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Abstract

Motivation: Probabilistic latent semantic analysis (pLSA) is commonly applied to describe mass spectra (MS)
images. However, the method does not provide certain outputs necessary for the quantitative scientific interpret-
ation of data. In particular, it lacks assessment of statistical uncertainty and the ability to perform hypothesis testing.
We show how linear Poisson modelling advances pLSA, giving covariances on model parameters and supporting 2
testing for the presence/absence of MS signal components. As an example, this is useful for the identification of
pathology in MALDI biological samples. We also show potential wider applicability, beyond MS, using magnetic res-
onance imaging (MRI) data from colorectal xenograft models.

Results: Simulations and MALDI spectra of a stroke-damaged rat brain show MS signals from pathological tissue
can be quantified. MRI diffusion data of control and radiotherapy-treated tumours further show high sensitivity hy-
pothesis testing for treatment effects. Successful 2 and degrees-of-freedom are computed, allowing null-hypothesis
thresholding at high levels of confidence.

Availability and implementation: Open-source image analysis software available from TINA Vision, www.tina-vi

sion.net.
Contact: paul.tar@manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

When reporting scientific discoveries, it is conventional to quantify
the significance of results via hypothesis testing. A null-hypothesis is
formed assuming there is no effect beyond measurement noise. If sig-
nal deviations exceed a probability threshold then this is considered
evidence of a possible effect. A medical intervention will typically be
considered potentially effective only if it reaches a P-value below
0.05 (Fisher, 1925)—a result that requires caution as it can be
caused by noise 1 in 20 times. Alternatives to hypothesis testing in-
clude dichotomy testing, where one hypothesis is tested against an-
other [e.g. using Likelihood ratios (McGee, 2002)], or Bayesian
selection (Raftery, 1995) where multiple hypotheses are simultan-
eously tested. This work develops a sensitive hypothesis testing
method for bio-images, particularly suited to Poisson mass spectra
(MS) data (i.e. ion counts), but also applicable to other source of
Poisson data, such as binned counts of voxels sampled from medical
imagery [e.g. magnetic resonance imaging (MRI) data].

An honest significance test will produce a uniform distribution
of P-values when observations are drawn from data consistent with
the null-hypothesis (Welch and Peers, 1963). This honesty can be
lost if models are inappropriately selected or data assumptions are
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violated. Achieving this uniformity is a key measure of success for
our proposed hypothesis testing method. We argue that rigorous
quality control is necessary before results can be considered trust-
worthy and that success on one dataset does not guarantee future
success for all similar data. Tools, such as Bland-Altman analysis
(Bland and Altman, 1986), must be used to check noise characteris-
tics as a function of observed value, e.g. that Poisson noise grows
with the square-root of the observed measurement. Pull distributions
(Demortier and Lyons, 2002) can be used to check that errors on
parameters match those predicted by theory. Monte Carlo simula-
tion is a further tool for testing software under controlled condi-
tions. By applying such testing, it is possible to determine when
results can be trusted.

A common approach to hypothesis testing is to inspect mode fit
residuals. This can be achieved using y? statistics which requires:
Gaussian residuals (an assumption); scaling of residuals to unit vari-
ance (requiring knowledge of error size); and knowledge of the num-
ber of degrees-of-freedom (d.f.) remaining after parameter
estimation (which can also correct for residual correlations). Such
knowledge may be readily available for simple regressions, but can
be harder to determine in complex data and machine-learning sys-
tems. The modelling of MS images of biological specimens is a case
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in point, where dimensionality changes from spectrum-to-spectrum
(via multiple changing tissues) and ion counts can vary giving differ-
ent levels of uncertainty (via changing signal-to-noise). Whilst meth-
ods exist for assessing processes in diseased and injured tissue for
MS (e.g. Henderson et al., 2018), additional work is needed for 3>
testing, e.g. for P-values on pathology.

Linear decompositions, such as PCA and ICA (Gut et al., 2015),
extract correlations between mass peaks. Under these methods,
peaks that covary are represented as elements of orthogonal (PCA)
or non-orthogonal (ICA) vectors. It is reported that ICA methods
are promising for use with MS (Nicolaou ef al., 2011). However,
PCA and ICA are usually based upon Gaussian noise assumptions
and can include both positive and non-physical negative loadings.
MS, in contrast, are positive-only and, depending upon the type of
spectra, can be dominated by Poisson sampling noise (Harn et al.,
2015; Piehowski et al., 2009) in regions where peaks are well popu-
lated. Linear models also have an advantage over machine-learning
classification labelling systems. At the resolution of MS images, mul-
tiple tissue types can exist within a single spectrum, thus a linear
composition model is a more sensible description than a set of class
labels. These characteristics have led to an industry standard ap-
proach for such MS modelling called probabilistic latent semantic
analysis (pLSA), as found in Bruker’s SCiLs lab software. Our simi-
lar modelling method, linear Poisson modelling (LPM), has previ-
ously been used to make measurements of tissue mixtures from
MALDI MS (Deepaisarn et al., 2018).

