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Introduction 

While the development of poly-(ADP-ribose) polymerase inhibitors (PARPi) was initially 

aimed at the sensitization of tumours to DNA interacting chemotherapeutics the discovery of 

the synthetic lethal effects of PARPi treatment on cells with defects in homologous 

recombination (HR)1,2 has led to the clinical development of PARPi for use in several 

different tumour subtypes including breast, ovarian, prostate and pancreas with germline 

BRCA1 and BRCA2 mutations or biomarker evidence of HR deficiency. The earliest clinical 

signal of proof of concept was generated in both breast and ovarian cancer patients3 but as 

the principle of synthetic lethal targeting of HR defects extends to those with somatic 

mutations and epigenetic silencing of expression of HR genes such as BRCA1 and RAD51C 

there was greatest initial interest in clinical development of PARPi in in High Grade Serous 

Ovarian Cancer (HGSOC) where the combined prevalence of germline, somatic and 

epigenetic silencing of HR genes is considered highest.4 Successful registration trials in 

advanced HGSOC have now led to licensing of a number of PARP inhibitors not only in 

those with germline BRCA1/2 mutations5–8 but also biomarker evidence of HR deficiency9 or 

the functional measure of HR deficiency represented by platinum sensitivity.10 The progress 

to phase 3 studies in breast cancer has been more challenging11 but much progress has 

been made in recent years leading to marketing authorizations for two PARPi in advanced 

disease and evidence of effects on pathological response and survival endpoints in early 

breast cancer as we outline below. 

 

BRCA1 and BRCA2 genes and Breast Cancer 

Approximately 5% of patients with breast cancer carry germline variants in BRCA1 or 

BRCA2 that are classified as pathogenic or likely pathogenic.12,13 Following the linkage of the 

BRCA1 and BRCA2 gene loci to hereditary breast cancer risk in 199014 and the cloning of 

BRCA1 and BRCA2 genes, much work focused on further understanding the role of the 

BRCA1 and BRCA2 genes in the DNA damage response (DDR) (reviewed in Tutt et al. 

200215). Carriers of heterozygous germline variants in BRCA1 and BRCA2 have significantly 

higher risk of developing cancer where there is somatic loss of the wild-type  (wt) allele in the 

progenitor cells of a tumour leading to loss of function. Compared to sporadic cancers, 

patients with BRCA1/2 mutation associated breast cancer are usually younger, they are at 

increased risk of developing ovarian cancer and are likely to have a strong family history of 

breast cancer.16 Interestingly, whilst germline BRCA1 mutation carriers typically develop 

basal-like triple negative breast cancers (TNBC), BRCA2 mutation carriers predominantly 

develop luminal subtypes17–19 while patients with BRCA1/2 mutations do develop breast 

cancers with pathological features associated with higher risks of recurrence the presence of 

germline mutation is not itself an adverse prognostic factor in those who receive 



chemotherapy20 perhaps related to an increased sensitivity of tumours to the DNA 

intercalating chemotherapy drugs.21,22 It does however highlight the need for novel therapies 

that can target the tumour cell restricted defect in HR in such patients. Recent evidence has 

suggested that there is an approximate prevalence of HR deficiency of 60%  in TNBC that is 

caused by both genetic and epigenetic dysregulation of HR gene function in TNBC in 

particular.23 

 

Homologous recombination 

HR is a critical pathway of DNA repair in mammalian cells; it is a highly conserved process 

which utilizes a homologous strand of DNA to act as a template for repair of a double 

stranded DNA break (DSB), often occurring in the context of an arrested or collapsed DNA 

replication fork – leading to restoration of the original DNA sequence. BRCA1 and BRCA2 

play crucial roles in HR; Upon the development of a DSB the checkpoint kinase ataxia 

telangiectasia mutant (ATM) recruits BRCA1 to the site of DSB. BRCA1 recruits the MRE11, 

RAD50 and NBN (MRN) complex in order to promote DNA end resection. This results in the 

generation of single strands of DNA with 3’ projections. BRCA2, and another gene 

associated with hereditary breast cancer risk PALB2, assist in the loading of RAD51 on 

single stranded DNA filaments that search and invade a strand of homologous DNA (most 

usually in the post replication sister chromatid) to use as a template for DNA synthesis and 

error free repair. 

