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Abstract 

Background: Germline mutations within DNA repair genes are implicated in susceptibility to 

multiple forms of cancer. For prostate cancer (PrCa), rare mutations in BRCA2 and BRCA1 

give rise to moderately elevated risk, whilst two of approximately 100 common, low 

penetrance PrCa susceptibility variants identified so far by genome-wide association studies 

implicate RAD51B and RAD23B. 

Methods: Genotype data from the iCOGS array was imputed to the 1000 genomes phase 3 

reference panel for 21,780 PrCa cases and 21,727 controls from the PRACTICAL consortium. 

We subsequently performed single variant, gene and pathway level analyses using 81,303 

SNPs within 20Kb of a panel of 179 DNA repair genes.  

Results: Single SNP analyses identified only the previously reported association with 

RAD51B. Gene-level analyses using the SKAT-C test identified a significant association with 

PrCa for MSH5. Pathway level analyses suggested a possible role for the translesion 

synthesis pathway in PrCa risk and Homologous recombination/Fanconi Anemia pathway for 

PrCa aggressiveness, even though after adjustment for multiple testing these did not remain 

significant. 

Conclusion: MSH5 is a novel candidate gene warranting additional follow-up as a 

prospective PrCa risk locus. MSH5 has previously been reported as a pleiotropic 

susceptibility locus for lung, colorectal and serous ovarian cancers. 
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Introduction 

Prostate Cancer (PrCa) is the most frequently diagnosed cancer among men in developed 

countries and despite high survival rates also one of the highest for mortality (Cancer 

Research UK, 2014; Quaresma et al, 2015). However, as the majority of prostate neoplasms 

develop extremely slowly, many do not require clinical intervention; which coupled with the 

low specificity of the prostate specific antigen (PSA) test for clinically relevant forms of the 

disease could potentially lead to considerable over-diagnosis and overtreatment of patients 

for relatively modest reductions in mortality (Ilic et al, 2013). In conjunction with the 

establishment of improved biomarkers for lethal PrCa, the identification of individuals at 

greater risk of developing prostate tumours that require clinical intervention would also 

help inform more targeted and appropriate application of treatment. The heritability of 

PrCa is believed to be the highest of all the common forms of cancer (Hjelmborg et al, 2014). 

This is consistent with observations from genome-wide association studies (GWAS), which 

have to date identified more than 100 low penetrance susceptibility variants for PrCa, two 

of which implicate the DNA repair genes RAD51B and RAD23B (Al Olama et al, 2014; Amin Al 

Olama et al, 2015; Eeles et al, 2014; Xu et al, 2012). In addition, rare germline mutations in a 

small number of genes have been reported, with varying degrees of evidence, as potentially 

conferring greater risks of PrCa, including the DNA repair genes ATM, BRCA1, BRCA2, BRIP1, 

CHEK2 and NBN (Dong et al, 2003; Kote-Jarai et al, 2009; Kote-Jarai et al, 2011; 

Leongamornlert et al, 2012; Leongamornlert et al, 2014; Robinson et al, 2015). Recently, 

increasing evidence has demonstrated that these germline DNA repair gene mutation 

carriers are at increased likelihood of experiencing advanced disease, metastatic spread and 

poorer survival outcome; yet these mutations also hold promise as potentially clinically 

actionable and responsive to targeted treatments (Castro et al, 2013; Cybulski et al, 2013; 



Leongamornlert et al, 2014; Robinson et al, 2015). In spite of these discoveries, the majority 

of the excess familial risk of PrCa still remains to be explained (Attard et al, 2015); with the 

contribution of DNA repair gene variants identified to date making them attractive 

candidates for further investigation. In this study, using data from the iCOGS project 

imputed to the 1000 Genomes Phase 3 reference panel, we have analysed a large panel of 

DNA repair gene variants for 21,780 PrCa cases and 21,727 controls of European ancestry 

from the PRACTICAL Consortium (Eeles et al, 2013). Analyses were performed at single 

variant, gene and pathway levels to maximise the power to detect putative associations 

with lower frequency variants or those with modest effect sizes. 

