 

The SRC also reviewed safety and tolerability data on an ongoing basis. 

 

Part C – expansion in PIK3CA-mutant patients 

Two cohorts of patients with PIK3CA-mutant ER+ or HER2+ breast cancers (Cb cohort) 

or gynecologic cancers (Cg cohort) received the recommended dose and schedule 

identified from Parts A and B. Each cohort permitted a maximum of 120 patients; 

recruitment to each cohort was prospectively contingent on positive interim efficacy and 
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safety data reviews after 20 and 40 patients had the opportunity to be followed for ≥12 

weeks.  

 

The trial (Study 1; NCT01226316) was performed in accordance with the principles of the 

Declaration of Helsinki, Good Clinical Practice, and the AstraZeneca policy on bioethics 

(8). The local ethics committee or independent review board at each investigator site 

approved the protocol prior to study commencement. All patients provided written 

informed consent prior to study participation. 

 

Assessments  

Safety and tolerability were assessed by continual monitoring of adverse events (AEs) 

according to Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. 

Serial venous blood samples for PK assessment of AZD5363 in plasma were taken up 

to 48 hours post-dose in Part A, and up to 1 week after the last day of weekly dosing in 

Part B. Evaluated PK parameters included area under the plasma concentration–time 

curve (AUC), maximum plasma concentration (Cmax), time to Cmax (tmax), and apparent 

terminal half-life (t1/2).  

 

Blood samples were obtained at scheduled time points to assess changes in PD 

biomarkers of AKT inhibition (such as p-GSK3β and pPRAS40) in PRP using solid-

phase enzyme-linked immunosorbent Mesoscale Discovery multiplex assays. Paired 

tumor biopsies (pre- and on treatment) from consenting patients participating in this 

study and in a study of AZD5363 in Japanese patients (Study 4; NCT01353781) (9) 

were pooled. Pooling provided an adequately sized cohort to assess proof of 

mechanism (PoM) for the measurement of changes in AKT pathway effectors, including 

p-AKT, p-PRAS40, p-GSK3β, and Foxo3a/Foxo1 localization, by immunohistochemistry 
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(10). Details on the collection and analysis of PRP and tumor tissue samples, and 

mutation analyses in tissue and circulating free DNA (ctDNA), are described in the 

supplementary material. 

 

To determine antitumor activity, tumor assessments were categorized based on 

Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. Percentage change 

in tumor size was determined at each visit by the percentage change in the sum of the 

diameters of target lesions compared with baseline. 

 

Statistical methods 

All patients who received ≥1 dose of AZD5363 were included in the safety analyses. 

Safety and tolerability were assessed in terms of AEs, serious AEs, deaths, laboratory 

data, vital signs, electrocardiogram (ECG) changes, left ventricular ejection fraction, and 

abnormalities of glucose metabolism. All patients who provided appropriate samples 

were assessed for PK and PD. Standard non-compartmental PK parameters were 

calculated using Phoenix WinNonlin version 6 software. Modeling and simulation 

were applied to emerging safety, PK, and PD data to provide an understanding of any 

dose exposure–response relationships, and to support dose-escalation and dosing-

schedule decisions. Preclinical PK, PD, and efficacy data were used to define PoM 

thresholds for the reduction of phosphorylation of GSK3β and PRAS40 to provide 

confidence that on-target PoM was achieved at tolerable doses (described in the 

supplementary material).  

 

The pre-defined formal trigger in Part C to stop the study for futility was four or fewer 

responses by RECIST once 20 patients in each cohort had the opportunity to be 

followed for 12 weeks, ie a ≤10% chance that the true proportion of RECIST responses 
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was ≥40%. Antitumor activity was assessed by response rate, with two-sided Clopper–

Pearson confidence intervals to provide probability statements of the efficacy signal.  

 

Role of the funding source 

This study was sponsored by AstraZeneca. The study funder, AstraZeneca, provided 

organizational support, obtained data, did the analyses, and had a role in data 

interpretation and writing of the manuscript. All authors had access to study data. The 

corresponding author (UB) had unrestricted access to all study data and had final 

responsibility for the decision to submit for publication. 
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Results 

Dose escalation and expansion (Parts A and B) 

Patients  

A total of 90 patients were assigned to treatment; 47, 21, and 22 received AZD5363 in 

the continuous, 4/7, and 2/7 intermittent schedules, respectively. Patient demographic 

and baseline clinical characteristics are shown in Table 1. The most common cancers 

were rectal/colorectal (29%). By the time of the final analysis, all 90 patients had ceased 

study medication, most commonly for progression of the disease under investigation 

(64%).  