Most approaches, including pLSA, do not output information
needed for y? testing as a standard part of their algorithm. Some
work has been undertaken to determine the error terms for some of
these methods (Tang and Nehorai, 2011) to give parameter cova-
riances on model weights via application of the minimum variance
bound (MVB), but fall short of hypothesis testing. In state-of-the-art
machine learning, aleatoric (observational) and epistemic (encoded
model) uncertainties have been estimated for Bayesian deep learning
(Kendall and Gal, 2017), but these do not directly equate to trad-
itional statistical and systematic errors, nor are d.f. calculated mak-
ing it inappropriate for y? testing. The novelty of this work is
demonstrating that our (LPM) (Tar et al., 2015) method is appropri-
ate, and can be extended to provide all the necessary outputs for P-
values to be estimated from y?> values—primarily for MS, but also
for different imaging modalities, such as MRI. However, successful
application is dependent upon results passing quality control crite-
ria, as is achieved with our example data.

2 Materials and methods

To validate spectrum-by-spectrum y? testing on MALDI images and
simulated MS data, the followed steps are taken (outline in Fig. 1):

MS Monte Carlo (2.1)
Spectra taken from previous
work [lamb brain]

Linearly combine example |
spectra with Poisson noise ]
Mix quantities based upon
template images

LPM (2.4)
Input MS / ADC histograms
For different model-orders:
Solve using E.M.
Multiple random initialisations
Select best fit
Bland-Altman check of
residuals

MALDI imaging (2.2)
Acquire using MALDI-7090 v
100 shots per pixel, 80 um
lattice, 50 pm beam
Select mass window
Alignment and baseline
correction
Rejection of outliers

Images / Outputs
(2.5 onwards)
Quantity: proportion of each

component

Uncertainty: standard
deviation error on proportion
Goodness-of-fit: x*for local
ability to describe data

Null hypothesis: local x*
assuming selected
component(s) are absent
Degrees of freedom: local
estimate of d.f.

Tumor imaging (2.3)
Acquire using 7T Magnex
(Bruker) MRI scanner
Scanned at baseline —
Scanned 72h post treatment
ADC computed
Sampled into histograms

Fig. 1. Outline of work-flow. Numbers indicate related method sub-sections

* Preparation and pre-processing of MS is performed to approxi-
mate statistical properties needed for LPM. Simulated MS are
generated with independent Poisson noise and known ground-
truth for validation.

* An appropriate model-order is needed, fitted sufficiently close to
a global solution to give well-behaved residuals. Quality is
checked using a global > (all data) and also Bland—Atman
analysis.

* Per-spectrum model weight error covariances must be estimated
and validated. Validation can be performed using known
ground-truth and pull distributions.

* DPer-spectrum error predictions are used to estimate the effect of
model fitting on residuals, allowing an effective number of d.f. to
be calculated for individual spectra.

* A model component is selected to play the role of ‘null’ compo-
nent. This forms a null-hypothesis that the component is not
required to describe the data. A y? is computed for each fitted
spectrum with and without the null component in order to com-
pute P-values.

* Regions of data believed to be consistent with the null-
hypothesis are tested to check if the P-value distribution is uni-
form, as it should be when driven only by noise. Regions that are
strongly not consistent with the null-hypothesis are revealed by
applying a P-value threshold.

MALDI imaging has been widely applied to study rat brain mod-
els. Current literature linking lipids with this well-known anatomy
makes this target a useful demonstrator. We select a rat brain image
post-ischaemic stroke [data originating from Henderson et al.
(2018)], as despite having no exact quantitative ground-truth, the
location of stroke damaged is known. A component that highly cor-
relates with this region is used as the null-hypothesis component.
The hypothesis test will therefore act as a test for pathology. The
image contains over 25 000 spectra covering multiple tissue types
(e.g. white matter, grey matter, fat, CSF spaces etc.).