 

HR also plays a key role in the mediation of replication fork progression; stalled replication 

forks are detected by the checkpoint kinase ataxia telangiectasia mutant-rad3 related (ATR) 

protein kinase and subsequent down-stream effector proteins induce HR, controlling this 

vital step in DNA replication.24 When cells become HR deficient due to loss of function of 

these genome caretaker DNA tumour suppressors, BRCA1, BRCA2 and PALB2, they seek 

other       methods of DNA repair which are typically error prone including non-homologous end 

joining (NHEJ) and microhomology-mediated end joining (MMEJ). This leads to accelerated 

and distinctive forms of mutagenesis and early acquisition of the somatic genome required 

for tumourigenesis.25,26 

 

The role of PARP1/2 

DDR proteins mediate DNA damage sensing, cell cycle checkpoint responses and DNA 

repair effector mechanisms – on recognition of DNA damage they halt the cell cycle and 

allow DNA repair to take place, therefore having a key role in the maintenance of genomic 

stability. The DDR enzymes PARP1 and 2 are vital to the DDR process and play an 

important part in base excision repair (BER).27 Upon sensing single stranded DNA breaks 



(SSB) PARP1 is recruited to the site of damaged DNA; it undergoes allosteric changes at 

this interaction which activate its catalytic function. The PARP enzymes then act as signal 

transducers in the DDR pathway. Upon binding DNA PARP1 uses nicotinamide adenine 

dinucleotide (NAD+) to undergo PARylation – a process involving the synthesis of negatively 

charged PAR chains on target proteins, and recruitment of DNA repair proteins. Following 

the successful formation of a scaffold for DNA repair, PARP1 autoPARylates releasing itself 

from the strand of DNA.28,29  

 

 

Synthetic lethality and the preclinical development of PARPi 

After discovering the role of PARP1 and PARP2 in the DDR pathway small molecule 

inhibitors of PARP1 and PARP2  were developed (reviewed in Zaremba et al. in 200730). It 

was thought that PARPi induce persistent SSBs, leading to stalled replication forks and 

subsequent replication fork collapse; however more recently studies have shown that most 

PARPi both inhibit catalytic activity and trap PARP1 onto DNA to varying degrees, 

preventing PARylation and PARP1 dissociation from the site of DNA damage.31,32 

 

Early preclinical models tested PARPi in combination with cytotoxic chemotherapy – based 

on the rationale that PARPi would offer both chemopotentiation and enhance 

radiosensitivity.33–36 The first combination treatment entered the clinic in 2003, and was 

associated with heightened toxicity, most notably myelosuppression.37 In 2005 pre-clinical 

data from two research groups   showed that BRCA deficient cells were many times more 

sensitive to PARPi than BRCA wild type cells in vitro and in vivo.1,2 Synthetic lethality was 

initially described in 1922 and describes a phenomenon where a defect in one of two genes 

has no effect but a defect in both genes leads to cell death,38 this was a first illustration of its 

use with selective therapeutic intent. In breast cancer cells harboring biallelic mutations in 

BRCA1 or BRCA2, HR cannot take place whereas normal tissues retain a   functioning 

wtBRCA allele and functional HR. As a result the cancer cells undergo cell death and normal 

cells are spared – leading to selective tumour cell kill.39 

 

Early clinical development of PARPi involving breast cancer patients. 

After the demonstration of BRCA1/2 tumour selective synthetic lethality in the pre-clinical 

setting, and its extension to mutations in DDR genes relevant to familial breast cancer40 the 

first exploration of PARPi monotherapy was conducted in a phase 1 trial to evaluate the 

pharmacokinetics and pharmacodynamics of olaparib. The study included 60 patients, 23 of 

whom had a BRCA1/ 2 mutation; 3 of these patients had breast cancer. Clinical benefit was 

reported in 63% of BRCA carriers treated with olaparib but no objective responses were 



seen in patients without BRCA mutations providing an early signal that the concept of 

tumour selective synthetic lethality held true in the clinic.3 Different properties of PARPi are 

outlined in figure 1. 

 

These promising findings led to two simultaneous proof-of-concept phase 2 trials involving 

patients with germline BRCA mutations and breast cancer or ovarian cancer41,42 where 

approximately 40% of patients achieved objective responses when treated with olaparib 

despite extensive prior chemotherapy. These results were confirmed with activity restricted 

to patients with BRCA mutations in a succeeding trial with olaparib in breast cancer.43 

Signals of efficacy were also seen in other BRCA1/2 mutation associated malignancies such 

as prostate and pancreatic cancers.44 Since these initial early phase studies,3,42–44  phase 1 

and 2 trials of other PARPi have included cohorts of patients with HR gene mutations including 

those with breast cancer45,46(Table 1). 