 

Safety and tolerability 

The MTDs of the continuous, 4/7, and 2/7 schedules were 320, 480, and 640 mg bid, 

respectively (Supplementary Figure 2). For the continuous dosing schedule, the 600 mg 

bid cohort was not tolerated: 2/2 patients experienced DLTs (one event of grade 3 rash 

and one of grade 4 rash). An intermediate dose level of 480 mg bid was, therefore, 

investigated; in this cohort, 4/6 patients experienced DLTs (three events of grade 3 rash 

and one of grade 3 diarrhea). At a further lower dose level of 320 mg bid, 0/12 patients 

experienced DLTs, and this dose was considered the MTD for the continuous schedule. 

In the 4/7 intermittent dosing schedule, no DLTs were observed in the 480 mg bid (n=11) 

and 640 mg bid (n=10) cohorts; however, based on the presence of chronic toxicities 

such as rash and diarrhea observed outside the first 21-day cycle DLT window, the 

lower dose of 480 mg bid was considered tolerable and appropriate for chronic use with 

4/7 dosing. In the 2/7 intermittent dosing schedule, at 800 mg bid, 3/14 patients had 

DLTs (two events of grade 4 hyperglycemia and one of grade 3 hyperglycemia); again, 

considering observed chronic toxicities, a dose of 640 mg bid was explored. In this 

cohort, DLTs were observed in 1/8 patients (one event of grade 4 hyperglycemia), and 
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the 640 mg bid dose was considered tolerable (Supplementary Figure 2). All DLTs were 

reversible; no events of ketoacidosis were reported in patients with hyperglycemia. Two 

patients remained on AZD5363 for longer than 6 months (one patient on the 480 mg bid 

4/7 schedule and one patient on the 800 mg bid 2/7 schedule); the median duration of 

exposure was 44 days (range 1‒507). 

 

The most frequently reported AEs across all dosing schedules were gastrointestinal 

events (diarrhea, vomiting, nausea) (Table 2). Grade ≥3 AEs were experienced by 56 

patients (62%), most commonly hyperglycemia (n=18; 20%), diarrhea (n=13; 14%) and 

maculopapular rash (n=10; 11%) (Supplementary Table 5). Overall, 21 patients (23%) 

had an AE leading to discontinuation; the most common (≥2%) were diarrhea (8%), 

maculopapular rash (8%), and dehydration (2%). AEs leading to dose interruption or 

reduction were experienced by 29 (32%) and 21 (23%) patients, respectively. No AEs 

resulted in death, and seven patients died as a result of the disease under investigation. 

All 90 patients had blood glucose levels above the upper limit of normal at some point 

following initiation of therapy with AZD5363 – this developed within the first 2 weeks of 

multiple dosing in the majority of patients (77%). Grade 3 elevations (>13.9 mmol/L) 

were seen in 33 patients (37%). No other clinically important trends were observed in 

laboratory parameters, vital signs, physical findings, or ECG changes. 

 

Pharmacokinetics and pharmacodynamics 

Plasma concentrations of AZD5363 showed a median tmax of 2 hours (range 0.5‒6), with 

a terminal half-life of approximately 10 hours (range 7‒15) after the first dose. Exposure 

was approximately dose proportional for doses of 80–800 mg (Figure 1A). Multiple-dose 

PK profiles are shown in Figure 1B. The geometric mean PK exposures on Day 4 of the 

480 mg dose in the 4/7 schedule were: Cmax 1426 ng/mL; minimum plasma 
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concentration (Cmin) 357 ng/mL; and AUC 7952 ng·h/mL. Intermittent dose schedules 

exceeded the predicted efficacious Cmin estimated from xenograft tumors 

(supplementary material) (11). The mean fraction of the AZD5363 dose excreted 

unchanged in urine ranged from 4% to 7%. Changes in PRAS40 and GSK3β 

phosphorylation in PRP occurred across multiple dose levels and precluded any 

definitive conclusion regarding a dose–response relationship. In patients treated with the 

recommended Phase 2 dose and schedule (480 mg bid, 4/7 intermittent), a reduction of 

>30% in pPRAS40 and pGSK3β compared with baseline at 4 hours after the single dose 

of AZD5363 was observed (Figure 2A), with return to baseline levels approximately 10 

hours post-treatment (Figure 2B).  