 

Results 

Using genotype data from the iCOGS study imputed to the 1000 genomes phase 3 reference 

panel we analysed 81,303 SNPs within a 20kb flanking region of 179 genes with a core 

function in DNA damage repair (Supplementary Table 1). Rare and uncommon variants 

represented a substantial proportion of the dataset, with 29,503 variants of MAF ≤1%, 

16,689 with MAF 1-5% and 35,111 with MAF >5% (Supplementary Figure 1a). Variants were 

categorised as SNPs, insertions and deletions, annotated using wANNOVAR (Chang & Wang, 

2012; Wang et al, 2010), and classified into five categories; coding, UTR, splice, intronic and 

intergenic. Variants available for this analysis were predominantly situated within non-

coding (intronic or intergenic) regions, with 3,943 variants annotated as coding, splice or 

UTR in total; whilst most were single base substitutions, with 3,914 insertions and 5,576 

deletions respectively. All of the insertion and deletion variants were imputed, with the vast 

majority located within non-coding regions (Supplementary Figure 1b-d, Supplementary 

Table 2). All analyses were adjusted for study population and the first eight principal 



components. For single variant level analyses the genome-wide significance threshold 

(P<5×10-8) was used to determine significantly associated variants, whereas for gene and 

pathway level analyses the significance threshold was defined according to the Bonferroni 

correction (Gene P<2.7×10-4, Pathway P<5.56×10-3). 

Single variant analysis for association of DNA repair gene variants with PrCa identified only 

the previously reported association with RAD51B at Chr14q24 (rs371311594, P = 1.29x10-10). 

Several other gene loci showed suggestive association peaks; however no other variants 

were within one order of magnitude of genome-wide significance (Figure 1, Supplementary 

Table 3). 

We observed evidence for modest inflation within our association data (λ = 1.105); 

nonetheless, departure from the null was apparent towards the extremity of the P-value 

distribution and this persisted to a more modest extent even after the RAD51B region was 

excluded (Supplementary Figure 2). We subsequently performed gene level association 

tests, in an attempt to ascertain whether additional putative PrCa risk signals might be 

present among the genes within which no individual variant achieved significance after 

adjustment for multiple testing, arising through a cumulative effect of several low MAF or 

low penetrance variants. We performed two gene level association tests using the SNP-set 

(Sequence) Kernel Association Test (SKAT); SKAT-C, which is optimised for combined testing 

of rare and common variants and SKAT-O, which attempts to maximise power for rare 

variant testing (Ionita-Laza et al, 2013; Lee et al, 2012). Gene-level analysis identified a novel 

significant association with the MSH5 gene using the SKAT-C test (Chr6p21; P = 1.68x10-4) 

(Figure 2, Supplementary Table 4). We used stepAIC and leave one out for SKAT to further 

interrogate the MSH5 data for the individual variants that best explain the signal. This test 

selected three variants at the MSH5 locus, rs61036903 (known as 6:31713892 within the 



reference panel) intronic within the gene and two variants 10kb downstream within an 

adjacent gene VWA7, rs805825 and rs185333600. These were all among the top ranking 

variants in the single SNP analysis (rs61036903: MAF = 0.14, OR 0.92, P = 8.06×10-5; 

rs805825: MAF = 0.45, OR 0.94, P = 4.05×10-5; rs185333600: MAF = 0.003, OR 1.57, P = 

6.83×10-4). 

We subsequently examined the iCOGS dataset at the pathway level under the SKAT test to 

supplement the gene level analyses. We again used the Bonferroni correction to define the 

significance threshold (Pathway P<5.56×10-3). No pathway achieved significance at this 

threshold, with suggestive associations under the SKAT-O test observed with the translesion 

synthesis pathway (P = 6.18×10-3) and mismatch repair pathway (P = 0.056).  

Variants within the coding sequence of DNA repair genes could be more likely to influence 

PrCa risk than those in non-coding regions. We therefore performed an additional SKAT test 

to assess whether the coding DNA repair gene variants available for this study, when 

collapsed as a single entity, could stratify case and control status. We observed a significant 

association when using the SKAT-C test (P = 0.003), which suggests that variants that affect 

the coding sequence of genes participating in DNA repair processes contribute to PrCa risk. 