 

 

 

 

 

PARPI in the locally/advanced and/or metastatic breast cancer setting 

Monotherapy 

 

Olaparib 

Following evidence of activity of olaparib in phase 2 trials,42–44  a phase 3 open label 

randomized controlled trial (RCT) (OlympiAD) compared olaparib maintenance treatment 

with physician choice of standard breast cancer chemotherapy therapy in patients with 

advanced germline variant BRCA associated HER-2 negative breast cancer. Median 

progression free survival (PFS) was significantly prolonged in the olaparib group compared 

to chemotherapy (7.0 months vs. 4.2 months), with a hazard ratio (HR) for disease 

progression or death of 0.58 (95% CI 0.43-0.80; P<0.0001). There was also significantly 

better preservation of quality of life in the olaparib arm47 (table 1). Following publication of 

this data olaparib was approved by regulators in 2018 for use in patients with deleterious or 

suspected deleterious variants in germline BRCA1 and/or BRCA2 and HER-2-negative 

metastatic breast cancer, who had received prior chemotherapy. Patients with hormone 

receptor positive breast cancer should have been offered, or been considered for, hormone 

therapy prior to olaparib. More recently overall survival (OS) analysis in OlympiaD was 

updated showing median OS was 19.3 months in the olaparib group vs. 17.1 months in the 

physician’s choice group. They noted an OS benefit in the subgroup of patients who had not 



received prior chemotherapy for metastatic disease (HR 0.51 95%CI 0.29-0.90).48 Tung et al. 

have recently reported a study testing an extension of the approach assessing olaparib 

response in patients with metastatic breast cancer with somatic mutations in BRCA1/2 or 

germline mutations in HR genes beyond BRCA1/2. Interestingly, confirmed responses were 

seen in those with germline PALB2 mutations (overall response rate (ORR), 82%; PFS 

13.3months) and somatic BRCA1/2 mutations (ORR,50%; PFS 6.3 months). This proof of 

principle trial highlights the importance of genomic profiling of the germline and tumour to 

determine patients who may benefit from PARPi treatment. Moreover, this trial confirmed 

that the cohort of patients with genetic forms of BRCAness who might be considered for 

PARPi in breast cancer is broader than initially hypothesized.49 

 

Talazoparib 

The EMBRACA phase 3 trial, very similar in design to OlympiaD but using the most potent of 

the PARPi Talazoparib, reported efficacy in patients who may have received no more than 

three prior lines of chemotherapy including a taxane and/or anthracycline and were assigned 

to talazoparib or physician’s choice. Median PFS was significantly longer in the talazoparib 

group compared with standard of care  (8.6 months vs 5.6 months, HR for disease 

progression or death was 0.54 (95%CI 0.41-0.71; p<0.001). Talazoparib also offered 

improved preservation of quality of life compared to standard of care chemotherapy. It has 

subsequently been approved by the global regulatory agencies in advanced HER-2 negative 

breast cancer in germline BRCA1/2 mutation carriers following the publication of EMBRACA 

(table 1).50  

 

Niraparib 

The randomized open label phase 3 trial BRAVO has recently reported the activity of 

niraparib monotherapy in patients with germline BRCA1/2 mutated advanced breast cancer. 

Patients were randomized 2:1 to receive niraparib or physician’s choice of chemotherapy. 

The BRAVO trial reported substantial discordance between local and central review, with the 

direction of discordance being different for each study arm. This resulted in informative 

censoring, where many patients considered to have progressed by local assessment were 

censored for the primary endpoint of PFS by central review, resulting in inflation of the 

centrally-determined PFS in the physician’s choice control arm preventing robust 

comparison between arms. After a pre-planned interim analysis the investigators halted 

recruitment. PFS was the primary end point, and at median follow up of 19.9 months the 

median centrally assessed PFS in the niraparib arm was 4.1 months vs 3.1 months in the 

physician’s choice arm.51 

 



The OlympiAD, EMBRACA and BRAVO trial participants had differing baseline 

characteristics. In particular the proportion of patients treated in the “first line” metastatic 

setting but in addition, per eligibility criteria, first line patients in BRAVO, but not OlympiAD 

nor EMBRACA, must have relapsed within 12 months of adjuvant chemotherapy. Cross-trial 

comparisons are therefore inappropriate. Both OlympiAD and EMBRACA reported patients 

treated with olaparib or talazoparib had a significant improvement in health-related quality of 

life and delay in time to deterioration in function and symptoms.  

 

All three trials allowed prior exposure to platinum-based chemotherapy in adjuvant therapy 

after a 6- or 12-month disease free interval or in advanced disease as long as no 

progression had occurred on platinum. No trial compared platinum-based chemotherapy to 

PARPi in germline BRCA variant cancers;47,50 this remains an untested comparison in this 

indication. There are many ongoing PARPi monotherapy trials summarized in table 2.  