 

Additional observations indicating PD activity of AZD5363 included an increase in 

plasma and blood glucose, insulin, and C-peptide levels. In particular, blood glucose 

levels increased across all cohorts and peaked approximately 4 hours after each dose 

(Supplementary Figure 5), returning towards pre-dose baseline levels 8 hours post-dose, 

with a clear dose–response relationship in terms of the magnitude of peak glucose levels 

observed (not shown).  

 

Proof of target engagement in tumor tissue 

Evaluable paired tumor biopsies from 12 patients (nine from the current study [Study 1; 

NCT01226316] and three from Study 4 (AstraZeneca study D3610C00004) 

[NCT01353781]) (9) who received a range of doses and schedules were evaluated to 

assess PoM. Over 50% inhibition of pPRAS40 was seen in 4/12 paired biopsies and 

>30% decrease in pGSK3β was observed in 6/11 paired biopsies; 4/11 samples met 

both endpoints (Figure 3A and 3B, Supplementary Table 1). Downregulation of PD 

biomarkers was observed >4 hours post-dose, including with intermittent dosing 
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(Supplementary Table 1). These data are consistent with the PD response achieved in 

BT474c xenografts grown in nude mice at a dose that resulted in significant tumor 

growth inhibition (Supplementary Figure 4). AZD5363 treatment also increased 

phosphorylation levels of AKT (consistent with ATP competitive mechanism of action), 

inhibited phosphorylation of 4EBP1, and resulted in inhibition of Foxo nuclear 

translocation (Figure 3A) (10). In the five patients treated with the recommended Phase 

2 dose and schedule (480 mg bid, 4/7 intermittent), the average percentage decrease 

from baseline for pPRAS40 (59%) and pGSK3b (67%) exceeded the PD response 

required for preclinical efficacy (Figure 3B). 

 

Recommended Phase 2 dose  

Based on preclinical models, the trough plasma concentrations achieved at the tolerable 

dose of 320 mg bid on a continuous schedule exceeded those required for xenograft 

activity (Supplementary Figure 4). Further modeling has suggested that a 1.3- and 1.7-

fold dose level over continuous dosing would be efficacious when administered on the 

4/7 and 2/7 schedules, respectively (11). Based on the combination of tolerability profile, 

PK profile achieved, evidence of target engagement in normal and tumor tissue, and 

modeling predictions of efficacy, the dose of 480 mg bid on a 4/7 intermittent schedule 

was declared as the recommended Phase 2 dose. The dose level of 640 mg bid 2/7 was 

also tolerable, achieved adequate PK exposure, showed evidence of target modulation 

in PRP (tumor biopsy data were not available in this schedule), and was predicted to be 

efficacious from modeling of preclinical data. This schedule could be of use in 

combination studies in the future.  
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Antitumor activity 

There was limited evidence that AZD5363 induced tumor shrinkage in the unselected 

patient population in Parts A and B. A total of 27 (30%) and six (7%) patients achieved 

stable disease for ≥6 and ≥12 weeks, respectively. A PIK3CA mutation was detected in 

12/67 patients with archival tumor tissue suitable for exploratory Sequenom™ analysis, 

of whom 8/12 received an AZD5363 dose ≥400 mg. Additionally, 0/68 tumors harbored 

an AKT1 E17K mutation, 29% (20/68) harbored a RAS mutation (18 KRAS and 2 

NRAS), and 25% (3/12) of the PIK3CA-mutant tumors had concurrent KRAS mutation 

(Figure 4A). In particular, the patient who achieved a RECIST partial response (PIK3CA 

E545K mutant) had cervical cancer with hepatic and lymph node metastases and was 

treated with 400 mg bid continuously. 

