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SUMMARY

Assessing the impact of genomic alterations on pro-
tein networks is fundamental in identifying the mech-
anisms that shape cancer heterogeneity. We have
used isobaric labeling to characterize the proteomic
landscapes of 50 colorectal cancer cell lines and to
decipher the functional consequences of somatic
genomic variants. The robust quantification of over
9,000 proteins and 11,000 phosphopeptides on
average enabled the de novo construction of a func-
tional protein correlation network, which ultimately
exposed the collateral effects of mutations on pro-
tein complexes. CRISPR-cas9 deletion of key chro-
matin modifiers confirmed that the consequences
of genomic alterations can propagate through pro-
tein interactions in a transcript-independent manner.
Lastly, we leveraged the quantified proteome to
perform unsupervised classification of the cell lines
and to build predictive models of drug response
in colorectal cancer. Overall, we provide a deep
integrative view of the functional network and the
molecular structure underlying the heterogeneity of
colorectal cancer cells.

INTRODUCTION

Tumors exhibit a high degree of molecular and cellular heteroge-

neity due to the impact of genomic aberrations on protein

networks underlying physiological cellular activities. Modern

mass-spectrometry-based proteomic technologies have the

capacity to perform highly reliable analytical measurements of
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This is an open access article und
proteins in large numbers of subjects and analytes, providing a

powerful tool for the discovery of regulatory associations be-

tween genomic features, gene expression patterns, protein net-

works, and phenotypic traits (Mertins et al., 2016; Zhang et al.,

2014, 2016). However, understanding how genomic variation

affects protein networks and leads to variable proteomic land-

scapes and distinct cellular phenotypes remains challenging

due to the enormous diversity in the biological characteristics

of proteins. Studying protein co-variation holds the promise to

overcome the challenges associated with the complexity of pro-

teomic landscapes as it enables grouping of multiple proteins

into functionally coherent groups and is now gaining ground in

the study of protein associations (Stefely et al., 2016; Wang

et al., 2017). Colorectal cancer cell lines are widely used as

cancer models; however, their protein and phosphoprotein co-

variation networks and the genomic factors underlying their

regulation remain largely unexplored.

Here, we studied a panel of 50 colorectal cancer cell lines

(colorectal adenocarcinoma [COREAD]) using isobaric labeling

and tribrid mass spectrometry proteomic analysis in order to

assess the impact of somatic genomic variants on protein net-

works. This panel has been extensively characterized by

whole-exome sequencing, gene expression profiling, copy num-

ber and methylation profiling, and the frequency of molecular

alterations is similar to that seen in clinical colorectal cohorts

(Iorio et al., 2016). First, we leveraged the robust quantification

of over 9,000 proteins to build de novo protein co-variation

networks, and we show that they are highly representative of

known protein complexes and interactions. Second, we ratio-

nalize the impact of genomic variation in the context of the can-

cer cell protein co-variation network (henceforth, ‘‘co-variome’’)

to uncover protein network vulnerabilities. Proteomic and RNA

sequencing (RNA-seq) analysis of human induced pluripotent

stem cells (iPSCs) engineered with gene knockouts of key
ports 20, 2201–2214, August 29, 2017 ª 2017 The Author(s). 2201
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chromatin modifiers confirmed that genomic variation can be

transmitted fromdirectly affected proteins to tightly co-regulated

distant gene products through protein interactions. Overall, our

results constitute an in-depth view of the molecular organization

of colorectal cancer cells widely used in cancer research.

RESULTS

Quantified Proteome and Phosphoproteome Coverage
and Correlation with Gene Expression
To assess the variation in protein abundance and phosphoryla-

tion within a panel of 50 colorectal cancer cell lines (COREAD),

we utilized isobaric peptide labeling (TMT-10plex) and MS3

quantification (Figure S1A). We obtained relative quantification

between the different cell lines (scaled intensities range:

0–1,000) for an average of 9,410 proteins and 11,647 phospho-

peptides (Tables S1 and S2; Figure S1B). To assess the repro-

ducibility of our data, we computed the coefficient of variation

(CV) (CV = SD/mean) of protein abundances for 11 cell lines

measured as biological replicates. The median CV in our study

was 10.5%, showing equivalent levels of intra-laboratory bio-

logical variation with previously published TMT data for seven

colorectal cancer cell lines (McAlister et al., 2014; Figure S1C).

Inter-laboratory comparison for the 7 cell lines common in both

studies showedmedian CV = 13.9% (Figure S1C). The additional

variation encompasses differences in sample preparation

methods (e.g., digestion enzymes), mass spectrometry instru-

mentation, and raw signal processing. The same SW48 protein

digest aliquoted in two parts and labeled with two different

TMT labels within the same 10plex experiment displayed a

median CV = 1.9% (Figure S1C), indicating that the labeling pro-

cedure and the mass spectrometry (MS) signal acquisition noise

have very small contribution to the total variation. The protein

abundance profiles for 11 cell lines measured as biological

replicates in two separate sets are shown as a heatmap in

Figure S1D, revealing the high heterogeneity of the COREAD

proteomic landscapes. The variation between different cell lines

was on average 3 times higher than the variation between

replicates (Figure S1E), with 93% of the proteins exhibiting an

inter-sample variation greater than the respective baseline vari-

ation between replicates. For proteins participating in basic

cellular processes (selected Kyoto encyclopedia of genes and

genomes [KEGG] pathways), the median CV between biological

replicates was as low as 8% (Figure S1F). At the phosphopeptide

level, the SW48 biological replicates across all multiplex sets

displayed amedian CV = 22% (Figure S1G), reflecting the gener-

ally higher uncertainty of the peptide level measurements

compared to the protein level measurements. Taken together,

our results show that protein abundance differences as low as

50% or 1.5-fold (>2 3 CV%) can be reliably detected using our

proteomics approach at both the proteome and phosphopro-

teome level.

Qualitatively, phosphorylated proteins (n = 3,565) were highly

enriched for spliceosomal and cell cycle functions and covered

a wide range of cancer-related pathways (Figure S2A). The

phosphosites were comprised of 86% serine, 13% threonine,

and <1% tyrosine phosphorylation (Figure S2B), and the most

frequent motifs identified were pS-P (47% of all pS) and pT-P
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(63%of all pT) (Figure S2C). Approximately 70%of the quantified

phosphorylation sites are cataloged in Uniprot, and 751 of these

represent known kinase substrates in the PhosphoSitePlus

database (Hornbeck et al., 2015). In terms of phosphorylation

quantification, we observed that phosphorylation profiles were

strongly correlated with the respective protein abundances

(Figure S2D), and therefore, to detect net phosphorylation

changes, we corrected the phosphorylation levels for total

protein changes by linear regression.

