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Abstract
COVID-19 patients show heterogeneity in clinical presentation and outcomes that makes pandemic control and
strategy difficult; optimizing management requires a systems biology approach of understanding the disease. Here we
sought to potentially understand and infer complex disease progression, immune regulation, and symptoms in
patients infected with coronaviruses (35 SARS-CoV and 3 SARS-CoV-2 patients and 57 samples) at two different disease
progression stages. Further, we compared coronavirus data with healthy individuals (n= 16) and patients with other
infections (n= 144; all publicly available data). We applied inferential statistics (the COVID-engine platform) to RNA
profiles (from limited number of samples) derived from peripheral blood mononuclear cells (PBMCs). Compared to
healthy individuals, a subset of integrated blood-based gene profiles (signatures) distinguished acute-like (mimicking
coronavirus-infected patients with prolonged hospitalization) from recovering-like patients. These signatures also
hierarchically represented multiple (at the system level) parameters associated with PBMC including dysregulated
cytokines, genes, pathways, networks of pathways/concepts, immune status, and cell types. Proof-of-principle
observations included PBMC-based increases in cytokine storm-associated IL6, enhanced innate immunity
(macrophages and neutrophils), and lower adaptive T and B cell immunity in patients with acute-like disease
compared to those with recovery-like disease. Patients in the recovery-like stage showed significantly enhanced TNF,
IFN-γ, anti-viral, HLA-DQA1, and HLA-F gene expression and cytolytic activity, and reduced pro-viral gene expression
compared to those in the acute-like stage in PBMC. Besides, our analysis revealed overlapping genes associated with
potential comorbidities (associated diabetes) and disease-like conditions (associated with thromboembolism,
pneumonia, lung disease, and septicemia). Overall, our COVID-engine inferential statistics platform and study involving
PBMC-based RNA profiling may help understand complex and variable system-wide responses displayed by
coronavirus-infected patients with further validation.

Introduction
The spread of COVID-19, a disease caused by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
has led to the current global pandemic with already

millions of people with confirmed infection and more
than one million deaths1. According to the World Health
Organization (WHO), the mode of infection for COVID-
19 is predominantly through respiratory droplets, aerosol
transmission due to pathogen-laden viral particles in the
air, or close contact with infected people with increased
viral loads, especially in the early stages of disease2. The
mechanism of human pathogenesis, to a great extent,
may simulate that of SARS-CoV (associated with SARS)
and Middle East respiratory syndrome coronaVirus
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(MERS-CoV; associated with MERS) viral infections,
including the prolonged persistence of the virus wor-
sening the host immune response3–5. Clinical manifes-
tation of COVID-19 ranges from mild respiratory
symptoms to severe disease and death6. However, there
are now reports suggesting heterogeneous manifestation
of the disease affecting multiple organs, including kidney,
liver, and brain7. Although age and compromised health
history are considered critical prognostic factors, certain
patients of younger age and good health have shown
severe progression of the disease8.
Patients with COVID-19 may be asymptomatic9,10, but

can still transmit infection11. Viral shedding from an
infected person may occur, although resolution of symp-
toms12, and relapse has been reported despite consecutive
negative testing13. Currently, there are no approved
therapies for COVID-19 respiratory symptoms14,15 or way
to screen for disease progression, and system-wide
changes in patients.
In this study, we sought to understand and infer chan-

ges in coronavirus-infected patients at system levels
through their peripheral blood mononuclear cells (PBMC)
by performing comparisons with healthy volunteers by
applying inferential statistics (IS). The inferences at the
multiple levels of the system in patients provide an effi-
cient way of understanding the heterogeneity and
mechanism(s) of disease manifestation as a whole (Fig. 1A).
These inferences can be derived systematically in a hier-
archical fashion from the level of gene signatures to the
whole organism, to study the pathophysiology of patients
with coronavirus infection. Moreover, the patients’
response to insults from the virus along with other asso-
ciated disease conditions can be studied.