 

 

Selection of cross-resistance by prior chemotherapy to PARPi monotherapy  

In BRCA-associated breast cancer, exploitation of the critical weakness in HR repair through 

use DNA intercalating agents such as platinums has been shown to be advantageous over 

taxane based chemotherapy. Platinum agents form bulky DNA   adducts through inter- and 

intrastrand DNA crosslinks that would usually be repaired by HR, involving BRCA2 and 

RAD51.52,53 

 

Unlike in ovarian cancer platinums have not been the standard of care in early or advanced 

breast cancers. However, the Phase 3 TNT Trial evaluated the role of carboplatin vs. the 

standard of care taxane docetaxel in advanced TNBC testing the hypothesis that subgroups 

with germline BRCA mutations and those with TNBC and  epigenetic ‘BRCAness’ might 

specifically benefit from platinum therapy as a result of a shared phenotypic loss of HR 

function. While patients with a deleterious BRCA1 or 2 germline pathogenic variant had a 

significantly improved PFS in the carboplatin group over the docetaxel group (6.8 months vs 

4.4 months, p=0.002) and improved ORR, the study highlighted the biological heterogeneity 

within TNBC and the differential impacts of genetic and epigenetic HR deficiency in breast 

cancer. This study raises the hypothesis that epigenetic BRCAness may be a more plastic 

and reversible HR deficiency target in breast cancer limiting the application of PARPi in 

advanced breast cancer if selected based on mutational signatures of HR deficiency.21 

 

The TNT study21 and other studies in advanced and early forms of TNBC have led to an 

increase in the use of platinum agents in patients who have BRCA1/2 mutations.54–57 The 



selective pressure and potential for consequent selection of cross-resistance has raised the 

question of impact of increased use of prior platinums on the activity of PARPi in breast 

cancer.  While PARPi have activity in patients with germline BRCA mutation and prior 

platinum exposure there are signals suggesting that response rate may be lower in the 

setting of recent progression following platinum based therapy.46 Known mechanisms of 

resistance to both platinums and PARPi include somatic mutations close to the germline 

mutation in BRCA1/2 genes (so called ‘reversion mutations’) – which may restore the  open 

reading frame of the BRCA gene. This leads to BRCA1/2 driven restoration of HR removing 

the selective HR deficiency target in these tumours.58 Other potential mechanisms of 

resistance include BRCA1/2 independent mechanisms of HR restoration such as loss of 

53BP1 protein,59 point mutations in PARP160 and mutations in the REV7/shieldin complex 

(proteins which regulate 53BP1 chromatin complex, a vital component of DSB repair 

pathway).59,61,62  The study of the prevalence of distinct mechanisms of resistance and cross-

resistance to platinums and PARPi in breast cancer that may inform therapy choices 

appears an urgent need. It is hoped that combining PARPi with cytotoxic chemotherapeutic 

agents, molecularly targeted agents or immunomodulatory agents may potentiate their effect 

and reduce the rates of resistance. 

 

PARPi and chemotherapy in advanced breast cancer 

 

Olaparib and Taxanes 

Olaparib in combination with chemotherapy agents in the treatment of advanced breast 

cancer has been studied in phase 1 and 2 trials since 2013, a selection can be found in 

tables 3&4.63–68 A phase 1 trial evaluated the toxicity profile of olaparib in combination with 

paclitaxel in patients with metastatic TNBC. They reported significant neutropenia in the first 

cohort, leading to enrolment of a second cohort of patients who were given granulocyte-

colony stimulating factor (G-CSF) if they developed neutropenia grade ≥2 in first cycle. An 

encouraging response rate was observed leading to recommendation of alternative dose 

and schedule to address the high rates of neutropenia.63  

 

 

Olaparib and Platinum agents 

A number of early phase trials set out to determine the safety of PARPi in combination with  

platinum agents. Although platinum and PARPi are not synergistic, in contrast to 

topoisomerase 1 inhibitors,69 the fact that both agents create adducts on DNA predicted a 

likely increase in bone marrow toxicity of the combination. In 2014 a phase 1 trial reported 

an ORR of 87.5% in patients with germline BRCA mutations receiving olaparib and 



carboplatin in combination, followed by maintenance olaparib. In the small breast cancer 

cohort (n=8), 1 achieved complete response (CR) via the Response Evaluation in Solid 

Tumours (RECIST) version 1.1 criteria, 6 patients achieved partial response (PR) as best 

response. Toxicity was significant with reports of G3/4 hematological toxicity, with 42.5% of 

cases suffering from G3 neutropenia.68  Further phase 1 trials assessing the combination of 

olaparib with a platinum agent confirmed efficacy but with similar safety signals suggesting 

that regimen optimization may be required and assessed in phase 2 trials ahead of phase 3 

trial assessments.70 

 

Rucaparib and Platinum agents 

A phase 1 trial published in 2017 reported the safety of oral rucaparib given on days 1-14 

combined with carboplatin on day 1 of a 21-day cycle. The majority of patients in the trial had 

breast cancer, but most had no BRCA1/2 mutation testing done prior to treatment.64 They 

reported 63.6% of  patients in the rucaparib and carboplatin group achieved disease control 

>12 weeks when treated with carboplatin dosed at AUC5. Neutropenia (27.1%) and 

thrombocytopenia (18.8%) were the most common grade ⩾3 toxicities across combinations 

and were dose limiting toxicities (DLTs) with this combination. The authors hypothesized that 

PARPi monotherapy may be sufficiently active in patients with defects in HR but for a wider 

population of patients without HR defects the combination of PARPi and  platinums was both 

feasible and might be required for activity (table 3). 