Correlation analysis between mRNA (publicly available micro-

array data) and relative protein abundances for each gene

across the cell lines indicated a pathway-dependent con-

cordance of protein/mRNA expression with median Pearson’s

r = 0.52 (Figure S2E). Highly variable mRNAs tend to correspond

to highly variable proteins (Spearman’s r = 0.62), although with a

wide distribution (Figure S2F). Notably, several genes, including

TP53, displayed high variation at the protein level despite the low

variation at the mRNA level, implicating significant post-tran-

scriptional modulation of their abundance.

Our COREAD proteomics and phosphoproteomics data

can be downloaded from ftp://ngs.sanger.ac.uk/production/

proteogenomics/WTSI_proteomics_COREAD/ in annotated

*.gct, *.gtf, and *.bb file formats compatible with the Integrative

Genomics Viewer (Robinson et al., 2011), the Morpheus clus-

tering web tool (https://software.broadinstitute.org/morpheus/),

or the Ensembl (Aken et al., 2017) and University of California

Santa Cruz (UCSC) (Kent et al., 2002) genome browsers. Our

proteomics data can also be viewed through the Expression

Atlas database (Petryszak et al., 2016).

The Subunits of Protein Complexes Tightly Maintain
Their Total Abundance Ratios Post-transcriptionally
The protein abundance measurements allowed us to study the

extent to which proteins tend to be co-regulated in abundance

across the colorectal cancer cell lines. We first computed the

Pearson’s correlation coefficients between proteins with known

physical interactions in protein complexes cataloged in the

CORUM database (Ruepp et al., 2010). We found that the distri-

bution of correlations between CORUM protein pairs was

bimodal and clearly shifted to positive values (Wilcoxon test; p

value < 2.2e�16) with mean 0.33 (Figure 1A, left panel), whereas

all pairwise protein-to-protein correlations displayed a normal

distribution with mean 0.01 (Figure 1A, left panel). Specifically,

290 partially overlapping CORUM complexes showed a greater

than 0.5 median correlation between their subunits (Table S3).

It has been shown that high-stoichiometry interactors are more

likely to be coherently expressed across different cell types

(Hein et al., 2015); therefore, our correlation data offer an assess-

ment of the stability of known protein complexes in the context of

colorectal cancer cells. Moreover, less stable or context-depen-

dent interactions in known protein complexes may be identified

by outlier profiles. Such proteins, with at least 50% lower individ-

ual correlation compared to the average complex correlation, are

highlighted in Table S3. For example, the ORC1 and ORC6

proteins displayed a divergent profile from the average profile

of the ORC complex, which is in line with their distinct roles in

the replication initiation processes (Ohta et al., 2003; Prasanth

et al., 2002).

ftp://ngs.sanger.ac.uk/production/proteogenomics/WTSI_proteomics_COREAD/
ftp://ngs.sanger.ac.uk/production/proteogenomics/WTSI_proteomics_COREAD/
https://software.broadinstitute.org/morpheus/


Figure 1. Global Distributions of Gene-to-Gene Correlations and Protein Co-variation Networks in Colorectal Cancer Cell Lines

(A) Distributions of Pearson’s correlation coefficients between protein-protein pairs (left panel) andmRNA-mRNA pairs (right panel) for all pairs (gray) and for pairs

with known interactions in the CORUM database (blue).

(B) Receiver operating characteristic (ROC) curves illustrating the performance of proteomics- and transcriptomics-based correlations to predict CORUM and

high-confident STRING interactions.

(C) Protein abundance correlation networks derived fromWGCNA analysis for enriched CORUM complexes. The nodes are color-coded according to mRNA-to-

protein Pearson correlation.

(D) The global structure of the WGCNA network using modules with more than 50 nodes. Protein modules are color coded according to the WGCNA module

default name, and representative enriched terms are used for the annotation of the network.

See also Figure S3.
In contrast, the distribution of Pearson’s coefficients between

CORUM pairs based on mRNA co-variation profiles was only

slightly shifted toward higher correlations with mean = 0.096

(Figure 1A, right panel). Interestingly, proteins with strong corre-

lations within protein complexes showed low variation across

the COREAD panel (Figure S2G) and have poor correspondence

to mRNA levels (Figure S2H). Together, these suggest that the

subunits of most of the known protein complexes are regulated

post-transcriptionally to accurately maintain stable ratio of total

abundance. Receiver operating characteristic (ROC) analyses

confirmed that our proteomics data outperformed mRNA data

in predicting protein complexes as well as high confident

STRING interactions (Szklarczyk et al., 2015; CORUM ROC

area under the curve [AUC]: 0.79 versus 0.61; STRING ROC

AUC: 0.71 versus 0.61; for proteomics and gene expression,

respectively; Figure 1B). The ability to also predict any type of

STRING interaction suggests that protein co-variation also en-

compasses a broader range of functional relationships beyond

structural physical interactions. Overall, our results demonstrate
that correlation analysis of protein abundances across a limited

set of cellular samples with variable genotypes can generate co-

variation signatures for many known protein-protein interactions

and protein complexes.

The Colorectal Cancer Cell Protein Correlation Network
We conducted a systematic un-biased genome-wide analysis to

characterize the colorectal cancer cell protein-protein correla-

tion network and to identify de novo modules of interconnected

proteins. To this end, we performed a weighted correlation

network analysis (WGCNA) (Langfelder and Horvath, 2008) using

8,295 proteins quantified in at least 80% of the cell lines. A total

of 284 protein modules ranging in size from 3 to 1,012 proteins

(Q1 = 6; Q3 = 18) were inferred covering the entire input dataset.

An interaction weight was assigned to each pair of correlating

proteins based on their profile similarities and the properties of

the network. We performed Gene Ontology annotation of the

modules with the WGCNA package as well as using additional

terms from CORUM, KEGG, GOBP-slim, GSEA, and Pfam
Cell Reports 20, 2201–2214, August 29, 2017 2203



databases with a Fisher’s exact test (Benjamini-Hochberg [Benj.