The modelling of more general histogram data, in the form of
sampled data distributions from MRI scans, is considered as a se-
cond dataset, requiring fewer pre-processing steps. We build LPM
descriptions of diffusion-weighted MRI data acquired in colorectal
xenograft tumours (LoVo and HCT116), where the apparent diffu-
sion co-efficient (ADC—a measure of water mobility within tissues)
was calculated for each image voxel. Here, ADC distributions, one
per tumour, are sampled into histograms, where each histogram
plays a similar role to a mass spectrum. In this case, the null-
hypotheses are that there are no measurable treatment effects. A
control model is fitted to untreated and also radiotherapy-treated
distributions, to demonstrate how the resulting 7> can be used to dif-
ferentiate between both groups.

2.1 Monte Carlo MS images

Simulated images (128x128 pixels) were generated by linearly
weighting example spectra from previously published work
(Deepaisarn et al., 2018, white and grey matter from lamb brain),
and also simple ramps and top-hat distributions (Fig. 2). Ground-
truth quantities were set using images of overlapping geometric
shapes to simulate mixed tissues (Fig. 3). A designated ‘pathology’
component covers a rectangle with a smooth gradient to simulate
pixels containing from 0 to ~33% pathology. To simulate a range
of sample sizes, the expected ion quantities per-pixel are draw from
a Gaussian distribution with the mean set to the typical levels of sig-
nal found within the real rat brain image. A Poisson random number
generator is then used to draw individual ion counts following these
selected means. In all cases, artefacts that are removed through the
pre-processing describe below (baseline, shifting, etc.) are not simu-
lated, thus Monte Carlo data were suitable for direct LPM analysis.



4082

P.D.Tar et al.

Example Monte Carlo spectra distributions
taken from lamb’s brain

Additional Monte Carlo
distributions
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Fig. 2. Spectra used as source components to build simulated MS images. These in-
clude real MALDI spectra from lamb’s brain tissue and also simple distributions to
test a wide range of overlapping bins (via the ramps) and unique bins (top-hats)
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Fig. 3. Results of modelling synthetic MS images. From left to right: ground-truth
mixing quantities; LPM quantity estimates; LPM predicted uncertainties; pull distri-
butions showing that deviations from ground-truth are consistent with predicted
levels of uncertainty

2.2 MS acquisition and pre-processing

The MS data used were taken from Henderson et al. (2018). A liga-
ture of the left middle cerebral artery trunk and common carotid ar-
tery induced an ischaemic stroke in a Wistar rat. After 3 months
recovery, the brain was sectioned into 12 um coronal slices. Sections
were washed and a matrix of 2,5-dihydroxybenzoic acid applied.
Imaging was performed using a MALDI-7090 mass spectrometer by
Shimadzu, Manchester, UK. MS were acquired with a spatial reso-
lution of 80 and 50 um beam diameter using positive ion reflectron
mode. A total of 100 shots were accumulated per pixel. A mass win-
dow of 690-890 m/z was selected to coincide with known lipids and
to exclude low mass matrix-related contamination. A visual inspec-
tion confirmed that there were no atypical peak distributions in
comparison to adjacent pixels that might indicate poor acquisitions
or outliers.

Baseline correction and relative mass calibration is required to
mitigate against non-Poisson effects. Software developed in Thacker
et al. (2018) was used to perform a Fourier domain peak alignment,
estimate and remove a smooth background and identify and inte-
grate bins with significant peaks. Peak identification is performed
on the average total spectrum from all spectra after alignment.
Peaks span multiple bins in the original raw MS. The central m/z
value within the range is tentatively assigned to the integrated pre-
processed peaks, accurate to ~*0.5 m/z. The Poisson behaviour of
resulting mass histograms was previously confirmed via Bland-
Altman analysis (Bland and Altman, 1986). The resulting pre-
processed image data contained 25 842 spectra, each containing 67
peaks.

2.3 MRI acquisition and pre-processing

The ADC distributions used here were taken from Tar et al. (2018),
where full details can be found. Additional information is also pro-
vided in the Supplementary Material. Mice bearing colorectal xeno-
grafts (LoVo and HCT116) were imaged at baseline and also 72 h
post-treatment. #=8 (LoVo) and n=13 (HCT116) control group
tumours were untreated and 10 (LoVo) and 15 (HCT116) were
treated with radiotherapy. ADC values were computed for each
imaged volume at both time points, and sampled into 2D histograms
of ACD versus time.

2.4 Modelling

LPM has much in common with pLSA (Hofmann, 1999) and non-
negative matrix factorization (NNMF) (Lee and Seung, 1999).
These impose a realistic non-negative interpretation on spectra,
make a multi-nomial noise assumption that tends towards Poisson
statistics with large numbers of mass bins, and produce generative
models (Hanselmann et al., 2008). The connection between the
methods can be seen in their linear manifolds and cost-functions.
LPM can be viewed as a reformulation of pLSA and NNMF with a
Poisson noise assumption and different parameter normalizations.
However, LPM includes: the MAX SEP algorithm to reduce linear
degeneracies; an error theory for predicting covariances; and intro-
duced here, the ability to perform local hypothesis testing.