 

Patients with tumors harboring mutations in PIK3CA (Part C) 

At the final analysis, 31 patients with PIK3CA-mutant breast cancer (Cb cohort) and 28 

patients with PIK3CA-mutant gynecologic cancer (Cg cohort) had received AZD5363, of 

whom 54 were included in the main tumor response analysis set. Of patients included in 

the analysis set (excluding 3 patients with no evaluable follow-up assessments), 12/26 

(46%) and 14/25 (56%) showed a reduction in size of their tumors in the Cb and Cg 

cohorts, respectively (Figure 4B). The corresponding confirmed RECIST responses at 

final analysis were 1/28 (4%) and 2/26 (8%), respectively. The observations at the 

interim assessment (scheduled when 20 patients had been dosed and had the 

opportunity to reach 12 weeks of treatment for each cohort) showed a RECIST response 

rate of ≤20% for a single agent and therefore met the criteria to stop further recruitment. 

Results of PIK3CA mutational analysis in tissue and ctDNA and other exploratory 

biomarkers (eg PTEN status, ESR1 mutation status) are shown in Figure 4A and 

Supplementary Table 4 and described in detail in the supplementary material.   
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The safety profile of AZD5363 in Part C, which is described in detail in the 

supplementary material, was consistent with the findings in Parts A and B. 
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Discussion 

This first-in-human study assessed the safety and tolerability of AZD5363 and identified 

a recommended dosing schedule for further clinical evaluation. The study also explored 

single-agent activity of AZD5363 in populations of patients who had metastatic breast 

and gynecologic cancers with PIK3CA mutations.  

 

DLTs of AZD5363 in the dose-escalation part of our study (Part A) were skin rash, 

diarrhea, and hyperglycemia. Whereas skin rash and diarrhea were predominant in the 

continuous schedule, hyperglycemia associated with the period of Cmax was predominant 

in the intermittent 2/7 schedule, where highest AZD5363 exposures were achieved. The 

cases of skin rash and diarrhea were self-limiting and recovered once treatment 

stopped. These AEs have been noted in Phase 1 studies of other AKT inhibitors, such 

as the allosteric inhibitor MK2206 or kinase inhibitors such as GSK2141795 and 

ipatasertib (GDC-0068) (1, 12-17). Hyperglycemia development was acute and 

indicative of the inhibitory effect of AZD5363 on AKT, a key regulator of glucose 

transport and metabolism in peripheral tissues and the liver (17). No patients had ketotic 

or non-ketotic hyperosmolar coma. However, patients with diabetes were excluded from 

our study and it is not possible to rule out these complications in a diabetic population. A 

number of patients with hyperglycemia were treated with metformin according to a 

protocol-defined algorithm; however, the efficacy of this intervention requires further 

study. 

 

The trough concentrations predicted to provide efficacy based on preclinical modeling 

were exceeded in patients receiving intermittent schedules. PD analyses in PRP showed 

levels of target inhibition that were consistent with PoM in pre- and post-biopsies from 12 

patients. Owing to the limited sample size, no formal statistical testing relating to the PD 
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changes in tumor tissue was done. Collectively, the toxicity, PK, and PD data, critical 

aspects of the pharmacologic audit trail (18), have been used to select the dose of 480 

mg bid intermittent 4/7 for Part C expansion and as the recommended Phase 2 dose 

and schedule of AZD5363 monotherapy.   

  

Proof-of-principle responses were observed in the dose-escalation phase of our study 

(eg PIK3CA E545K mutant cervical cancer). Within the PIK3CA expansion cohorts, a 

number of patients showed regression of their tumors (46% in breast cancer and 56% in 

gynecologic cancers; Figure 4B). However, the RECIST response rates in the two 

expansion cohorts of patients with PIK3CA mutations in ER+ breast cancer and 

gynecologic cancers were modest (4% and 8%, respectively). Several considerations 

should be made. PIK3CA mutational status can ‘change’ upon disease recurrence 

(supplementary material and Supplementary Figure 3), reflecting intra-tumoral 

heterogeneity and clonal selection (19, 20), and studies on the role of PIK3CA as a 

predictive biomarker of PI3K pathway inhibitors have not been conclusive (21). 