Hoch.] false discovery rate [FDR] < 0.05). We found significantly

enriched terms for 235 modules (Table S4) with an average

annotation coverage of 40%. Specifically, 111 modules dis-

played overrepresentation of CORUM protein complexes. For

29 of the 49 not-annotated modules, we detected known

STRING interactions within each module, suggesting that these

also capture functional associations that do not converge to

specific terms.

The correlation networks of protein complexes with more than

2 nodes are shown in Figure 1C. The global structure of the

colorectal cancer network comprised of modules with at least

50 proteins is depicted in Figure 1D and is annotated by signifi-

cant terms. The entire WGCNA network contains 87,420 interac-

tions (weight > 0.02; 96% positive; mean Pearson’s r = 0.61),

encompassing 7,248 and 20,969 known CORUM and STRING

interactions of any confidence, respectively. Overlaying the

protein abundance levels on the network generates a unique

quantitative map of the cancer cell co-variome, which can help

discriminate the different biological characteristics of the cell

lines (Figure S3A). For instance, it can be inferred that the

CL-40 cell line is mainly characterized by low abundances of

cell cycle, ribosomal, and RNA metabolism proteins, which

uniquely coincide with increased abundances of immune

response proteins (Figure S3A). The full WGCNA network with

weights greater than 0.02 is provided in Table S5.

As most of the proteins in modules representing protein com-

plexes are poorly correlatedwithmRNA levels, we next sought to

understand the transcriptional regulation of the modules with the

highest mean mRNA-to-protein correlations (5th quantile; mean

Pearson’s r > 0.57; 41 modules; 1,497 proteins). These included

several large components of the co-variome (e.g., ‘‘cell adhe-

sion,’’ ‘‘small molecule metabolic process,’’ and ‘‘innate immune

response’’), modules showing enrichment for experimental gene

sets (based on gene set enrichment analysis [GSEA]), and mod-

ules containing proteins encoded by common chromosomal

regions, implicating the effects of DNA copy number variations

(Figure S3B). In order to further annotate the modules with

potential transcriptional regulators, we examined whether

transcription factors that are members of the large transcription-

ally regulated modules are co-expressed along with their target

genes at the protein level. Transcription factor enrichment

analysis (Kuleshov et al., 2016) indicated that the ‘‘xenobiotic

and small molecule metabolic process’’ module was enriched

for the transcription factors HNF4A and CDX2 and that

STAT1/STAT2 were the potential master regulators of the ‘‘im-

mune response’’ module (Figure S3B, top left panel). HNF4A

(hepatocyte nuclear factor 4-alpha) is an important regulator of

metabolism, cell junctions, and the differentiation of intestinal

epithelial cells (Garrison et al., 2006) and has been previously

associated with colorectal cancer proteomic subtypes in human

tumors analyzed by the CPTAC consortium (Zhang et al., 2014).

Here, we were able to further characterize the consequences of

HNF4A variation through its proteome regulatory network.

To globally understand the interdependencies of protein

complexes in the colorectal cancer cells, we plotted the mod-

ule-to-module relationships as a correlation heatmap using

only modules enriched for protein complexes. The representa-
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tive profile of each module (eigengene or first principal com-

ponent; Langfelder and Horvath, 2007) was used as a metric

(Figure S3C). This analysis captures known functional associa-

tions between protein complexes (e.g., MCM-ORC, spliceo-

some-polyadenylation, and THO-nuclear pore; Lei and Tye,

2001; Millevoi et al., 2006; Wickramasinghe and Laskey, 2015)

and reveals the higher order organization of the proteome. The

major clusters of the correlation map can be categorized into

three main themes: (1) gene expression/splicing/translation/cell

cycle; (2) protein processing and trafficking; and (3) mitochon-

drial functions. This demonstrates that such similarity profiling

of abundance signatures has the potential to uncover novel in-

stances of cross-talk between protein complexes and also to

discriminate sub-complexes within larger protein assemblies.

In addition to protein abundance co-variation, the scale of

global phosphorylation survey accomplished here offers the op-

portunity for the de novo prediction of kinase-substrate associ-

ations inferred by co-varying phosphorylation patterns that

involve kinases (Ochoa et al., 2016; Petsalaki et al., 2015). Cor-

relation analysis among 436 phosphopeptides attributed to

137 protein kinases and 29 protein phosphatases yielded 186

positive and 40 negative associations at Benj. Hoch. FDR < 0.1

(Figure S4A), representing the co-phosphorylation signature of

kinases and phosphatases in the COREAD panel. Using this

high-confidence network as the baseline, we next focused on

co-phosphorylation profiling of kinases and phosphatases

involved in KEGG signaling pathways (Figure S4B), where known

kinase relationships can be used to assess the validity of the

predictions. We found co-regulated phosphorylation between

RAF1, MAPK1, MAPK3, and RPS6KA3, which were more

distantly correlated with the co-phosphorylated BRAF and

ARAF protein kinases, all members of the mitogen-activated

protein kinase (MAPK) pathway core axis (Figure S4B).

MAP2K1 (or MEK1) was found phosphorylated at T388 (un-

known kinase substrate), which was not correlating with the

above profile. The S222 phosphorylation site of MAP2K2 (or

MEK2), regulated by RAF kinase, was not detected possibly

due to limitations related to the lengthy (22 amino acids) theoret-

ical overlapping peptide. Strongly maintained co-phosphoryla-

tion between CDK1, CDK2, and CDK7 of the cell cycle pathway

was another true positive example (Figure S4B). The correlation

plots of MAPK1 and MAPK3 phosphorylation and total protein

are depicted in Figure S4C, top panel. The co-phosphorylation

of BRAF and ARAF is depicted in Figure S4C, bottom left panel.

A negative correlation example (between CDK1 kinase and

PPP2R5D phosphatase), reflecting the known role of PPP2R5D

as an upstream negative regulator of CDK1 (Forester et al.,

2007), is shown in Figure S4C, bottom right panel.

Taken together, our correlation analyses reveal the higher-

order organization of cellular functions. This well-organized

structure is shaped by the compartmental interactions between

protein complexes, and it is clearly divided into transcriptionally

and post-transcriptionally regulated sectors. The analysis per-

formed here constitutes a reference point for the better under-

standing of the underlying biological networks in the COREAD

panel. The resolution and specificity of the protein clusters can

be further improved by the combinatorial use of alternative algo-

rithms for construction of biological networks (Allen et al., 2012).