We attempted to further elaborate upon this finding by analysing coding variation within 

each pathway separately. Despite relatively modest numbers of coding variants available 

within each pathway, we continued to observe suggestive associations under the SKAT-O 

test for the translesion synthesis pathway (P = 0.026) and mismatch repair pathway (P = 

0.055), in addition to the Homologous Recombination/Fanconi Anemia pathway under the 

SKAT-C test (P = 0.011).  

To complement the tests designed to identify potential PrCa susceptibility variants and 

genes, we also performed case-case analyses to investigate whether individual or 



cumulative germline DNA repair gene and pathway variants in the iCOGS imputed dataset 

correlated with phenotypic characteristics of more aggressive PrCa. This analysis was limited 

by lack of complete phenotypic data for all patients within the iCOGS sample set and low 

numbers of samples within individual phenotypic subgroups; therefore, we utilised two 

separate criteria to define aggressive and non-aggressive disease. For a stringent 

comparison of non-aggressive and aggressive PrCa, we analysed NCCN stage 1 patients 

against individuals with metastatic disease (M+) or nodal spread (N+) (395 NCCN1 vs. 1391 

M+/N+), whilst to maximise the numbers of samples available we also compared patients 

with Gleason Stage (GS) ≤6 disease against those with Gleason Stage ≥8 (9626 GS≤6 vs 2776 

GS≥8). No significant associations with aggressive PrCa were identified at either the variant 

or gene levels for either of the phenotypic criteria tested. (Supplementary Figure 3, 

Supplementary Table 5). When we examined PrCa aggressiveness at the pathway level, we 

observed associations at P < 0.05 for the Homologous Recombination/Fanconi Anemia 

(HR/FA) pathway under both tests for the GS ≤6 vs. GS ≥8 phenotype cohort (SKAT-C P = 

0.011, SKAT-O P = 0.040). This pathway was also the highest ranked for the NCCN1 vs. M+/N+ 

phenotype cohort under the SKAT-C test (P = 0.052). When these analyses were restricted 

to only coding variants, an association at P < 0.05 remained for the HR/FA pathway for the 

NCCN1 vs. M+/N+ cohort and the SKAT-O test (P = 0.021). These suggestive associations 

were not however significant after adjustment for multiple testing (Supplementary Table 5). 

 

Discussion 

DNA repair genes play a crucial role in the correction of damage to the genome of a cell and 

therefore their impairment can lead to carcinogenesis. Whilst these detrimental genetic 

alterations frequently originate within somatic cells during an individual’s lifetime, a number 



of rare, hereditary mutations within specific DNA repair genes have been identified that 

confer substantially increased risks to the individual of PrCa and other cancers. GWAS have 

also previously identified common, low penetrance variants in close proximity to the DNA 

repair genes RAD51B and RAD23B that contribute to PrCa susceptibility (Amin Al Olama et 

al, 2015; Eeles et al, 2013; Xu et al, 2012). However, even relatively well powered genetic 

association studies may have been limited in their ability to reliably interrogate variants 

with lower MAFs or associations with modest effect sizes; therefore additional risk variants 

that confer their functional effect though DNA repair genes may remain to be discovered. 

We have recently imputed PrCa data from the iCOGS study to the 1000 Genomes phase 3 

reference panel, thereby enhancing the capability to interrogate this dataset for untyped 

variants within tagged regions. In particular, a far greater number of lower MAF and 

insertion and deletion variants were available for analysis, although these are 

predominantly situated in non-coding regions. Imputation performance of lower MAF 

variants is improved by larger reference panel size and ethnic diversity and higher marker 

density on the genotyping array; however rare variants still regularly remain challenging to 

impute without an additional reference panel enriched for specific low frequency variants of 

known interest, and may also be more sensitive to differences in the imputation approach 

employed (Hoffmann & Witte, 2015). Our relatively large sample size provided good power 

to detect associations with PrCa for rare variants with greater effect sizes (e.g. for a variant 

at our 0.1% MAF cut-off with OR 2.5, we had 78% power) as well as common, low 

penetrance variants (e.g. for a variant with OR 1.1 and a MAF of 20%, power was 86%). We 

were however limited with respect to the detection of variants with the combination of 

both modest allele frequency and effect size. 