Molecular analyses using different platforms revealed interesting differences of PIK3CA 

mutations seen in the archival tumor tissue and ctDNA at baseline. Results have been 

detailed in the supplementary material and Supplementary Table 4. To our knowledge, 

this is the first report of the evaluation of an AKT inhibitor in dedicated PIK3CA-mutation-

positive breast and gynecologic cancers as a single agent. For example, PIK3CA 

mutations were not a requirement while evaluating the AKT inhibitor perifosine, which 

underwent Phase 2 trials in breast cancer and showed 0/18 responses (22), or the 

allosteric AKT MK2206 in breast cancer (1/20 responses) (23) and endometrial cancer 

(0/18 responses) (24). More recently, the Phase 1 trial of ipatasertib in solid tumors 

reported no RECIST responses, although there were minor degrees of tumor regression 

(16), and no trials evaluating the drug as a single agent in breast or gynecologic cancers 



21 
 

are reported. Encouraging early response rates of the use of AZD5363 (6/21, 28%) with 

the schedules recommended in this study have been reported (25). Further efforts to 

improve outcomes by combining AZD5363 with fulvestrant in AKT-mutant breast cancer 

is ongoing. 

 

Rewiring of signal transduction pathways and clonal evolution are critical mechanisms of 

resistance, and combination therapy is almost inevitably necessary (26, 27). For 

example, the approved PI3K pathway (mTOR) inhibitor everolimus had modest clinical 

efficacy when used as a single agent in breast cancer (28). We consider the tumor 

shrinkage caused by AZD5363 as a single agent in a significant number of patients in 

the PIK3CA-mutant cohorts to be an encouraging proof of concept and the basis for 

evaluation of the drug in combination therapy. Our Phase 1 study has optimized multiple 

intermittent regimens in order to provide flexibility in the use of such a novel agent in 

combination with multiple standard-of-care or experimental agents (29).   

 

Combination of AKT inhibitors with chemotherapy is hypothesized to abrogate anti-

apoptotic effects of activation of AKT following treatment with chemotherapeutic agents 

such as cisplatin and paclitaxel. Combinations of AKT inhibitors with targeted agents 

include combinations with MEK inhibitors to overcome feedback signaling loops, 

combinations with PARP inhibitors to reduce effective homologous recombination, and 

combinations with hormonal agents such as fulvestrant and abiraterone in estrogen- and 

androgen-driven breast and prostate cancer, respectively (1).  

 

To conclude, our research identified an optimal dose and schedule for use in 

subsequent multiple Phase 2 studies evaluating AZD5363, eg AZD5363 in combination 

with chemotherapy (NCT02423603, NCT01625286) or hormonal therapy 
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(NCT02077569) in breast cancer, with olaparib in ovarian cancer (NCT02338622), and 

with enzalutamide in prostate cancer (NCT02525068). Results of these trials are now 

awaited.    
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Tables 

Table 1. Patient demographics and baseline clinical characteristics in Parts A, B, 

and C 

 Patients in Parts A and B 

(n=90) 

Patients in Part C 

(n=59) 

Mean age (SD), years  55.4 (10.8) 56.7 (12.7) 

Male:female, n 51:39 2:57 

Primary tumor location, n (%) 

Rectal/colorectal  

Pleura 

Lung 

Cervix 

Colon 

Ovary 

Breast 

Uterus 

Other
a
 

 

26 (29) 

7 (8) 

6 (7) 

5 (6) 

5 (6) 

4 (4) 

4 (4) 

0 

33 (37) 

 

NA 

NA 

NA 

9 (15) 

NA 

6 (10) 

31 (53) 

10 (17) 

3 (5) 

WHO performance status, n (%) 

 0  

 1 

 

38 (42) 

52 (58) 

 

30 (51) 

29 (43) 

Prior anticancer regimens, n (%)  

0 regimens 

1 regimen 

2 regimens 

≥3 regimens 

 Mean number of regimens (SD) 

 

0 

12 (13) 

27 (30) 

51 (57) 

3.3 (2) 

 

1 (2) 

6 (10) 

11 (19) 

41 (70) 

5.0 (3) 
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a
Other includes cancers that occurred in one or two patients. NA, not available  
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Table 2. Adverse events with frequency ≥15% irrespective of causality for Parts A and B in total or Part C in total  

Number 

(%) of 

patients 

Parts A and B Part C 

Schedule 1 (continuous) Schedule 2 (4/7) Schedule 2 (2/7) 

Total 

(N=90) 

480 mg 

bid; 4/7 

(n=59) 