Figure 2. The Effect of Colorectal Cancer Driver Mutations on Protein Abundances

(A) Association of driver mutations in colorectal cancer genes with the respective protein abundance levels (ANOVA test; permutation-based FDR < 0.1). The cell

lines are ranked by highest (left) to lowest (right) protein abundance, and the bar on the top indicates the presence of driver mutations with black marks.

(B) Volcano plot summarizing the effect of loss of function (LoF) and missense driver mutations on the respective protein abundances.
Similarly, correlation analysis of protein phosphorylation data

demonstrates that functional relationships are encrypted in pat-

terns of co-regulated or anti-regulated phosphorylation events.

The Impact of Genomic Alterations on Protein
Abundance
Assessing the impact of non-synonymous protein coding vari-

ants and copy number alterations on protein abundance is

fundamental in understanding the link between cancer geno-

types and dysregulated biological processes. To characterize

the impact of genomic alterations on the proteome of the CO-

READ panel, we first examined whether driver mutations in the

most frequently mutated colorectal cancer driver genes (Iorio

et al., 2016) could alter the levels of their protein products. For

10 out of 18 such genes harboring driver mutations in at least 5

cell lines (PTEN, PIK3R1, APC, CD58, B2M, ARID1A, BMPR2,

SMAD4, MSH6, and EP300), we found a significant negative

impact on the respective protein abundances, in line with their

function as tumor suppressors, whereas missense mutations in

TP53 were associated with elevated protein levels as previously

reported (Bertorelle et al., 1996; Dix et al., 1994; ANOVA test;

permutation-based FDR < 0.1; Figure 2A). For the majority of

driver mutations in oncogenes, there was no clear relationship

between the presence of mutations and protein expression (Fig-

ure 2B). From these observations, we conclude that mutations in

canonical tumor suppressor genes predicted to cause

nonsense-mediated decay of transcript generally result in a

decrease of protein abundance. This effect, however, varies be-

tween the cell lines.

We extended our analysis to globally assess the effect of

mutations on protein abundances. For 4,658 genes harboring
somatic single-amino-acid substitutions in at least three cell

lines, only 12 proteins exhibited differential abundances in the

mutated versus the wild-type cell lines at ANOVA test FDR <

0.1 (Figure 3A). Performing the analysis in genes with loss-of-

function (LoF) mutations (frameshift, nonsense, in-frame, splice

site, and start-stop codon loss) showed that 115 out of the 957

genes tested presented lower abundances in the mutated

versus the wild-type cell lines at ANOVA test FDR < 0.1 (Fig-

ure 3B). The STRING network of the top significant hits is

depicted in Figure 3C and indicates that many of the affected

proteins are functionally related. Overall, almost all proteins in

a less stringent set with p value < 0.05 (n = 217) were found

to be downregulated by LoF mutations, confirming the general

negative impact on protein abundances. As expected, zygosity

of LoF mutations was a major determinant of protein abun-

dance, with homozygous mutations imposing a more severe

downregulation compared to heterozygous mutations (Fig-

ure 3D). Whereas the negative impact of LoF mutations was

not biased toward their localization in specific protein domains

(Figure S5A), we found that mutations localized closer to the

protein C terminus were slightly less detrimental (Figure S5B).

Notably, genes with LoF mutations and subsequently the signif-

icantly affected proteins displayed an overrepresentation of

chromatin modification proteins over the identified proteome

as the reference set (Fisher’s exact test; Benj. Hoch. FDR <

0.05). Chromatin modifiers play an important role in the regula-

tion of chromatin structure during transcription, DNA replica-

tion, and DNA repair (Narlikar et al., 2013). Impaired function

of chromatin modifiers can lead to dysregulated gene expres-

sion and cancer (Cairns, 2001). Our results show that loss of

chromatin modification proteins due to the presence of LoF
Cell Reports 20, 2201–2214, August 29, 2017 2205



Figure 3. The Global Effects of Genomic Alterations on Protein and mRNA Abundances
(A) Volcano plot summarizing the effect of missense mutations on the respective protein abundances (ANOVA test). Hits at permutation-based FDR < 0.1 are

colored.

(B) Volcano plot summarizing the effect of LoF mutations on the respective protein abundances (ANOVA test). Hits at permutation-based FDR < 0.1 are colored.

(C) STRING network of the proteins downregulated by LoF mutations at FDR < 0.1.

(D) Boxplots illustrating the protein abundance differences between all proteins and proteins with heterozygous or homozygous LoF mutations.

(E) Volcano plot summarizing the effect of LoF mutations with both mRNA and protein measurements on the respective mRNA abundances (ANOVA test). Hits at

permutation-based FDR < 0.1 are colored.

(F) Venn diagram displaying the overlap between proteins and mRNAs affected by LoF mutations. Selected unique and overlapping proteins are displayed.

(G) Volcano plot summarizing the effect of recurrent copy number alterations on the protein abundances of the contained genes (binary data; ANOVA test). Red

and blue points highlight genes with amplifications and losses, respectively. Enlarged points highlight genes at permutation-based FDR < 0.1.

(H) Bar plot illustrating the number of affected proteins by CNAs per genomic locus.

See also Figure S5.
mutations is frequent among the COREAD cell lines and repre-

sents a major molecular phenotype.

A less-pronounced impact of LoF mutations was found at the

mRNA level, where only 29 genes (out of 891 with both mRNA

and protein data) exhibited altered mRNA abundances in the

mutated versus the wild-type cell lines at ANOVA test FDR <

0.1 (Figure 3E). The overlap between the protein and mRNA level

analyses is depicted in Figure 3F. Even when we regressed out

the mRNA levels from the respective protein levels, almost

40% of the proteins previously found to be significantly downre-

gulated were recovered at ANOVA test FDR < 0.1 and the

general downregulation trend was still evident (Figure S5C). On

the contrary, regression of protein values out of themRNA values

strongly diminished the statistical significance of the associa-

tions between mutations and mRNA levels (Figure S5D). The

fact that LoF mutations have a greater impact on protein
2206 Cell Reports 20, 2201–2214, August 29, 2017
abundances compared to the mRNA levels suggests that an

additional post-transcriptional (e.g., translation efficiency) or a

post-translational mechanism (e.g., protein degradation) is

involved in the regulation of the final protein abundances. Lastly,

24 of the genes downregulated at the protein level by LoF muta-

tions have been characterized as essential genes in human colon

cancer cell lines (OGEE database; Chen et al., 2017). Such genes

may be used as targets for negative regulation of cancer cell

fitness upon further inhibition.