Results
PBMC-based gene expression profiles identify distinct
gene signatures in coronavirus-infected patients and
healthy volunteers
To perform an integrative and systematic analysis of

heterogeneous patients’ responses to the coronavirus
infection, we used a limited RNA transcriptome data from
PBMC of SARS-CoV patients (n= 10) and healthy volun-
teers (n= 4) from a published study16 (training data). We
identified PBMC genes differentially expressed between
patients and healthy volunteers by applying our in-house
developed IS pipeline (“COVID-engine”; see “Methods“).
We broadly identified 290 differentially expressed genes in
patients and healthy volunteers using a supervised Statistical
Analysis of Microarrays (SAM) approach (Fig. 1B, Supple-
mentary Fig. 1 and Supplementary Tables 1A, B). Among
these 290 genes, 169 (dubbed as CoV-Up-gene signature)
were highly expressed, and 121 highly reduced in patients
compared to healthy volunteers (dubbed CoV-Down-gene
signature; Fig. 1B and Supplementary Table 1B).

We further explored our gene signatures in SARS-CoV-
2-infected patients using a very limited sample size of
three COVID-19 patients’ and three healthy volunteers’
PBMC from another published study by Xiong et al.17.
Irrespective of different diseases (although related) and
platforms, we observed that our CoV-Up-gene signature
from SARS-CoV was higher in COVID-19 patients’
PBMC than in the healthy volunteers (see “Methods”). In
contrast, CoV-Down-gene signature was higher in healthy
volunteers and lower in COVID-19 patients. This result
suggests that our gene signatures from SARS-CoV may be
applicable to COVID-19 patients (Fig. 1C, D and Sup-
plementary Table 1C).
When our CoV-Up-gene signature was analyzed using

PBMC samples18,19 (n= 213) from patients infected with
bacteria and influenza, we observed a broadly similar
pattern (Fig. 1E, Supplementary Fig. 2A and Supplemen-
tary Table 1D, E). The reciprocal analyses with CoV-
Down-gene signature was higher in PBMC from healthy
volunteers than from SARS-CoV and other microbe-
infected patients (Fig. 1F, Supplementary Fig. 2B and
Supplementary Table 1D, E). Again, we performed
enrichment analysis (hypergeometric test) using
MSigDB’s C7 immune signature20 and found that 43% (60
out of 138 genes) of the signatures that were derived from
PBMC (mostly associated with specific diseases) were
significantly (false discovery rate (FDR) < 0.2) enriched for
our CoV-Up-gene signature (Supplementary Fig. 3).
Overall, the results suggest that CoV-Up-gene signature
represents primarily diseased PBMC.

PBMC gene signatures may distinguish disease
progression—acute-like vs. recovering-like coronavirus-
infected patients
Next, we sought to assess the potential of our CoV-Up-

gene signature to stratify patients into those at different
progression stages of the disease (progression): acute vs.
recovering. For this, we used PBMC transcriptome data
from a limited size of 44 samples from the longitudinal
collection over the disease course from a published study
(validation data; ref. 19). Lee et al. defined acute samples
(n= 25) as those that tested positive (using blood) for
SARS-CoV during hospitalization or within 10 days of
onset of the disease in patients. The samples derived from
acute patients were also correlated with disease severity
including an increased clinical pulmonary infection
score19,21. The remaining samples were labeled as reco-
vering samples (n= 19). Hence, acute vs. recovering
samples refer to different stages of the disease that can
occur in the same patient as specific samples were col-
lected from the same individual during hospitalization.
Interestingly, disease phase appeared to be associated

with our identified CoV expression signatures in samples
from Lee et al.19 with recovering patients showing an
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Fig. 1 (See legend on next page.)
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intermediate signature between acute phase and healthy
donors (Fig. 1E). We then applied a gene signature (39
genes with known gene symbols) for distinguishing acute
from recovering patients identified by Lee et al.19 back to
our training data16 using NTP analysis (see “Methods”)22.
This resulted in 7 of the 10 patient samples showing
maximal similarity to acute phase (termed acute-like
patients), while 3 samples scored similar to recovering
patients (termed recovering-like patients; measured as
signature-based cosine distance; see “Methods”; Fig. 1G and
Supplementary Table 1F). Our results therefore suggest that
CoV signatures may distinguish different disease stages.