Semantic analyses originated in the modelling of documents,
where a corpus of text is decomposed into categories of writing
styles. Under pLSA, the frequency of word occurrences can be
described using a linear combination of probability distributions:

MY — p(i ) = ZP YP(ilk), (1)

where P(i, s) is the probability of drawing an instance of word i in a
source document s; P(k) is the probability of drawing a source docu-
ment of type k from the corpus; P(s|k) is the probability of drawing
source document s given that it is of type k; and P(i|k) is the prob-
ability of drawing an instance of word 7 given that it is from a docu-
ment of type k. In contrast, NMF uses linear models based upon
non-normalized positive-only values rather than probability
distributions:

H; ~ MW =

Zwks it (2)

where Hj; is the frequency (e.g. histogram) of words 7 in document s
that is approximated by the model; and F;; is an un-normalized dis-
tribution of words i found within documents of type k; and Wy, are
the weights required to describe the histogram. F and W are there-
fore interpretable as non-negative matrices. It has been shown that
NNMEF and pLSA optimize equivalent cost-functions and therefore
produce equivalent linear descriptions of data (Ding et al., 2008), al-
beit with different parameter normalizations and different optimiza-
tion algorithms.

Both of these methods can be used to describe MS images by
making & a type of tissue, 7 (or s) an ion in a spectrum and s (or i) a
spectrum at a given pixel. It is then up to the user (or software devel-
oper) to keep track of normalizations and their physical meanings
for the interpretation of tissue proportions at different pixels. LPM
uses a more intuitive model that describes spectra using a mixture of
probability distributions and un-normalized quantities:

= > QuP(ilk), (3)
k

where P(ilk) is the conditional probability distribution of ions i
within tissue type k; and Q,, is the quantity of signal from tissue &
present within spectrum s. An advantage under this model is that a
spectrum associated with a tissue is neatly described using a simple
probability mass function (PMF) and the amount of signal (e.g. in
millivolts) is an absolute quantity.

LPM is equivalent to pLSA (and therefore NNMF also), both in
its linear model and cost-function. The joint probability, P(i, s),

LPM
H;; = M
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given by Equation (1), describes the distribution of the frequency
data, H;, given by Equation (3), normalized to the total quantity,

T =34 22 Qs therefore:
TM!PA = TS P(k)P(slk)P(ilk)

k
= ST oG = S QP =i, Y
k k

so pLSA and LPM share a linear model to within a scaling factor.
Turning to the cost-function, pLSA maximizes the log-Likelihood:

logl =" > Hiclog(M"*"), (8)

whereas LPM maximizes the extended log-likelihood:

logl =Y ) Hilog(TM*")] — T, (6)

i

where the former is for a fixed total quantity of events (e.g. counted
ions) and the latter is compatible with a Poisson model where the
total quantity of events has an expectation of T. It has been shown
by Barlow (1990) that optimizing equivalent parameters using max-
imum likelihood or extended maximum likelihood produces the
same statistical estimates, but with different MVB. This equivalence
means that the three approaches describe the same manifold, assum-
ing a good optimum is found. LPM fits a linear combination of arbi-
trary PMFs to a cohort of histograms using expectation—
maximization (EM) (Tar et al., 2018), similarly to how pLSA uses
EM. Each algorithm is iterative and numerical in nature so all suffer
the same indeterministic solutions. This can be mitigated by using
multiple random restarts and the use of a goodness-of-fit for finding
the best solutions out of many.

If a finite amount of each tissues’ chemicals are always present, it
is more difficult to determine the location of zero loadings needed to
identify each tissue uniquely. To mitigate this problem, PMFs are
post-processed using an algorithm, we call MAX SEP (Deepaisarn
et al., 2018). MAX SEP attempts to subtract some quantity, o, of
each component from every other, as far as possible, without gener-
ating any negative probabilities. This makes each component more
compact by increasing the number of zero valued bins, whilst also
maximizing the positive-only volume of the models’ linear sub-
space:

P'(ilk) = P(ilk) — aP(ill), (7)

arg,maxP’'(i|k) := {a|Vi : P(i|k) — «P(i]l) > 0}. (8)

A renormalization step, followed by further application of the
EM loop can converge upon the simplified components. MAX SEP
is expected to be most useful for separating sub-spectra when mul-
tiple tissues exist within each spectrum. Satisfying the ‘simple struc-
ture’ criteria, via MAX SEP, should produce more repeatable and
physically meaningful components.