 

Veliparib and platinum agents + taxanes 

Veliparib is a significantly less potent PARPi with significantly less PARP1 trapping activity 

than other PARPi in the clinic and that may affect not only single agent activity but also the 

toxicity of combinations with chemotherapy (reviewed by Tutt in Annals of Oncology71). 

BROCADE was a randomized phase 2 study which included patients with locally  recurrent or 

metastatic breast cancer and a deleterious BRCA1/2 germline variant. Patients were 

randomized 1:1:1 to receive veliparib, carboplatin + paclitaxel (VCP), veliparib and 

temozolomide (VT) or placebo, carboplatin + paclitaxel (PCP). For VCP vs PCP median PFS 

was 14.1 months vs 12.3 months (HR 0.789; 95%CI 0.536-1.162 p=0.227). ORR was 

greater in the VCP group (77.8%) vs PCP (61.3%; p=0.027). VT median PFS was 7.4 

months (HR 1.858; 95%CI 1.278-2.702, p=0.001) with a far inferior ORR of 28.6% 

(p<0.001). VT was deemed inferior to PCP and VCP and the weak signal of enhanced effect 

of VCP was taken into a phase 3 comparison67 (Table 2). BROCADE 3 randomized similar 

gBRCA1/2 patients to VCP or PCP, allowing patients to continue with veliparib after failure to 

tolerate continued chemotherapy in the absence of progression. The trial has reported a 

modest but significant effect with improved PFS in the veliparib group of 14.5 months vs 12.6 



months (HR 0.71; 95%CI 0.57-0.88); p=0.0016) (Table 3). Interestingly this separation of the 

PFS curves only becomes apparent at the point where chemotherapy has stopped in a 

majority in both arms of the study. Data on OS has not yet been reported.72,73 

 

PARPi and cell cycle checkpoint inhibitor therapies 

Preclinical studies have provided a rationale for combination of PARPi with inhibitors of the S 

and G2/M cell cycle checkpoint kinases Wee174 ((Wee1i) or ATR75 (ATRi). It has also been 

shown that olaparib resistant models may be re-sensitized to  olaparib when combined with 

Wee1i or ATRi.76–79 Simultaneous combination treatment of Wee1i plus olaparib revealed 

significant toxicity in mouse models but toxicity was reduced when delivered sequentially.80 

As TNBC has a high prevalence of signatures of HR Deficiency23 and replication stress a 

phase 2 trial has assessed the safety and efficacy of olaparib monotherapy vs. olaparib in 

combination with the Wee1i AZD 1775 or olaparib in combination with the ATRi AZD6738 in 

2 cohorts of patients with advanced TNBC who have a qualifying BRCA1/2 or other HR gene 

mutation or a cohort without any HR mutation found in tumour tissue (VIOLETTE trial; 

NCT03330847). This trial has closed to recruitment, and will provide interesting insights into 

the relative activity of single agent olaparib and feasibility and toxicity of these combinations 

in molecularly stratified patient cohorts within TNBC. 

 

Phosphoinositide 3-kinases (PI3K) are oncogenes involved in many cell signaling pathways 

which control proliferation and differentiation of cells; as such PI3K inhibitors (PI3Ki) are well 

established in the treatment of many cancers including breast cancer.81 In 2012 Ibrahim et 

al. suggested PI3K inhibition results in downregulation of BRCA1 and BRCA2 and inhibition 

of HR leading to sensitization to PARPi in BRCA mutant TNBC cell lines.82,83 Recent data 

has shown that the oncogenes RAS and PI3K may induce HR, and that inhibition of these 

key signaling proteins may induce a chemical BRCAness and an HR deficient phenotype.84 

A phase 1 study of PI3Ki BKM120 in combination with olaparib (300mg BD) included 24 

breast cancer patients, 18 of whom had germline BRCA variants;85 results were encouraging 

in that of the 18 patients included, 5 (28%) had partial response and 8 (44%) had stable 

disease. Known toxicities associated with BKM120 are depression, anxiety and 

hepatotoxicity. When BKM120 was taken in combination with olaparib 36% of patients 

suffered from depressive symptoms, with one patient suffering from severe symptoms 

requiring dose reduction. Transaminase   elevation was seen in 20% of patients, with 2 

patients suffering severe toxicity requiring dose reduction; a summary of the trials published 

and ongoing involving small molecule inhibitors in combination with PARPi are found tables 