Gene expression of key cytokines and other genes
represented in PBMCs in acute-like vs. recovering-like
coronavirus patients
We next analyzed the expression patterns of genes

associated with coronavirus infection in PBMCs in pre-
dicted acute-like and recovering-like using SARS-CoV-
infected patients and healthy volunteers (from training
data). We compared the expression levels of cytokines
namely IL6 and TNF and other genes such as ACE2 and
lactate dehydrogenases in PBMC from infected patients
and healthy individuals, which are known to be expressed
in circulating monocytes and macrophages after viral
infection23,24. Although increased expression level of IL6 in
acute-like patients compared to healthy individuals was
observed, there was no significant difference between
acute-like and recovering-like patients (Fig. 2A). Interest-
ingly, TNF was highly expressed in acute-like patients
compared to recovering-like patients and healthy indivi-
duals (Fig. 2B). Besides, analysis of ACE2 and subunits of
lactate dehydrogenase (LDHA and LDHB; associated with
hypoxia) genes showed LDHB was highly expressed in
healthy individuals compared to coronavirus-infected
patients, and inverse trends were observed for ACE2 and
LDHA (Fig. 2C, E). Among these five genes, TNF was the
only gene that showed differential expression between
acute-like and recovering-like patients. The results show
increased expression of these key coronavirus infection
associated genes in patient PBMC samples.

We further examined multiple other candidate genes that
act as chemoattractants to monocytes and macrophages,
specifically those that interfere with innate and adaptive
immunity and viral replication24. Among those genes, we
observed CXCL8 (IL8) and CCL13, which are associated
with chemoattraction of neutrophils/macrophages (innate
immunity), to be highly expressed in acute-like patients,
compared to recovering-like patients and healthy indivi-
duals (Fig. 3A). On the other hand, OAS2 and IL16 asso-
ciated with T cells (adaptive immunity) and inhibition of
viral replication were highly expressed in recovering-like
patients and healthy individuals (Fig. 3B). These results
suggest that PBMC from potential acute-like patients may
be associated with the activity of innate immunity, whereas
PBMC from recovering-like patients may be associated with
an adaptive immune profile.

Enrichment of TNF-alpha, IL6, and hypoxia-related
pathways in PBMC of coronavirus patients
Based on the expression levels of key genes, including

TNF, we next set out to explore the functional implica-
tions of the CoV-Up-gene signature. To do so, we per-
formed enrichment analysis using the genes in CoV-Up-
gene signature and MSigDB’s hallmark gene set data-
base20 (Fig. 3C). This revealed multiple highly ranked
pathways involved in cytokine storm and acute infection
including TNF signaling, IL6 (IL6-JAK-STAT3) and IL2
(IL2-STAT5) signaling, inflammatory response, and
KRAS/MTOR and late responses to estrogen pathways
(Fig. 3C and Supplementary Table 2A). This is consistent
with clinical manifestations including observations of high
IL6 levels in COVID-19 patients25.
Interestingly, outside of the inflammatory response,

multiple pathways related to hypoxia, angiogenesis, and
oxygen transport (heme/iron) were also implicated, con-
sistent with the oxygen limitation26 experienced during
coronavirus infection (Fig. 3C). Of particular interest was
the enrichment of complement and coagulation pathways
which may explain the high hypercoagulability observed
in COVID-19 patients27 and may represent one of the key
pathological mechanisms of the virus. Enrichment of the

(see figure on previous page)
Fig. 1 System-level analysis and PBMC-based gene signatures show association with SARS and COVID-19. A Schematic showing the
identification of PBMC RNA gene signatures associated with disease staging, and hierarchical modeling of genes, pathways, networks, subcellular
contents, cells, and disease symptoms using COVID-engine platform. This figure was prepared using Servier Medical Art (https://smart.servier.com)
under a Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/). B Heatmap showing 290 gene signature
genes in 10 SARS patients and 4 healthy individuals. Both CoV-Up-gene signature (169 genes) and CoV-Down-gene signature (121 genes) are shown.
C, D. CoV-Up-gene signature scores (C) and CoV-Down-gene signature scores (D) and their association with SARS-CoV-2-infected (COVID-19; n= 3)
patients and healthy individuals (n= 3; datasets from Xiong et al.17). For C and D statistical significance was not considered due to low sample size. E,
F. CoV-Up-gene signature scores (E) and CoV-Down-gene signature scores (F) and their association with acute and recovering SARS-CoV-infected
patients (n= 25; 44 samples), bacteria-infected patients (n= 16), and healthy individuals (n= 9; datasets from Lee et al.19). Kruskal–Wallis statistical
test with p < 0.001 for E and F. G Acute vs. recovering gene signature from Lee et al.19 predicted acute-like and recovering-like SARS-CoV-infected
patients (n= 10) from Raghunathan et al.16 using NTP method and cosine distance measure.
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apoptotic pathway may have relevance to cell death of
lymphocytes (Fig. 3C) as suggested elsewhere17. These
enriched pathways and processes may be linked together
and may represent an association with COVID-19 infec-
tion in these patients.