We also explored the effect of 20 recurrent copy number

alterations (CNAs), using binary-type data, on the abundances

of 207 quantified proteins falling within these intervals (total

coverage 56%). Amplified genes tended to display increased

protein levels, whereas gene losses had an overall negative

impact on protein abundances with several exceptions (Fig-

ure 3G). The 49 genes for which protein abundance was



associated with CNAs at ANOVA p value < 0.05 (37 genes at

FDR < 0.1) were mapped to 13 genomic loci (Figure 3H), with

13q33.2 amplification encompassing the highest number of

affected proteins. Losses in 18q21.2, 5q21.1, and 17p12 loci

were associated with reduced protein levels of three important

colorectal cancer drivers: SMAD4; APC; and MAP2K4, res-

pectively (FDR < 0.1). Increased levels of CDX2 and HNF4A tran-

scription factors were significantly associated with 13q12.13

and 20q13.12 amplifications (FDR < 0.1). The association of

these transcription factors with a number of targets and meta-

bolic processes as found by the co-variome further reveals the

functional consequences of the particular amplified loci. All

proteins affected by LoF mutations and recurrent CNAs are

annotated in Table S1.

Overall, we show that the protein abundance levels of genes

with mutations predicted to cause nonsense-mediated mRNA

decay are likely to undergo an additional level of negative regu-

lation, which involves translational and/or post-translational

events. The extent of protein downregulation heavily depends

on zygosity and appears to be independent from secondary

structure features and without notable dependency on the

position of the mutation on the encoded product. Missense

mutations rarely affect the protein abundance levels with the sig-

nificant exception of TP53. We conclude that only for a small

portion of the proteome can the variation in abundance be

directly explained by mutations and DNA copy number

variations.

The Consequences of Genomic Alterations Extend to
Protein Complexes
As tightly controlled maintenance of protein abundance appears

to be pivotal for many protein complexes and interactions, we

hypothesize that genomic variation can be transmitted from

directly affected genes to distant gene protein products through

protein interactions, thereby explaining another layer of protein

variation. To assess the frequency of such events, we retrieved

strongly co-varying interactors of the proteins downregulated

by LoF mutations to construct mutation-vulnerable protein net-

works. For stringency, we filtered for known STRING interactions

additionally to the required co-variation. We hypothesize that, in

these subnetworks, the downregulation of a protein node due to

LoF mutations can also lead to the downregulation of interacting

partners. These sub-networks were comprised of 306 protein

nodes and 278 interactions and included at least 10 well-known

protein complexes (Figure 4A). Two characteristic examples

were the BAF and PBAF complexes (Hodges et al., 2016), char-

acterized by disruption of ARID1A, ARID2, and PBRM1 protein

abundances. To confirm whether the downregulation of these

chromatin-remodeling proteins can affect the protein abun-

dance levels of their co-varying interactors (Figure 4B) post-tran-

scriptionally, we performed proteomics and RNA-seq analysis

on CRISPR-Cas9 knockout (KO) clones of these genes in

isogenic human iPSCs (Table S6). We found that downregulation

of ARID1A protein coincided with diminished protein levels of 7

partners in the predicted network (Figure 4C, left panel). These

show the strongest correlations and are known components of

the BAF complex (Hodges et al., 2016). In addition, reduced

levels of ARID2 resulted in the downregulation of three partners
unique to the PBAF complex, with significant loss of PBRM1 pro-

tein (Figure 4C, left panel). Several components of the BAF com-

plex were also compromised in the ARID2 KO, reflecting shared

components of the BAF and PBAF complexes. Conversely, loss

of PBRM1 had no effect on ARID2 protein abundance or any of

its module components, in line with the role of PBRM1 in modi-

fying PBAF targeting specificity (Thompson, 2009). The latter

demonstrates that collateral effects transmitted through protein

interactions can be directional. ARID1A, ARID2, and PBRM1

protein abundance reduction was clearly driven by their respec-

tive lowmRNA levels; however, the effect was not equally strong

in all three genes (Figure 4C, right panel). Strikingly, the interac-

tors that were affected at the protein level were not regulated at

the mRNA level, confirming that the regulation of these protein

complexes is transcript independent (Figure 4C, right panel).

ARID1A KO yielded the highest number of differentially ex-

pressed genes (Figure 4D); however, these changes were poorly

represented in the proteome (Figure 4E). Although pathway-

enrichment analysis in all KOs revealed systematic regulation

of a wide range of pathways at the protein level, mostly affecting

cellular metabolism (Figure 4F), we didn’t identify such regulation

at the mRNA level. This suggests that the downstream effects

elicited by the acquisition of genomic alterations in the particular

genes are distinct between gene expression and protein

regulation.

The latter prompted us to systematically interrogate the

distant effects of all frequent colorectal cancer driver genomic

alterations on protein and mRNA abundances by protein and

gene expression quantitative trait loci analyses (pQTL and

eQTL). We identified 86 proteins and 196 mRNAs with at least

one pQTL and eQTL, respectively, at 10% FDR (Figures 5A

and S5E). To assess the replication rates between independently

tested QTL for each phenotype pair, we also performed the

mapping using 6,456 commonly quantified genes at stringent

(FDR < 10%) andmore relaxed (FDR < 30%) significance cutoffs.

In both instances, we foundmoderate overlap, with 41%–64%of

the pQTL validating as eQTLs and 39%–54% of the eQTLs vali-

dating as pQTL (Figure 5B). Ranking the pQTL by the number of

associations (FDR < 30%) showed that mutations in BMPR2,

RNF43, and ARID1A, as well as CNAs of regions 18q22.1,

13q12.13, 16q23.1, 9p21.3, 13q33.2, and 18q21.2 accounted

for 62% of the total variant-protein pairs (Figure 5C). The

above-mentioned genomic loci were also among the top 10

eQTL hotspots (Figure S5F). High-frequency hotspots in chro-

mosomes 13, 16, and 18 associated with CNAs are consistent

with previously identified regions in colorectal cancer tissues

(Zhang et al., 2014). We next investigated the pQTL for known

associations between the genomic variants and the differentially

regulated proteins. Interestingly, increased protein, but not

mRNA, levels of themediator complex subunits were associated

with FBXW7 mutations (Figure S5G), an ubiquitin ligase that

targets MED13/13L for degradation (Davis et al., 2013).