The number of components, N (the model-order), required to
fully describe a histogram cohort is determined using a model selec-
tion process. Multiple models are constructed with increasing num-
bers of components until a satisfactory goodness-of-fit is achieved.
For each value of N, a total of five models are constructed from dif-
ferent random starting parameters so that the best fitting solution
from a pool of possible local minima is selected. The associated
LPM error theory allows for the prediction of model-data residuals,
permitting absolute goodness-of-fits to be computed in the form of a
¥* per d.f.:
=Ly s (V- VM)” )
o D £ o2 ’
1 s s
where D is the d.f. and o7 is the residual variance associated with m/
z range i in spectrum s. The square-roots transform the Poisson dis-
tributed histogram frequencies into Gaussian-like variables to im-
prove this figure of merit’s approximation to ideal y? statistics,

following Anscombe (1948). Note that, this is a global %> describing
the goodness-of-fit of the LPM for an entire image (i.e. over all pix-
els and mass bins). The d.f., D, is therefore equal to the total number
of populated MS bins within the entire image, minus the total num-
ber of estimated parameters (i.e. all quantities and PMF elements)
for the entire image. The per-spectrum d.f. is dependent upon local
pixel dimensionality, as described later.

A curve of Equation (9) against model-order N will plateau
when the optimal value of N is achieved. As bins record voltages ra-
ther than direct counts, there will be a scaling factor between histo-
gram bins and Poisson events. The model selection plateau is
therefore not guaranteed to reach unity, but the square-root of the
plateau value should match the voltage step-change associated with
a single count. Bland-Altman analysis can corroborate the scaling
factor, thus confirming the expected plateau value. Multiple poten-
tial model-orders can be selected close to the lowest 2, followed by
further quality control testing.

2.5 Error covariances

The stability of each quantity, Qy,, can be estimated using the MVB
applied to the LPM likelihood function. This gives an inverse covari-
ance for errors on quantities a and b in spectrum s as:

N —9*logL
a(QaSaQbs ’

Inverting then taking the square-root of diagonal terms thus
gives the =1 SD error bar for any spectrum and quantity.

c! (10)

2.6 Local y? and d.f. estimation
A y? for an individual spectrum, s, is given by

His — Mis ’
5 (HL M)

i Ojs

= (11)
Testing the hypothesis that a quantity is consistent with zero is
to say that any finite quantity estimated is caused only by noise.
This can be observed in the model residuals by omitting a compo-
nent of interest from the LPM (assuming it is not needed as the null-
hypothesis) and computing a ¥>. A residual for a bin 7 is given by

(S,': \/H,-teH— \/M,-ieM, (12)

where H is the histogram and M is the LPM. The histogram has a
sampling error, ey, driven by the Poisson counting process. The
model also has an error that may include a contribution from sam-
pling errors during training and in the estimation of quantities. This
model is given by

M; =" [P(ilk) *ep][O(i) Teq], (13)
k

where e, and eg are training and estimation errors, respectively. A

%> can then be computed for a single histogram using # non-zero
bins

n 2

2 _ 9;

- 1 2
TaT o,

. (14)

where the § variance is the fixed variance after the square-root trans-

form and o3, is the variance from model errors. As explained in
Section 2.4, the number of d.f. within an individual histogram is not
easy to state exactly, as it is a function of the local dimensionality of
the data and how well-populated it is. On average, the reduction in
variance due to model parameters is aiﬂ_, so that

1
2 2 2
< 0 >= 7 + 0oy, — 97,
The average y> we expect to obtain can be interpreted as the ef-
fective number of d.f. (n.¢). An estimate of this quantity can there-
fore be made for # populated bins using
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n lyg2 g2 n o?
4 M; idfe Ldfe

My = =y - (15)
zto

i, 2
: ) =1 ix

i=1

where afd/ is estimated using error propagation from the fitted quan-
tity parameters

ds; ds;
2 _ i i »
Tige = ZZ 40, d0; Crjs (16)
ds;  P(ilk)
d0: ~ 2, (17)

where Cy; is the quantity error covariance between Qy, and Q,.

2.7 Significance testing

The 42 and d.f. given above can be the basis of a y? test, with P-val-
ues being computed via standard spreadsheet functions or look-up
tables. The null-hypothesis is always that the fitted LPM is a good
description of target data. To test for the significance of particular
components, the model can be fitted with and without them. With,
the y* should be consistent with the null-hypothesis, i.e. the resulting
distribution of P-values should be flat; without, the 7> should be
larger, translating into a small P-value. For MS data, components
that are prevalent within the areas of pathology can be excluded to
form the null-hypothesis of no stroke damage. For the MRI data,
the components learned as part of the treatment model can be
excluded to form the null-hypothesis of there being no treatment
effects.