We have examined all variants in the imputed iCOGS dataset situated within 20kb of a panel 

of 179 DNA repair genes for association with PrCa or more aggressive phenotypic 

presentation. No novel risk variants were identified in our single SNP analysis, with only the 

previously reported signal at RAD51B on Chr14q24 genome-wide significant (Figure 1, 

Supplementary Table 3). Our analysis did not detect the previously reported signal at the 

RAD23B locus on Chr9q31, which was originally identified in the Chinese population and 

recently also confirmed in Europeans with the most significantly associated variant 

rs1771718 and the signal also an eQTL for RAD23B in normal prostate tissue in the TCGA 

dataset (Amin Al Olama et al, 2015; Xu et al, 2012). rs1771718 is located ~57kb downstream 

of RAD23B, which is the closest neighbouring gene but located in a distinct recombination 

block from these risk variants. Since no variant among the 509 within the gene centric 

region that we interrogated in this study showed substantial evidence for association 

(P≥2.94×10-3), it appears likely that risk at this locus is modulated through a nearby 

regulatory element controlling expression of the gene as opposed to intragenic causal 

functional variants (Supplementary figure 4).  

We conducted two gene level analyses in an attempt to identify whether there may be 

additional signals among the several loci that demonstrated suggestive but non-significant 

association peaks in our single SNP analysis, but for which no individual variant had achieved 

significance. SKAT-C tests for the combined effects of common and rare variants, whilst 

SKAT-O adaptively combines the burden test and SKAT test in an attempt to maximise 

power for rare variant association testing (Ionita-Laza et al, 2013; Lee et al, 2012). We 

identified a significant PrCa risk association after adjustment for multiple testing at the 

MSH5 gene at Chr6p21 using the SKAT-C test, implying that multiple common, or a 

combination of common and rare variants within this gene may contribute to PrCa risk. 



Although caution must be taken with respect to this finding until replicated and 

deconstructed, this evidence implicates MSH5 as a prospective PrCa susceptibility locus that 

warrants additional follow-up. MSH5 had previously been reported as a plausible candidate 

gene for the lung cancer risk locus at Chr6p21.33, for which the most strongly associated 

variant rs3117582 is intronic in BAT3, however is highly correlated to rs3131379 in intron 10 

of MSH5 (Kazma et al, 2012; Wang et al, 2008). A recent study examining cancer pleiotropy 

among DNA repair and DNA damage signalling pathway variants has also reported a highly 

significant association with lung cancer for rs3115672, a synonymous variant within MSH5, 

in addition to weaker associations with colon and serous ovarian cancers (pleiotropic OR 

1.18, 95% CI 1.12-1.24, P = 2.53×10-8) (Scarbrough et al, 2016). This variant was however 

non-significant for prostate cancer within their study of 14,160 PrCa cases and 12,724 

controls (OR 0.96, P = 0.21). Within our larger study (of which 2,614 cases and 2,679 

controls overlapped with those of Scarbrough et al.), in the single SNP analysis, rs3115672 

remained non-significant after adjustment for multiple testing (OR 0.94, 95% CI 0.90-0.98, P 

= 5.69×10-3). However, a number of other variants among the 312 within the MSH5 gene in 

our analysis were more strongly associated, the top individual variant of which was 

rs9281573 (OR 0.94, P = 4.01×10-5). StepAIC combined with SKAT leave one out selected two 

common and one rare variant as best explaining the SKAT-C association, all of which were 

among the top variants in the single SNP analysis. This implies that a combination of 

common and rare variants could potentially underpin this signal. 

We annotated these three variants for evidence of functionality using HaploReg v4.1 (Ward 

& Kellis, 2016); this annotation included chromatin state data for cell lines derived from 

multiple tissue types provided by the Roadmap Epigenomics Consortium (Roadmap 

Epigenomics et al, 2015), however no data for prostate tissue was available. rs61036903, 



which is intronic to MSH5, showed limited direct evidence for functionality itself. Both of the 

variants situated around the MSH5 promoter region, within VWA7, showed strong evidence 

for being located within enhancer elements that are active across a wide range of tissue 

types. In addition, expression data from the GTEx Consortium indicates that rs805825 is an 

eQTL for a number of genes from the MHC region (HLA-DRB1, HLA-DRB5, LY6G5C, DDAH2, 

LY6G6C, HSPA1B and C4B) (GTEx Consortium, 2015). These genes are clustered closely 

centromeric and telomeric of MSH5 and VWA7 within a gene dense locus; however no eQTL 

with MSH5 or VWA7 was observed for this variant. 