5&6.86 

 



The establishment of a role for CDK4/6 inhibitors in the treatment of advanced ER positive 

HER2 negative breast cancer has been a major advance in recent years (reviewed in the 

lancet87 and may have a role in adjuvant therapy. The assessment of the toxicity and 

efficacy of CDK4/6 inhibitors in combination with PARPi is now an important but 

understudied area and will be of particular importance in BRCA2 and PALB2 germline 

mutation carriers who more commonly develop Luminal ER positive breast cancers than 

BRCA1 carriers. An ongoing Phase 1/2 trial reporting on the safety and efficacy of olaparib 

when taken in combination with the CDK4/6i palbociclib and selective estrogen receptor 

down-regulator fulvestrant is still recruiting (HOPE, NCT03685331) (table 5). In addition, a 

phase 1 trial recently opened for recruitment and will report on the MTD, safety and clinical 

response in patient’s receiving niraparib and abemaciclib (CDK4/6i) in the neoadjuvant 

setting (NCT0448113)(table 11). 

 

PARPi and immunotherapy 

Recent studies have shown an interaction between the DDR and the immune system,88,89     

and patients with defects in DDR genes may have heightened sensitivity to 

immunotherapy90,91 There are number studies underway reviewing the safety and efficacy of 

immunotherapy in conjunction with PARPi and these are outlined in table 7.92,93 A key phase 

I/II basket trial (MEDIOLA) reported the 12-week disease control rate (DCR) as the primary 

endpoint as well as ORR in a group of patients with advanced solid tumours who received 

olaparib twice daily (300mg oral) in addition to durvalumab (1.5g IV) once every 4 weeks. The 

12-week DCR was 80% for the combination and exceeded the prespecified target of 75%.92 

The TOPACIO/KEYNOTE-162 trial reported the use of niraparib in combination with 

pembrolizumab in patients with advanced TNBC or recurrent ovarian cancer.93 Although the 

phase I component involved TNBC patients, the phase 2 trial solely reported on patients with 

platinum resistant advanced ovarian cancer. Their primary endpoint of ORR was 18% with a 

disease control rate of 65%.93   

 

PARPi in HER-2 positive breast cancer 

Ongoing early phase trials are reviewing the dose response and toxicity of niraparib  in 

combination with trastuzumab in patients with metastatic HER-2 positive breast cancer with 

BRCA mutations (clinical trial NCT03368729). While there is no reason to believe that 

PARPi would be inactive in those with BRCA mutations and HER-2 positive breast cancer, 

and the toxicity of combination of PARPi with anti-HER-2 antibodies is not expected to be 

challenging, this subset of patients has been studied in less detail than the HER-2 negative 

cohort and so reports from future clinical studies will be very helpful. 

 



PARPi in the adjuvant breast cancer setting 

 

Monotherapy 

Olaparib 

There remained no data for the use of PARPi monotherapy in the adjuvant setting until the 

recent publication of the OlympiA trial (NCT02032823). An interim analysis drove early 

reporting, at a median follow up of 2.5 years, of the this phase-3 double blind randomized 

trial that included patients with high recurrence risk HER-2 negative breast cancer with 

pathogenic or likely pathogenic BRCA1 and BRCA2 variants. All participants had received 

local treatment and at least six cycles of standard NACT or adjuvant chemotherapy. Patients 

were randomized to receive olaparib   or placebo. The primary end point was invasive 

disease-free survival (IDFS); at the event driven pre-specified interim analysis IDFS the 

hazard ratio (HR) was 0.58 (99.5%CI 0.41-0.81; p<0.001) and 3-year IDFS was 85.9% in the 

olaparib group versus 77.1% in the placebo group. Distant-disease free survival was also 

significantly improved with an HR of 0.57 (99.5% CI, 0.39 to 0.83; P<0.001).94 This first trial 

of PARPi as an adjuvant therapy strategy has changed treatment guidelines95,96 and is likely 

to change practice. A limitation of the interpretation of this study is the inability to compare 

the effects of olaparib with those of second adjuvant capecitabine which has since become 

part of standard practice in such patients97 in the sub-population of those with residual 

disease after NACT for non-biomarker selected sporadic forms of TNBC.  

 

The SUBITO trial has already set out to test a comparison of intensive high dose alkylator 

chemotherapy and autologous stem cell rescue compared to standard platinum containing 

NACT followed by a year of olaparib as the standard of care comparator (NCT02810743). A 

phase 3 RCT reviewing the safety and efficacy of niraparib in patients with stage I-III 

invasive breast cancer following standard chemotherapy, is due to open for recruitment. 