3 Results

Figure 3 illustrates successful estimation of tissue signal quantities
and uncertainties using Monte Carlo MS. Visually, there is good
correlation between true and estimated quantities—as expected
from a pLSA-type analysis. The additional LPM output of an uncer-
tainty image is an honest assessment of the ability to make the meas-
urements. This is corroborated by dividing the difference between
the true and estimated images by the uncertainty, giving a pull distri-
bution (Demortier and Lyons, 2002). These should have zero mean
(no bias) and their width should be unity (observed spread be equal
to those predicted). The pull distributions achieved, being zero-
mean, unit-width Gaussians, are evidence that error predictions are
indeed correct. The bottom-right pull distribution does show an
expected truncation of errors, which is discussed in Section 4.1.

Figure 4 shows hypothesis testing in simulation. The structure
seen within the x%u” image reflects the changing d.f. from region to
region as the dimensionality of the data changes with the linear com-
position of the three tissue types. This image acts as a basic
goodness-of-fit showing that the LPM is correctly describing the
data. If the simulated pathology component is removed, this gives
the X;a}h image for the null-hypothesis that there is no pathology.
This image shows larger values following the increased quantity of
simulated pathology (rectangle with gradient), as the model deviates
further from the null-hypothesis. With knowledge of the per-
spectrum d.f., the P < 0.01 image shows the spectra that reject the
null-hypothesis at the 1% confidence level. As a consistency check,
the distribution of P-values should be uniform when the null-
hypothesis holds true.

For MALDI data, Figure 5 shows the goodness-of-fit (global >
per d.f.) as a function of model-order. The shape of this curve,
monotonically decreasing, is consistent with LPMs improvement to
describe data as the number of components grows. The selected
orders (arrows at 12, 16 and 20) are inspected to provide insights
into how the model components behave as the goodness-of-fit con-
verges and reaches a plateau by N = 20. The right of Figure 5 shows
a Bland-Altman analysis of a model fit to MALDI data. The x-axis
shows peak intensities. The y-axis shows deviations between LPM
values and true peak heights. The dotted curves show a power-law
function fitted to these residuals, revealing a shape that is consistent

i ¥ )
X -
g 180X g % % § B 1400 /
o g
g 160 X % g 1200
£ 140 x &
120 1000
100 800 /1
02 04 06 08 10 02 04 06 08 10

null p-value (repeats) null p-value (totals)

Fig. 4. Hypothesis testing in simulation. Top row: Z%ul[ shows spatial map of y? val-
ues when all LPM components are used to describe the data; X;ath shows the values
when the simulated pathology component is removed from the model, giving a null-
hypothesis of there being no pathology; P < 0.01 shows only values that are signifi-
cant at the 1% confidence threshold. Bottom row: confirmation that the null-hy-
pothesis test is self-consistent over multiple independent Monte Carlo datasets when
the null-hypothesis is true. Dotted line shows expected flat distribution
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Fig. 5. Left: model selection curve showing goodness-of-fit (x%) as a function of
model-order N for rat brain image. Right: Bland—Altman analysis of MALDI MS, as
corroborated in earlier work (Deepaisarn et al., 2018)

with the Poisson assumption required for the application of our ap-
proach, i.e. residuals grow with the square-root of the signal
intensity.

A complete set of spectra and images are provided in the
Supplementary Material for orders 12, 16 and 20. The grey-scale
component images show the relative quantities of each individual
component present at each pixel location. The associated spectra are
generated by projecting model PMFs onto the original m/z MS axis,
showing the relative proportions of each modelled peak. Examples
highlighted in Figure 6 show some highly specific correlations as
illustrations with ventricles and infarct region. Components are
labelled with their model-order and lower-case letter, e.g. 20i is
component i from order 20.

Figure 7 shows the results of hypothesis testing in real data, mir-
roring the Monte Carlo results shown in Figure 4. As this is real
data, there is no control over the true proportions of tissue types,
but it is assumed that there is zero pathology away from the infarct
region. To test the P-value distribution under the null-hypothesis a
region distal to the infarct is therefore selected, which is uniform.