Whilst the MSH5 gene is routinely classified as a member of the mismatch repair (MMR) 

pathway along with all other homologues of MutS (Ji et al, 2012; Scarbrough et al, 2016; 

Wood et al, 2005), functional evidence to date provides limited support for a role in MMR 

for MSH5 itself. Instead, this gene has been implicated primarily in the processes of meiotic 

recombination, maintenance of chromosome integrity and DNA double strand break repair 

(Clark et al, 2013; Wu et al, 2013). RNA-seq data from GTEx Analysis Release V6 for 2712 

total samples across 51 normal human tissues (including 106 prostate tissue samples) 

demonstrates that MSH5 is expressed at broadly similar levels across a wide range of tissue 

types, including prostate (GTEx Consortium, 2015; accessed via. 

http://www.gtexportal.org/home/gene/MSH5). Data from TCGA further supports this 

expression profile across a range of normal tissues and also indicates that MSH5 is 

consistently overexpressed for almost all tumour types in comparison to their respective 

normal tissues. For TCGA prostate tissue, a median RSEM (log2) value of 8.08 was observed 

across 498 tumour samples compared with 6.85 from 52 normal samples 

(http://cancergenome.nih.gov/; accessed via. http://firebrowse.org/viewGene.html?gene 

=msh5). 

http://www.gtexportal.org/home/gene/MSH5
http://cancergenome.nih.gov/
http://firebrowse.org/viewGene.html?gene=msh5
http://firebrowse.org/viewGene.html?gene=msh5


Taken together, these information demonstrate that although the MSH5 gene represents a 

strong biological candidate for the PrCa risk association that we have observed, additional 

functional follow up studies will be required to dissect the precise functional variants, genes, 

regulatory elements or processes that underpin this signal. 

It is worth noting that the gene level analyses in this study did not identify significant 

associations with any genes previously implicated in PrCa susceptibility. This was 

irrespective of whether the known risk mechanisms are believed to operate through 

multiple common, low penetrance variants (e.g. RAD51B; SKAT-O P = 0.05, SKAT-C P = 

2.76×10-3) or rare coding variants (e.g. BRCA2; SKAT-O P = 0.46, SKAT-C P = 0.15). In the case 

of BRCA2 and other genes in which rare, moderate penetrance, protein truncating PrCa 

susceptibility variants had previously been identified, this is likely to reflect the fact that 

even using the latest 1000 Genomes reference panel, rare variants expected to confer 

greater phenotypic consequences may remain absent from the reference panel and 

consequently unimputable. This is consistent with the poor representation of coding 

insertion and deletion variants within our dataset and would have rendered us 

underpowered to detect the effects of this class of variation in our analysis. Our 

observations do however imply that any additional contribution from common, lower 

penetrance variation at these genes may be minimal. This includes the rs11571833 

nonsense polymorphism in the terminal exon of BRCA2, which is a reported lung cancer 

susceptibility variant, but was not associated with PrCa in this study (OR 1.03, 95% CI 0.89-

1.19, P = 0.74) (Wang et al, 2014). It is perhaps more surprising that RAD51B did not achieve 

significance under the SKAT-C test, which considers the potential contribution towards 

association of both common and rare variants within a region, given that three independent 

associations have previously been identified at this locus (Amin Al Olama et al, 2015). 



However, a suggestive association was observed under this test, which may be an indication 

that the cumulative effect size of the independent low penetrance risk variants within this 

region were insufficient to be conclusively disambiguated through this methodology.  

Our pathway level analysis identified suggestive but non-significant associations for two 

pathways under the SKAT-O test; translesion synthesis and mismatch repair. Whilst this 

study did not therefore provide sufficient evidence to implicate genes within these 

pathways in PrCa susceptibility, given the inherently conservative nature of the Bonferroni 

correction with respect to type II error and the relatively low proportion of coding variants 

within our dataset, these observations may still justify further evaluation. In particular, since 

these suggestive associations were observed under the SKAT-O test that maximises power 

for rare variant association analyses and were not abrogated when the analyses were 

restricted only to coding variants, if substantiated, these nascent observations could be 

underpinned by direct effects of rare variants on the protein structure and function. 