Participants must have either HER2- breast cancer with a tumour BRCA mutation or have 

TNBC with wtBRCA tumour but have evidence of circulating tumour DNA (ctDNA) following 

adjuvant chemotherapy. The ZEST trial (NCT04915755) could offer vital insight into the 

subgroup of patients with invasive disease without a BRCA1/2 germline mutation who may 

benefit from adjuvant PARPi using plasma cell free DNA presence as a risk of recurrence 

prediction biomarker for patient selection. 

 

Combination therapy  

There have been very few trials testing PARPi in combination with other agents in the 

adjuvant setting; a randomized phase II trial with a small safety “run in” phase was carried 

out by Kalra et al. who reported the use of cisplatin either alone or in combination with 



rucaparib in 128 patients with TNBC or a deleterious BRCA1/2 pathogenic germline variant 

and who had significant residual disease after NACT. Twenty-two patients had BRCA1/2 

mutations. This group of patients with residual cancer burden (RCB) II-III have a high-risk of 

recurrence and poorer prognosis, with only around 35% remaining disease free at 2 years,98 

and so there is a need for the development of more effective treatment  regimens. The 

combination regimen was challenging to deliver due to bone marrow toxicity and did not 

show an improvement in 2-year DFS compared to cisplatin alone in this phase II study 

largely conducted in non-biomarker selected TNBC. They acknowledge limitations to their 

study, notably the lack of a standard of care control arm which at the time the study was 

conducted would have been placebo.99   

 

PARPi in neoadjuvant breast cancer setting  

 

Monotherapy  

Olaparib 

Data for olaparib treatment as a single agent preceding surgery in early breast cancer is 

limited. A pioneering presurgical “window of opportunity” study in 2013 assessed the 

pharmacokinetics and pharmacodynamics of olaparib monotherapy in patients preceding 

elective breast surgery. Interestingly the study revealed 50% lower plasma olaparib 

exposure than seen in advanced disease studies – but they reported a mean maximal PARP 

inhibition in peripheral blood mononuclear cells (PBMCs) and tumour tissue of 51%  and 70% 

respectively;100 currently there are no neoadjuvant monotherapy trials with olaparib ongoing. 

 

Talazoparib 

Pre-clinical data shows talazoparib has highly potent PARP1 trapping capacity, which has 

been correlated with cytotoxicity.101 This suggests that talazoparib may have significant 

single agent efficacy in HR deficient breast cancer. A feasibility study was set up in 2017, to 

investigate single agent talazoparib in patients with pathogenic germline BRCA variants and 

HER-2 negative primary cancer with tumour sizes over 1cm.102 The study accrued 13 

patients within 8 months and the regimen was considered feasible; given the rapid accrual 

rate the study was modified into a phase II expansion study determining response rates after 

6 months of talazoparib monotherapy.103 This study enrolled patients with stage II-III HER-2 

negative breast cancer with a germline BRCA variant. Participants received neoadjuvant 

talazoparib for 4-6 months without chemotherapy and response was assessed on the 

surgical specimen. Safety and tolerability were also assessed. Twenty patients enrolled, 19 

of whom completed 6 months treatment; ten of these patients had a pathological complete 

response (pCR); the rate of RCB 0-1 was 100% in patients with germline BRCA2 variants. 



Talazoparib was generally well tolerated in this cohort, with side effects consistent with 

previous studies and included a significant incidence of anemia and fatigue. Although a 

small study size, results are striking in reporting pCR in a majority after PARPi monotherapy 

in BRCA1/2 mutation associated breast cancer. A second larger study focused on patients 

with germline BRCA1 and BRCA2 mutations and TNBC has recently reported at ASCO2021  

showing similarly encouraging efficacy with pCR again being reported in over 50% of 

patients.103 Limitations of these studies are the lack of control arms allowing comparison 

with standard of care chemotherapy but these data suggest that some patients with germline 

mutations and small tumours might avoid chemotherapy if pCR is achieved. Further 

information on NACT trials can be found in Tables 8&9. 

 

 

PARPi in combination with chemotherapy  

Veliparib combination with carboplatin in standard of care NACT regimens  

As discussed above progress in development of combinations of PARPi with 

chemotherapies in advanced breast cancer has been limited due to hematological toxicities 

but, possibly as a result in differences in potency and PARP trapping activity, this has been 

proven more feasible with veliparib than other PARPi. The ISPY-2 trial was a phase II 

randomized trial with an Bayesian adaptive design evaluating different therapeutic 

compounds in the neoadjuvant setting. Patients were randomized to receive a backbone 

chemotherapy regime containing paclitaxel with or without veliparib-carboplatin, followed by 

adriamycin and cyclophosphamide for 4 cycles. The primary outcomes were pCR and 

tolerability and the study met the adaptive designs criterion for “graduation”.  This suggested 

a large-scale phase 3 randomized controlled trial in the TNBC subgroup where a predicted 

benefit was seen for the carboplatin-veliparib arm in comparison to the control (predicted 

pCR 51% vs 26% pCR).104 A significant limitation of the design was the inability to determine 

if the activity was due to veliparib or carboplatin or the combination. A further phase 3 trial, 