Figure 8 illustrates the type of LPM components generated for
the second dataset describing the voxel-wise ADC distributions of
tumours. The example given shows three modes of correlated vari-
ation found within the LoVo control cohort of tumours, along with
example slices of a specific tumour at baseline and 72 h. Low ADC
values show low mobility of water, consistent with dense tumour tis-
sue. Higher values reflect more free diffusion, e.g. in necrotic tu-
mour. In this supplementary dataset, an ADC distribution takes on
the role previously played by an MS image pixel, but note that there
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Fig. 7. Hypothesis testing in rat brain. Top row: )(%“” computed from LPM fits
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region. P < 0.01 shows values only where the null-hypothesis is rejected. Bottom:
The distribution of P-values within a distal brain region with respect to the known
infarct should be flat. The dotted line shows the expected flat distribution

is only one ADC distribution per tumour—we are not modelling in-
dividual pixels in this case.

Figure 9 shows the results of y? testing applied to control and
treated tumours, under the null-hypothesis that no treatment effects
are present. The figure follows the convention set by Figures 4 and
7, with 2 of residuals computed using a full LPM model, a smaller
model excluding components, in this case excluding the treatment-
related components, and finally a grey shading level, turning black
for those passing the 1% significance level. The left-hand set of ‘con-
trol’ results reveals two possible outliers in training data. However,
the mean P-value over all controls is consistent with a half (which is
consistent with a flat hypothesis distribution). All treated tumours
reach the 1% significance level, as expected.
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background

4 Discussion

LPM adds important functionality to pLSA making it a more power-
ful and useful tool for describing MS images. The addition of quan-
tity error estimates and the ability to conduct hypothesis testing
facilitates a more scientific approach to the quantification of signals
within biological MS, as demonstrated in this study. This is made
possible through an improved understanding and modelling of
uncertainties, and the reduction of linear degeneracies through the
use of MAX SEP. We believe that the benefits and potential uses for
this new technique will enable novel future applications as discussed
below. Evidence from MRI, as a second dataset further suggests po-
tential for more generic histogram analysis.

4.1 Use of quantity error estimates

LPM provides a set of uncertainty images. These images, one per lin-
ear component, provide a spectrum-by-spectrum account of the
errors expected on pixels’ associated quantity/proportion estimates.
A clear example of this can be seen in Figure 3. In this Monte Carlo
example, it is not sufficient to assume a fixed error, or even Poisson
errors on estimated quantities. The map of uncertainties changes as
a function of quantity and level of ambiguity with other compo-
nents. This is visible as a ghostly superimposition of other compo-
nents, perhaps most clearly seen in the central spiral uncertainty
map, where a slight chequer pattern can also be seen. The size of the
errors and correlations between them is described by a full error
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covariance matrix that can be used to either simply place error bars
on measurements, or to assist in further analysis.

The pull distributions in Monte Carlo show that the error images
give a true reflection of the uncertainties found within estimated
quantities. However, the simulated pathology component (central
rectangle with a quantity gradient from left to right) shows a pull
distribution that is truncated. This is an expected effect, as the true
errors in quantities cannot go negative due to the positive-only na-
ture of spectra. This has the effect of making error estimates close to
zero quantities positively biased. Despite this, it can be seen that the
pull distribution is otherwise correctly shape, bar the missing tail on
the right.

Noise correlations in data (or similarly double counting) effect-
ively change the number of unique data points (or d.f.) in an image.
LPM assumes each spectra peak is an independent variable.
Assuming any correlation is on average fixed across an image (either
between peaks or between pixels) scaling by the x> per d.f. will com-
pensate. Furthermore, residual correlations caused by parameter fit-
ting are dealt with directly through our per-spectrum d.f.
estimation.

4.2 Use of hypothesis testing

One may consider thresholding a quantity image as a surrogate for a
statistical hypothesis test. However, the varying errors from
spectrum-to-spectrum would result in inconsistent confidence levels.
One may consider thresholding the y> images, but this too would
not result in a stable test because of d.f. changes. The method pre-
sented here, however, gives meaningful P-values by using 7> and
correct d.f. estimates.

For ‘pathology’ hypothesis testing, a component needs selecting.
20i was selected as it correlates well with the known location of
induced stroke damage. It also does not appear in any significant
quantities beyond the stroke region. In general, the test only deter-
mines the significance of the signal associated with the chosen part
of the model, but can say nothing regarding the biological nature of
the component. To be sure that a component represents pathology
of interest further investigation is likely needed, such as histology.
The 20i is a sufficient component to test P-value calculations, but
users in practice are responsible for making a positive identification
of links with biology. Removing 20i generated the null-hypothesis
that there was no stroke damage.