Consequently, sequencing studies designed to comprehensively analyse the entire coding 

sequence of genes within the translesion synthesis and mismatch repair pathways could 

potentially yield further insight towards the mechanisms of susceptibility to developing 

PrCa. It is also worth noting that somatic mutations in translesion synthesis pathway genes, 

in particular the POLK gene, have been observed in prostate tumours previously (Makridakis 

& Reichardt, 2012; Yadav et al, 2015), whilst a rare germline nonsynonymous variant in the 

POLI gene has also been reported to predispose towards the occurrence of the TMPRSS2-

ERG fusion in PrCa patients (Luedeke et al, 2009). 

Increasing evidence suggests that moderate penetrance germline mutations within DNA 

repair genes also correlate with a more aggressive phenotypic presentation of PrCa and 

poorer prognosis (Castro et al, 2013; Cybulski et al, 2013; Leongamornlert et al, 2014; 



Robinson et al, 2015). This could in turn signify that DNA repair gene variants might exist 

that do not confer greater risk of developing PrCa per se, yet do modify the likelihood of 

developing more aggressive disease in individuals that develop PrCa due to other risk 

factors or exposures. We therefore also performed case-case analyses to further explore 

this hypothesis using two distinct phenotypic criteria. No significant or suggestive 

associations with aggressive disease were identified at the individual variant or gene levels 

under either definition, however suggestive non-significant associations with the 

Homologous Recombination/Fanconi Anemia pathway were observed. These analyses were 

however limited by relatively low sample numbers within each comparison group, which 

would have reduced our power to detect associations, particularly for rare and uncommon 

variants. We cannot therefore exclude the existence of additional DNA repair gene variants 

that promote increased PrCa aggressiveness rather than risk of the disease itself, however 

our data would suggest that any that exist are more likely to be rare than common. 

Overall, this study represents the most comprehensive interrogation of the role of DNA 

repair gene variants in PrCa susceptibility that we are aware of to date. We confirmed the 

presence of low penetrance susceptibility loci situated at the RAD51B locus and found 

evidence to implicate a novel gene, MSH5, in PrCa susceptibility. We also share preliminary 

observations that rare germline variation in genes within the translesion synthesis pathway, 

in particular variants within the coding sequence, could be worthy of further investigation as 

candidates for PrCa risk.  

The main limitations of our study relate to the challenges in imputing rare, potentially 

pathogenic variants to array genotype data from population based reference panels and in 

performing association tests on low frequency variants in a large multi-population study 

whilst controlling for population stratification. Therefore, additional sequencing studies 



would still be warranted to further explore the contribution of rare DNA repair gene variants 

to PrCa risk. In addition, incomplete availability of phenotypic data and the fact that the 

iCOGS study did not specifically select individuals with low or high grade disease may have 

reduced our ability to examine any potential influence of these variants on PrCa 

aggressiveness. Future studies, whether array or sequencing based, that specifically select 

patients from these cohorts for inclusion would facilitate investigation of this aspect; which 

might in turn help to enhance stratification of patients that require altered clinical 

management pathways. 

 

 

Methods  

Samples 

Samples for the iCOGS study were drawn from 25 studies participating in the PRACTICAL 

Consortium. The majority of studies were population-based or hospital-based case-control 

studies, or nested case-control studies; some studies selected samples by age or 

oversampled for cases with a family history of prostate cancer. Further information 

regarding the samples from the PRACTICAL Consortium included on the iCOGS array may be 

found within the original publication (Eeles et al, 2013). Analyses for DNA repair gene 

variants were restricted to samples of European ancestry. In total, genotype data for 21,780 

PrCa cases and 21,727 matched controls were available after quality control (QC).  