BrightNEss, compared veliparib and carboplatin in combination with paclitaxel in standard 

sequential NACT ahead of standard adriamycin and cyclophosphamide for 4 cycles. In this 

study the experimental arm was also compared with paclitaxel and carboplatin alone and 

with paclitaxel alone also followed by adriamycin and cyclophosphamide for 4 cycles. The 

pCR rate in carboplatin containing regimes was significantly greater than paclitaxel alone, 

but there was no difference between the veliparib-carboplatin group and the carboplatin 

alone group,   the trial was not powered to detect differences in survival endpoints between 

groups but suggests that differences in treatment effect assessed by pCR is driven by 

carboplatin rather than the addition of veliparib. There  is as yet no available survival data105 

(table 10). 



 

Olaparib in combination with paclitaxel in standard of care NACT regimens 

The GeparOLA trial has tested a reduced but continuous dosing of olaparib in combination 

with     paclitaxel in comparison to the standard of care combination of paclitaxel with 

carboplatin in the neoadjuvant setting. Patient selection included breast cancers with a 

germline BRCA1/2 mutation or a mutational signature of HR deficiency. The olaparib group 

achieved similar pathological response as the carboplatin arm and less toxicity but failed to 

reach its primary endpoint of exclusion of a pCR rate lower than an ambitious 55%.  The 

hormone receptor subgroups showed a signal of greater efficacy for olaparib over 

carboplatin with 53% HR+ patients achieving pCR in comparison to 20% in the carboplatin 

arm but this observation requires validation in larger study. The study suggests that this 

paclitaxel olaparib regimen is feasible and might improve tolerability while optimizing activity 

in some subgroups of HR deficient breast cancer.106 

 

 

Olaparib in combination with carboplatin in standard of care NACT regimen 

The PARTNER trial is an ongoing 3 stage phase 2/3 trial evaluating the addition of 

intermittent dose reduced olaparib to carboplatin based neoadjuvant chemotherapy in triple 

negative and/or BRCA mutated breast cancer patients (Table 11). This study has shown the 

challenges of this combination but has now selected the more tolerable dose and exposure 

combination and is ongoing.107 

 

 

PARPi and radiotherapy 

Pre-clinical studies into the use of PARPi in conjunction with radiotherapy are underway. A 

study published in 2019 reports PARP1 inhibition with olaparib radiosensitizes models of 

inflammatory breast cancer to ionizing radiation.108 This has since been expanded into a 

phase 2 trial to examine invasive DFS in patients with early inflammatory breast cancer 

(NCT03598257); there are several trials ongoing involving combination treatment of 

radiotherapy with PARPi which are outlined in table 12.  

 

 

Future thoughts 

Despite the ability of PARPi to elicit profound and sustained effects among BRCA-mutated 

breast cancer patients, intrinsic and acquired resistance is commonly seen. Understanding 

resistance mechanisms is vital and     will help inform combination therapies to be explored; 

having an understanding of the patient’s germline and their tumours genetic, epigenetic and 



transcriptomic profile will help guide us to the most appropriate personalised treatment 

option. As much important DNA damage response biology is determined by complex post-

translation modifications of protein function and dynamic changes in protein localization it 

will be important to develop methods that can analyze this in breast cancer tissue before, 

during and after selective pressures of therapy including PARPi. It is clear that both 

germline and biallelic somatic mutations in the BRCA genes are a predictive biomarker for 

response to PARPi in breast cancer patients. With greater understanding of differential 

effects of chemotherapy induced selection of resistance mechanisms such as pathogenic 

BRCA reversion mutations,109 inactivation of key DNA repair pathway proteins such a 53BP1 

and REV762 and effects on PARPi trapping,110 we will be better placed to choose which 

patients are likely to have benefit from adjuvant PARPi use, durable responses to PARPi in 

advanced disease, benefit from platinums after PARPi and who might benefit from a different 

or novel targeted therapy approaches.111,112  
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Figures: 



 

 

FIGURE 1. PARP1 trapping potency of PARPi (from low to high). Chemical structures of the 

5 clinical PARPi discussed are arranged in their 

increasing ability to trap PARP1 correlating with their cytotoxic potency. Veliparib is the least 

potent, whereas talazoparib is the most potent. 

Adapted with permission from The American Association for the Advancement of Science, 

Lord and Ashworth. 
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