80 mg 

bid 

(n=5) 

160 mg 

bid 

(n=5) 

240 mg 

bid 

(n=6) 

320 mg 

bid 

(n=12) 

400 mg 

bid 

(n=11) 

480 mg 

bid 

(n=6) 

600 mg 

bid 

(n=2) 

480 mg 

bid 

(n=11) 

640 mg 

bid 

(n=10) 

640 mg 

bid 

(n=8) 

800 mg 

bid 

(n=14) 

Patients with 

any AE 

5 

(100) 

5 

(100) 

6 

(100) 

12 

(100) 

11 

(100) 

6 

(100) 

2 

(100) 

11 

(100) 

10 

(100) 

8 

(100) 

14 

(100) 

90 

(100) 

59  

(100) 

Diarrhea 1 

(20) 

1 

(20) 

4 

(67) 

11 

(92) 

11 

(100) 

6 

(100) 

2 

(100) 

9 

(82) 

9 

(90) 

4 

(50) 

12 

(86) 

70 

(78) 

47  

(80) 

Nausea  0 

(0) 

2 

(40) 

1 

(17) 

8 

(67) 

4 

(36) 

5 

(83) 

2 

(100) 

5 

(45) 

7 

(70) 

3 

(38) 

7 

(50) 

44 

(49) 

33  

(56) 

Vomiting  0 

(0) 

1 

(20) 

2 

(33) 

5 

(42) 

4 

(36) 

3 

(50) 

1 

(50) 

5 

(45) 

5 

(50) 

3 

(38) 

6 

(43) 

35 

(39) 

26  

(44) 

Fatigue 1 

(20) 

2 

(40) 

2 

(33) 

5 

(42) 

3 

(27) 

2 

(33) 

2 

(100) 

3 

(27) 

2 

(20) 

4 

(50) 

7 

(50) 

33 

(37) 

24 

(41) 

Decreased 

appetite 

1 

(20) 

0 

(0) 

1 

(17) 

2 

(17) 

5 

(45) 

3 

(50) 

0 

(0) 

3 

(27) 

5 

(50) 

1 

(13) 

5 

(36) 

26 

(29) 

25  

(42) 
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Hyper-

glycemia 

2 

(40) 

1 

(20) 

0 

(0) 

0 

(0) 

4 

(36) 

3 

(50) 

1 

(50) 

4 

(36) 

4 

(40) 

2 

(25) 

5 

(36) 

26 

(29) 

24  

(41) 

Maculo-

papular 

rash 

1 

(20) 

2 

(40) 

1 

(17) 

3 

(25) 

3 

(27) 

3 

(50) 

2 

(100) 

3 

(27) 

1 

(10) 

1 

(13) 

4 

(29) 

24 

(27) 

15  

(25) 

Consti-

pation 

1 

(20) 

0 

(0) 

2 

(33) 

4 

(33) 

4 

(36) 

0 

(0) 

0 

(0) 

1 

(9) 

1 

(10) 

2 

(25) 

2 

(14) 

17 

(19) 

10  

(17) 

Abdominal 

pain 

0 

(0) 

0 

(0) 

1 

(17) 

5 

(42) 

2 

(18) 

2 

(33) 

0 

(0) 

2 

(18) 

0 

(0) 

3 

(38) 

0 

(0) 

15 

(17) 

16  

(27) 

Pyrexia 1 

(20) 

1 

(20) 

1 

(17) 

2 

(17) 

1 

(9) 

3 

(50) 

2 

(100) 

1 

(9) 

3 

(30) 

0 

(0) 

0 

(0) 

15 

(17) 

6  

(10) 

Headache 0 

(0) 

1  

(20) 

1  

(17) 

2  

(17) 

1  

(9) 

1 

(17) 

0  

(0) 

2 

(18) 

1 

(10) 

0  

(0) 

0 

(0) 

9 

(10) 

15  

(25) 

Anemia 0  

(0) 

0  

(0) 

1 

(17) 

0  

(0) 

1 

(9) 

0  

(0) 

0 

(0) 

2 

(18) 

1 

(10) 

2 

(25) 

0 

(0) 

7 

(8) 

12  

(20) 

Increased 

blood 

creatinine 

0  

(0) 

1 

(20) 

0  

(0) 

1 

(8) 