The 99th percentile confidence threshold applied to the rat brain
clearly highlights the stroke-damaged region, showing that the com-
ponent 20i was required (rejection of null-hypothesis). In addition,
it shows a scattering of high-confidence pixels in other parts of the
image. With 25 000 spectra, it would be expected that around 250
spectra would pass the threshold due to noise alone, so these are to
be expected. Furthermore, hypothesis testing on our ADC tumour
data reveals high levels of significance for every treated tumour, in
both the LoVo and HCT116 models, whilst showing corresponding-
ly low significance in controls. A user of the method must be aware
that making use of multiple P-values may require corrections for
multiple-comparisons. We consider this to be an application-specific
problem to be considered on a case-by-case basis.

The most compelling quality control test used is the creation of
hypothesis probability distributions, which under the null-
hypothesis should be uniform. In both Monte Carlo and in the rat
brain data, areas of the image believed to be consistent with the
null-hypotheses were indeed found to be flat. This would not be the
case if any of the LPM statistical assumptions were violated.

4.3 Model validation
Like all non-trivial analyses, using LPM requires quality control to
ensure results are trustworthy. Steps must be taken to ensure statis-
tical assumptions are met, as failure to do so can invalidate conclu-
sions. Possible problems can include: non-Poisson variations;
insufficient model fits caused by local minima; correlations within
source data; and correlations between residuals, as discussed below.
There is risk that non-Poisson variations dominant uncertainty
in some MS data due to variations in sample preparation and

pre-processing methods. To mitigate this, certain variations can be
modelled as additional linear components, such as the potential
chemical noise found in components 12a, 16a and 20p in the
Supplementary Material. Carefully applied pre-processing, specific-
ally designed to maintain desire statistical properties, also helps.
Bland-Altman analysis shows that our pre-processed MALDI spec-
tra exhibits Poisson sampling behaviour.

Insufficient fits occur if the model-order is too low or local mini-
ma are found. Checking for this is confounded by scaling of data
where a unit of signal is not always equivalent to an ion count, e.g. 1
count is typically a step-change in voltage, not a simple counter in-
crement. For error predictions and hypothesis testing to work cor-
rectly, scaling of this type must be known. Using a > per d.f. for
model selection allows both the model-order and possible scaling to
be determined together, as the plateau to the right of the model se-
lection curve can be used as a scaling factor. The 20 component
model satisfied all of our quality control measures and thus was
deemed safe to use. A poor model would have resulted in poor quan-
tity error predictions, and thus poor d.f. estimates, leading ultimate-
ly to a non-uniform distribution of P-values.

4.4 Scalability and performance
The LPM method has the same time-complexity as pLSA and
NNMEF. To build a single model, run-time grows linearly with the
number of mass bins, number of spectra and model-order. The slow-
est part of the modelling process is determining model-order, as a
range of orders must be tested. Avoiding local minima is achieved
by building multiple models and selecting the one with the lowest
%%, which can be a slow process. To ensure a good solution was
found, 50 models were built per model-order. Using up to 4
machines (Dell Precision T7500s), this process took up to a week for
model-orders containing 12+ components. However, the much
smaller tumour data required only minutes, due to the small number
of tumours typically found in pre-clinical trials, and also the model-
ling of per-tumour, rather than per-pixel ADC distributions.
Focusing on a relatively small number of major peaks is a strat-
egy for speeding up model building. We suggest that if a large num-
ber of minor peaks are important for answering certain biological
questions then a piece-meal approach can be taken. Multiple models
can be constructed to inspect different areas of the data, with the hy-
pothesis testing parts of the process remaining the same for any
desired null-hypothesis component.

5 Conclusion

As bio-images become ever larger and more complex, researchers
are increasingly turning to pattern recognition tools for dimensional
reduction and for extracting summary measurements. Advanced
approaches, including pLSA and deep learning, may extract invari-
ant characteristics (e.g. for identifying tissue-specific MS), and may
also provide indicative labels for categorizing local data points (e.g.
pathological tissues). However, as we have shown, there is an add-
itional layer of complexity that must be addressed if outputs are to
satisfy scientific requirements; in particular, the requirement of pro-
viding P-values to quantify the significance of results.

We have shown that through careful modelling of signal, and
control of statistical characteristics, we can construct valid hypoth-
esis tests for different bio-images. Our method of #? testing for
pLSA-type descriptions of data has been validated on single param-
eter MRI scans, and also large hyper-spectral MS images. In the for-
mer, heterogeneous changes in tumours over time allowed treatment
effects to be detected with high significance (P < 0.01), despite the
limited training data and the chaotic nature of tumours. In the latter,
a data-rich MALDI brain image, with its regular anatomy and well-
defined tissues, illustrated our ability to spatially map pathology
with high significance. These very different images suggest LPM
analyses could have wide ranging applicability—albeit with appro-
priate quality controls.
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