Overall, our findings indicate that an additional layer of protein

variation can be explained by the collateral effects of mutations

on tightly co-regulated partners in protein co-variation networks.

Moreover, we show that a large portion of genomic variation

affecting gene expression is not directly transmitted to the prote-

ome. Finally, distant protein changes attributed to variation in
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Figure 4. The Consequences of Mutations on Protein Complexes

(A) Correlations networks filtered for known STRING interactions of proteins downregulated by LoF mutations at p value < 0.05. The font size is proportional to

the �log10(p value). CORUM interactions are highlighted as green thick edges, and representative protein complexes are labeled.

(B) Protein abundance correlation network of the ARID1A, ARID2, and PBRM1 modules. Green edges denote known CORUM interactions, and the edge

thickness is increasing proportionally to the WGCNA interaction weight.

(C) Heatmap summarizing the protein and mRNA abundance log2fold-change values in the knockout clones compared to the wild-type (WT) clones for the

proteins in the ARID1A, ARID2, and PBRM1 modules.

(D) Volcano plots highlighting the differentially regulated mRNAs in the KO samples.

(E) Scatterplot illustrating the correlation between protein and mRNA abundance changes in the ARID1A KO.

(F) KEGG pathway and CORUM enrichment analysis for the proteomic analysis results of ARID1A, ARID2, and PBRM1CRISPR-cas9 knockouts in human iPSCs.
cancer driver genes can be regulated directly at the protein level

with indication of causal effects involving enzyme-substrate

relationships.

Proteomic Subtypes of Colorectal Cancer Cell Lines
To explore whether our deep proteomes recapitulate tissue level

subtypes of colorectal cancer and to provide insight into the

cellular and molecular heterogeneity of the colorectal cancer

cell lines, we performed unsupervised clustering based on the

quantitative profiles of the top 30% most variable proteins

without missing values (n = 2,161) by class discovery using the

ConsensusClusterPlus method (Wilkerson and Hayes, 2010).

Optimal separation by k-means clustering was reached using 5

colorectal proteomic subtypes (CPSs) (Figures S6A and S6B).

Our proteomic clusters overlapped very well with previously

published tissue subtypes and annotations (Medico et al.,
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2015; Figure S6C), especially with the classification described

by De Sousa E Melo et al. (2013). Previous classifiers have

commonly subdivided samples along the lines of ‘‘epithelial’’

(lower crypt and crypt top), ‘‘microsatellite instability (MSI)-H,’’

and ‘‘stem-like,’’ with varying descriptions (Guinney et al.,

2015). Our in-depth proteomics dataset not only captures

the commonly identified classification features but provides

increased resolution to further subdivide these groups. The iden-

tification of unique proteomic features pointing to key cellular

functions gives insight into themolecular basis of these subtypes

and provides clarity as to the differences between them (Figures

6A and 6B).

The CPS1 subtype is the canonical MSI-H cluster, overlapping

with theCCS2 cluster identified byDeSousa EMelo et al., (2013),

CMS1 from Guinney et al., (2015), and CPTAC subtype B (Zhang

et al., 2014). Significantly, CPS1 displays low expression of ABC



Figure 5. Proteome-wide Quantitative Trait Loci Analysis of Cancer Driver Genomic Alterations

(A) Identification of cis and trans proteome-wide quantitative trait loci (pQTL) in colorectal cancer cell lines considering colorectal cancer driver variants. The p

value and genomic coordinates for the most confident non-redundant protein-variant association tests are depicted in the Manhattan plot.

(B) Replication rates between independently tested QTL for each phenotype pair using common sets of genes and variants (n = 6,456 genes).

(C) Representation of pQTL as 2D plot of variants (x axis) and associated genes (y axis). Associations with q < 0.3 are shown as dots colored by the beta value

(blue, negative association; red, positive association) while the size is increasing with the confidence of the association. Cumulative plot of the number of as-

sociations per variant is shown below the 2D matrix.

See also Figure S5.
transporters, which may lead to low drug efflux and contribute to

the better response rates seen in MSI-H patients (Popat et al.,

2005).

Cell lines with a canonical epithelial phenotype (previously

classified as CCS1 by De Sousa E Melo et al., 2013) clustered

together but are subdivided into 2 subtypes (CPS2 and CPS3).

These subtypes displayed higher expression of HNF4A, indi-

cating a more differentiated state. Whereas subtype CPS3 is

dominated by transit-amplifying cell phenotypes (Sadanandam

et al., 2013), CPS2 is amore heterogeneous group characterized

by a mixed TA and goblet cell signature (Figure S6C). CPS2

is also enriched in lines that are hypermutated, including MSI-

negative/hypermutated lines (HT115, HCC2998, and HT55;

Medico et al., 2015; COSMIC; Figure S6C). However, lower

activation of steroid biosynthesis and ascorbate metabolism

pathways as well as lower levels of ABC transporters in CPS1

render this group clearly distinguishable from CPS2 (Figure 6B).

We also observed subtle differences in the genes mutated

between the two groups. RNF43 mutations and loss of

16q23.1 (including WWOX tumor suppressor) are common in

CPS1. The separation into two distinct MSI-H/hypermutated

classifications was also observed by Guinney et al., (2015) and

may have implications for patient therapy and prognosis.

Transit-amplifying subtype CPS3 can be distinguished from

CPS2 by lower expression of cell cycle proteins (e.g., CDC20,
KIF11, and BUB1); predicted low CDK1, CDK2, and PRKACA

kinase activities based on the quantitative profile of known sub-

strates from the PhosphoSitePlus database (Hornbeck et al.,

2015); and high PPAR signaling pathway activation (Figure 6B).

Common amplifications of 20q13.12 and subsequent high

HNF4A levels indicate this cluster corresponds well with CPTAC

subtype E (Figure S6D; Zhang et al., 2014). CPS3 also contains

lines (DIFI and NCI-H508) that are most sensitive to the anti-

epidermal growth factor receptor (EGFR) antibody cetuximab

(Medico et al., 2015).