3 

(27) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

1 

(13) 

0  

(0) 

6  

(7) 

10  

(17) 
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Proteinuria 0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

1 

(9) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

1  

(1) 

13  

(22) 

Asthenia 0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0)  

0  

(0)  

0  

(0) 

0  

(0)  

0  

(0)  

0  

(0) 

12 

 (20) 

Hypomag-

nesemia 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0) 

0  

(0)  

0  

(0)  

0  

(0) 

0  

(0)  

0  

(0)  

0  

(0) 

9 

(15) 

 

 



34 
 

Figure legends 

Figure 1. Multiple-dose PK of AZD5363 (Day 8 of continuous schedule, Day 4 of 

4/7, and Day 2 of 2/7 intermittent schedules). A) AUC dosimetry; B) geometric 

mean (±SD) plasma concentration versus time  

Int, intermittent; SD, standard deviation 

 

Figure 2. Assessment of PD markers in PRP and paired tumor biopsies following 

treatment with AZD5363. A) Percentage change from baseline in pThr246 PRAS40 

and pSer9 GSK3β markers in PRP at 4 hours post-dose. B) Temporal change in 

pPRAS40 and pGSK3β in PRP 

In A) and B), percentage change in pPRAS40 and pGSK3β in PRP after a single dose of AZD5363 is 

shown. Data shown are from Parts A and B only (PD population) and where a result is available for 

one biomarker or the other. A) Data for each biomarker are ranked in order of descending percentage 

change and ranking is conducted for each biomarker separately. X indicates missing data. B) 

Percentage change from baseline in PD markers at various time points after 480 mg single dose 

(includes all dosing schedules). Samples failing quality control or evaluated as of poor quality, as well 

as one outlier value for pGSK3β at Cycle 0, Day 3, 0 hours post-dose, were excluded. Horizontal line, 

median; diamond, mean; box, quartile 1 to quartile 3; whiskers extend from the quartiles to the most 

extreme observation within 1.5xIQR. Outliers (>1.5xIQR) are individually displayed. C, cycle; D, day; 

IQR, interquartile range 

 

Figure 3. A) Comprehensive assessment of PD activity of AZD5363 in paired tumor 

biopsies from 12 patients by immunohistochemistry. B) PoM on tumor paired 

biopsies for pPRAS40 and pGSK3b as proximal indicators of AZD5363 target 

engagement and therefore selected as the key PoM markers 

A) Total H scores for evaluable pairs are shown for each biomarker (average of 3 non-consecutive 

tissue sections; details in supplementary material). For Foxo3a/Foxo, the percentage of positive 

nuclei is shown. Asterisks indicate the patient for whom representative staining images are shown. B) 
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The percentage change is based on the average H score for individual biomarkers in baseline and on-

treatment biopsies from three non-consecutive tissue sections. Each pair of bars represents data from 

an individual patient; tumor type is indicated in the table (left). X indicates missing data. *KRAS-

mutant colorectal cancer; 
†
PIK3CA E545K mutant cervical cancer (this patient was enrolled in Study 1 

Part C). cont, continuous 

 

Figure 4. Waterfall plots of best percentage change in target lesion size from 

baseline in patients from A) Parts A and B and B) Part C, with associated 

molecular data 

A) Exploratory mutation analysis by Sequenom in patients who provided suitable archival tumor 

tissue, who had baseline tumor assessment, and for whom best percentage change could be 

calculated. Mutations of potential interest in relationship to modulation of response to AZD5363 or 

known oncogenic drivers are shown. The AKT1 mutation detected in one patient was Q43X. B) 

Progression-free survival (PFS), PIK3CA-mutation status by local testing (tissue), central testing 

(cobas
®
 PCR, tissue and plasma), and PTEN status (immunohistochemistry, tissue) are shown. Only 

patients with baseline tumor assessment and measurable disease and for whom best percentage 

change could be calculated are included in the plot. The type of tissue used for central and 

exploratory assessment is indicated (M=metastatic, P=primary). Additional exploratory data on 

PIK3CA and ESR1 mutations testing in ctDNA by ddPCR are described in Supplementary Table 4 

(including time lapse between tissue biopsy and plasma collection) and in the supplementary material 
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Figure 1  
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Figure 2  
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Figure 4 
 

 
 

 