 

Genotyping and Imputation 

Genotyping was performed as part of the iCOGS project. This utilised a custom genotyping 

array designed in collaboration between the PRACTICAL (Prostate Cancer Association Group 



to Investigate Cancer Associated alterations in the Genome), BCAC (Breast Cancer 

Association Consortium), OCAC (Ovarian Cancer Association Consortium) and CIMBA 

(Consortium of Investigators of Modifiers of BRCA1/2) consortia. Detailed information about 

the design, genotyping and QC procedures for iCOGS can be found within the original 

publication (Eeles et al, 2013). In total 211,155 SNPs were genotyped on the iCOGS array, of 

which 3,510 were situated within our defined DNA repair gene regions. Imputation of the 

iCOGS PRACTICAL data was performed based on sequence data for 2504 samples from the 

1000 Genomes phase 3 reference panel (IMPUTE2 haplotype panel, October 2014 release; 

https://mathgen.stats.ox.ac.uk/impute/1000GP%20Phase%203%20haplotypes%206%20Oct

ober%202014.html) using SHAPEIT (v2 r778) and IMPUTE v2.3.1 in 588 chunks with a 

median size of 5Mb (Delaneau et al, 2013; Howie et al, 2009). Imputed data for non-

monomorphic variants with INFO scores ≥0.3 and MAF >0.001 were included in these 

analyses, which retained a total of 81,303 variants within the studied DNA repair gene 

regions. 

 

Gene/region selection 

We identified a total of 179 genes with a core function in DNA damage repair from the 

literature that intersected imputed iCOGS genotype data. We annotated DNA repair genes 

to a single primary DNA repair pathway according to previous curations (Kang et al, 2012; 

Wood et al, 2005). The genes analysed in this study represent the pathways Homologous 

recombination/Fanconi Anemia signalling network (HR/FA), base excision repair (BER), non-

homologous end joining (NHEJ), mismatch repair (MMR), nucleotide excision repair (NER), 

translesion synthesis (TLS), ATM signalling (ATM), RECQ helicase family (RECQ), crosslink 

repair (XLR), and other miscellaneous DNA repair genes with functions including 

https://mathgen.stats.ox.ac.uk/impute/1000GP%20Phase%203%20haplotypes%206%20October%202014.html
https://mathgen.stats.ox.ac.uk/impute/1000GP%20Phase%203%20haplotypes%206%20October%202014.html


endonuclease/exonuclease activity and modification of chromatin structure (Other). Gene 

coordinates were assigned according to GENCODE release 19 (GRCh37.p13), with a 20kb 

flank added to define the study region for each gene, in order to focus primarily on 

capturing gene and promoter centric variation over that within regulatory elements which 

can be located at variable and potentially relatively large distances from the gene itself. 

Variants were annotated using wANNOVAR to facilitate designation as coding, intronic, UTR, 

splice and intergenic (Chang & Wang, 2012; Wang et al, 2010). A full list of the DNA repair 

genes analysed in this study, their pathway annotations, region co-ordinates and the 

number of typed and imputed variants available is included in Supplementary Table 1.  

 

Statistical analyses 

Analyses were adjusted for study groups and the first eight principal components. For single 

SNP analyses the genome-wide significance threshold was employed (P<5×10-8), whereas 

for gene and pathway level tests the Bonferroni correction was used to determine multiple 

testing adjusted significance thresholds (Gene P<2.7×10-4, Pathway P<5.56×10-3).  

All analyses were carried out using R. For single SNP analyses, per allele odds ratios were 

estimated using logistic regression. SKAT tests were performed using the SKAT package for R 

(http://CRAN.R-project.org/package=SKAT). We used the SKAT-O and SKAT-C tests for 

optimal analyses of the combined effect of multiple rare variants and common and rare 

variants respectively (Ionita-Laza et al, 2013; Lee et al, 2012; Wu et al, 2011). Tests were 

conducted using default parameters and a common/rare cut-off threshold of MAF = 0.01 for 

the SKAT-C test. StepAIC and SKAT leave one out were used to further interrogate the 

significant SKAT signal at the MSH5 gene for the individual variants that best described the 

signal. 

http://cran.r-project.org/package=SKAT


Analyses for low grade versus high grade PrCa were carried out based on two clinical 

criteria. For stringent comparison of non-aggressive and aggressive PrCa, we defined NCCN 

stage 1 patients as non-aggressive PrCa and individuals with metastatic disease (M+) or 

nodal spread (N+) as aggressive (395 NCCN1 vs. 1391 M+/N+); whilst to enhance the sample 

panel available for this analysis we also compared patients with Gleason Stage ≤6 against 

those with Gleason Stage ≥8 disease (9626 GS≤6 vs 2776 GS≥8). 
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