The commonly observed colorectal stem-like subgroup is

represented by subtypes CPS4 and CPS5 (Figures 6A and

S6C). These cell lines have also been commonly associated

with a less-differentiated state by other classifiers, and this is re-

inforced by our dataset; subtype CPS4 andCPS5 have low levels

of HNF4A and CDX1 transcription factors (Chan et al., 2009;

Garrison et al., 2006; Jones et al., 2015) and correlate well with

CMS4 (Guinney et al., 2015) and CCS3 (De Sousa E Melo et al.,

2013). Cells in CPS4 and CPS5 subtypes commonly exhibit loss

of the 9p21.3 region, including CDKN2A and CDKN2B, whereas

this is rarely seen in other subtypes. Interestingly, whereas

CPS5 displays activation of the Hippo signaling pathway, inflam-

matory/wounding response, and loss of 18q21.2 (SMAD4), CPS4

hasamesenchymal profile,with lowexpressionofCDH1andJUP

similarly toCPTACsubtypeCandhighVimentin. Finally,we found
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Figure 6. Proteomics Subtypes of Colorectal Cancer Cell Lines and Pathway Analysis

(A) Cell lines are represented as columns, horizontally ordered by five color-coded proteomics consensus clusters and aligned with microsatellite instability (MSI),

HNF4A protein abundance, cancer driver genomic alterations, and differentially regulated proteins.

(B) KEGG pathway and kinase enrichment analysis per cell line.

See also Figure S6.
common systematic patterns between the COREAD proteomic

subtypes and the CPTAC colorectal cancer proteomic subtypes

(Zhang et al., 2014) in a global scale (Figures S6D and S6E) using

the cell line signature proteins. The overlap between the cell lines

and the CPTAC colorectal tissue proteomic subtypes is summa-

rized in Figure S6F.

Lastly, we detected 206 differentially regulated proteins

between the MSI-high and MSI-low cell lines (Welch’s t test;

permutation based FDR < 0.1; Figure S7A), which were mainly

converging to downregulation of DNA repair and chromosome

organization as well as to upregulation of proteasome and

Lsm2-8 complex (RNA degradation; Figure S7B). Whereas loss

of DNA repair and organization functions are the underlying

causes of MSI (Boland and Goel, 2010), the upregulation of
2210 Cell Reports 20, 2201–2214, August 29, 2017
RNA and protein degradation factors indicate the activation

of a scavenging mechanism that regulates the abundance of

mutated gene products.

Pharmacoproteomic Models Significantly Contribute to
Drug Response Prediction
Although a number of recent studies have investigated the power

of different combinations of molecular data to predict drug

response in colorectal cancer cell lines, these have been limited

to using genomic (mutations and copy number), transcriptomic,

and methylation datasets (Iorio et al., 2016). We have shown

above that the DNA and gene expression variations are not

directly consistent with the protein measurements. Also, it has

been shown that there is a gain in predictive power for some



Figure 7. Pharmacoproteomic Models

(A) The number of drugs for which predictive models (i.e., models where the Pearson correlation between predicted and observed IC50s exceeds r > 0.4) could be

fitted is stratified per data type.

(B) Heatmap indicating for each drug and each data type whether a predictive model could be fitted. Most drugs were specifically predicted by one data type.

(C) Heatmap of scaled log2 IC50 values for selected drugs displaying significant association (ANOVA FDR < 0.05) between protein abundance of ABCB1,

ABCB11, and drug response.

(D) Dose-response profiles for colorectal cancer cell lines treated with docetaxel (black line), 2.5 mM tariquidar alone (gray dotted line), or the combination of

docetaxel and 2.5 mM tariquidar (orange line). Error bars represent mean ± SEM.

See also Figure S7.
phenotypic associations when also using protein abundance

and phosphorylation changes (Costello et al., 2014; Gholami

et al., 2013; Li et al., 2017). To date, there has not been a compre-

hensive analysis of the effect on the predictive power from the

addition of proteomics datasets in colorectal cancer. All of the

colorectal cell lines included in this study have been extensively

characterized by sensitivity data (half maximal inhibitory concen-

tration [IC50] values) for 265 compounds (Iorio et al., 2016). These

include clinical drugs (n = 48), drugs currently in clinical develop-

ment (n = 76), and experimental compounds (n = 141).

We built Elastic Net models that use as input features

genomic (mutations and copy number gains/losses), methyl-

ation (CpG islands in gene promoters), gene expression, prote-

omics, and phosphoproteomics datasets. We were able to

generate predictive models where the Pearson correlation be-

tween predicted and observed IC50 was greater than 0.4 in 81

of the 265 compounds (Table S7). Response to most drugs

was often specifically predicted by one data type, with very little

overlap (Figures 7A and 7B, respectively). The number of pre-

dictive models per drug target pathway and data type is de-

picted in Figure S7C, highlighting the contribution of proteomics

and phosphoproteomics datasets in predicting response to

certain drug classes.
Within the proteomics-based signatures found to be predic-

tive for drug response, we frequently observed the drug efflux

transporters ABCB1 and ABCB11 (6 and 6 out of 24, respec-

tively; 8 non-redundant; Table S7). In all models containing these

proteins, elevated expression of the drug transporter was asso-

ciated with drug resistance, in agreement with previous results

(Garnett et al., 2012). Notably, protein measurements of these

transporters correlated more strongly with response to these

drugs than the respective mRNA measurements (mean Pear-

son’s r = 0.61 and r = 0.31, respectively; Wilcoxon test p value =

0.016). Interestingly, ABCB1 and ABCB11 are tightly co-regu-

lated (Pearson’s r = 0.92), suggesting a novel protein interaction.

Classifying the cell lines into two groups with low and high mean

protein abundance of ABCB1 and ABCB11 revealed a strong

overlap with drug response for 54 compounds (ANOVA test; per-

mutation-based FDR < 0.05). Representative examples of these

drug associations are shown in Figure 7C. To confirm the causal

association between the protein abundance levels of ABCB1,

ABCB11, and drug response, we performed viability assays in

four cell lines treated with docetaxel, a chemotherapeutic agent

broadly used in cancer treatment. The treatments were per-

formed in the presence or absence of an ABCB1 inhibitor (tari-

quidar) and confirmed that ABCB1 inhibition increases sensitivity
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to docetaxel (Figure 7D) in the cell lines with high ABCB1 and

ABCB11 levels. Given the dominant effect of the drug efflux

proteins in drug response, we next tested whether additional

predictive models could be identified by correcting the drug

response data for the mean protein abundance of ABCB1 and

ABCB11 using linear regression. With this analysis, we were

able to generate predictive models for 41 additional drugs

(total 57) from all input datasets combined (Figure S7D;

Table S7). Taken together, our results show that the protein

expression levels of drug efflux pumps play a key role in deter-

mining drug response, and whereas predictive genomic bio-

markers may still be discovered, the importance of proteomic

associations with drug response should not be underestimated.

DISCUSSION

Our analysis of colorectal cancer cells using in-depth proteomics

has yielded several significant insights into both fundamental

molecular cell biology and the molecular heterogeneity of colo-

rectal cancer subtypes. Beyond static measurements of protein

abundances, the quality of our dataset enabled the construction

of a reference proteomic co-variation map with topological

features capturing the interplay between known protein com-

plexes and biological processes in colorectal cancer cells. We

show that the subunits of protein complexes tend to tightly main-

tain their total abundance ratios post-transcriptionally, and this is

a fundamental feature of the co-variation network. The primary

level of co-variation between proteins enables the generation

of unique abundance profiles of known protein interactions,

and the secondary level of co-regulation between protein com-

plexes can indicate the formation of multi-complex protein

assemblies. Moreover, the identification of proteins with outlier

profiles from the conserved profile of their known interactors

within a given complex can point to their pleiotropic roles in

the associated processes. Notably, our approach can be used

in combination with high-throughput pull-down assays (Hein

et al., 2015; Huttlin et al., 2015) for further refinement of large-

scale protein interactomes based on co-variation signatures

that appear to be pivotal for many protein interactions. Addition-

ally, our approach can serve as a time-effective tool for the iden-

tification of tissue-specific co-variation profiles in cancer that

may reflect tissue-specific associations. As a perspective, our

data may be used in combination with genetic interaction

screens (Costanzo et al., 2016) to explore whether protein

co-regulation can explain or predict synthetic lethality (Kaelin,

2005). Another novel aspect that emerged from our analysis is

the maintenance of co-regulation at the level of net protein

phosphorylation. This seems to bemore pronounced in signaling

pathways, where the protein abundances are insufficient to

indicate functional associations. Analogous study of co-regula-

tion between different types of protein modifications could also

enable the identification of modification cross-talk (Beltrao

et al., 2013). This framework also enabled the identification of

upstream regulatory events that link transcription factors to their

transcriptional targets at the protein level and partially explained

the components of the co-variome that are not strictly shaped by

physical protein interactions. To a smaller degree, the module-

based analysis was predictive of DNA copy number variations,
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exposing paradigms of simple cause-and-effect proteogenomic

features of the cell lines. Such associations should be carefully

taken into consideration in large-scale correlation analyses, as

they do not necessarily represent functional relationships.

The simplification of the complex proteomic landscapes into

co-variation modules enables a more direct alignment of

genomic features with cellular functions and delineates how

genomic alterations affect the proteome directly and indirectly.

We show that LoF mutations can have a direct negative impact

on protein abundances further to mRNA regulation. Targeted

deletion of key chromatin modifiers by CRISPR/cas9 followed

by proteomics and RNA-seq analysis confirmed that the effects

of genomic alterations can propagate through physical protein

interactions, highlighting the role of translational or post-transla-

tional mechanisms in modulating protein co-variation. Addition-

ally, our analysis indicated that directionality can be another

characteristic of such interactions.

We provide evidence that colorectal cancer subtypes derived

from tissue level gene expression and proteomics datasets are

largely recapitulated in cell-based model systems at the prote-

ome level, which further resolves the main subtypes into groups.

This classification reflects a possible cell type of origin and

the underlying differences in genomic alterations. This robust

functional characterization of the COREAD cell lines can guide

cell line selection in targeted cellular and biochemical experi-

mental designs, where cell-line-specific biological features can

have an impact on the results. Proteomic analysis highlighted

that the expression of key protein components, such as ABC

transporters, is critical in predicting drug response in colorectal

cancer. Whereas further work is required to establish these

as validated biomarkers of patient response in clinical trials,

numerous studies have noted the role of these channels in aiding

drug efflux (Chen et al., 2016). In summary, this study demon-

strates the utility of proteomics in different aspects of systems

biology and provides a valuable insight into the regulatory varia-

tion in colorectal cancer cells.

EXPERIMENTAL PROCEDURES

Sample Preparation and Analysis

Cell pellets were lysed by probe sonication/boiling, and protein extracts were

subjected to trypsin digestion. The tryptic peptides were labeled with the

TMT10plex reagents, combined at equal amounts, and fractionated with

high-pH C18 high-performance liquid chromatography (HPLC). Phosphopep-

tide enrichment was performed with immobilized metal ion affinity chroma-

tography (IMAC). LC-MS analysis was performed on the Dionex Ultimate

3000 system coupled with the Orbitrap Fusion Mass Spectrometer. MS3

level quantification with Synchronous Precursor Selection was used for total

proteome measurements, whereas phosphopeptide measurements were

obtained with a collision-induced dissociation-higher energy collisional

dissociation (CID-HCD) method at the MS2 level. Raw mass spectrometry

files were subjected to database search and quantification in Proteome

Discoverer 1.4 or 2.1 using the SequestHT node followed by Percolator vali-

dation. Protein and phosphopeptide quantification was obtained by the sum

of column-normalized TMT spectrum intensities followed by row-mean

scaling.

Statistical Analysis

Enrichment for biological terms, pathways, and kinases was performed in

Perseus 1.4 software with Fisher’s test or with the 1D-annotation-enrichment

method. Known kinase-substrate associations were downloaded from the



PhosphoSitePlus database. All terms were filtered for Benjamini-Hochberg

FDR < 0.05 or FDR < 0.1. Correlation analyses were performed in RStudio

with Benjamini-Hochberg multiple testing correction. ANOVA and Welch’s

tests were performed in Perseus 1.4 software. Permutation-based FDR

correction was applied to the ANOVA test p values for the assessment of

the impact of mutations and copy number variations on protein and mRNA

abundances. Volcano plots, boxplots, distribution plots, scatterplots, and

bar plots were drawn in RStudio with the ggplot2 and ggrepel packages. All

QTL associations were implemented by LIMIX using a linear regression test.
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