Potential role for a network of related pathways
representing cytokine storm and innate immune changes
in PBMC of coronavirus-infected patients
Given that different pathways were enriched in infected

patients, next, we interrogated how these pathways are
linked together to convey a network of processes or
changes at the cellular level. Hence, we used the REAC-
TOME pathway database28 to connect different but rela-
ted pathways that were enriched in infected patients using

network analysis. Two evident and distinct networks were
significantly enriched in CoV-Up-gene signature: (a)
interleukins and cytokine signaling (potentially repre-
senting cytokine storm) and (b) neutrophils and innate
immunity (Fig. 4A and Supplementary Table 2B).
Nevertheless, we observed an increased enrichment of a
unique network linking granulopoiesis, megakaryocyte
differentiation, and platelet activation (Fig. 4A). This may
be linked to coagulation system that can activate the innate
immune system (e.g. monocytes/macrophages) to produce
TNF29. Nevertheless, this requires further understanding.
These may suggest innate immune system activation with
potential cytokine storm in coronavirus patients.
Kyoto Encyclopedia of Genes and Genomes (KEGG)-

based extensive analysis of network of molecular

Fig. 2 Significantly represented key genes at different progression stages of coronavirus infection. A–E Expression levels of genes: IL6 (A), TNF
(B), LDHB (C), ACE2 (D), and LDHA (E) in acute-like and recovering-like SARS patients and healthy individuals. Blue asterisk (*) represents Kruskal–Wallis
nominal p value across all three groups and red asterisk (*) represent Welch two-sample t-test p value between patients and healthy individuals. *p <
0.05; **p < 0.001; ***p < 0.0001 and ■p < 0.08. Multiple testing was not done due to low sample size.

Sadanandam et al. Cell Death Discovery           (2020) 6:141 Page 5 of 14

Official journal of the Cell Death Differentiation Association



Fig. 3 Highly represented signaling pathways/processes in coronavirus-infected patients. A, B Expression levels of genes related to immune
cell chemoattractants CXCL8 and CCL13 (A), genes involved in T cells and suppression of viral replication OAS2 and IL16 (B) in acute-like and
recovering-like coronavirus-infected patients and healthy individuals. Blue asterisk (*) represents Kruskal–Wallis nominal p value across all three
groups and red asterisk (*) represent Welch two-sample t-test p value between patients and healthy individuals. *p < 0.05; **p < 0.001; ***p < 0.0001
and ■p < 0.08. Multiple testing was not done due to low sample size. C Enrichment statistical analysis (hypergeometric test using hypeR57) using
CoV-Up-gene signature and pathways/processes based on gene sets from MSigDB’s HALLMARKS database20.
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Fig. 4 (See legend on next page.)
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pathways suggested further understanding of functions
and utilities at the levels of cells and organisms. Our
KEGG analysis with CoV-Up-gene signature overlapped
with different infections, including Helicobacter pylori and
leishmania (Fig. 4B and Supplementary Table 2C). This
suggests that coronavirus infection may share disease
conditions with these infections. Interestingly, we also
noted enrichment of systemic lupus erythematosus (SLE)-
related genes, which is a chronic disease associated with
inflammation in connective tissues and affects multiple
organs, including the blood-forming system30,31. This
suggests that coronavirus infection and SLE may be
related to each other with respect to disease symptoms.
The prevalence and risk factors of severe COVID-19 in
SLE patients remain unclear30,31. The understanding at
the systemic level and additional clinical reports are
needed to know whether certain COVID-19 disease
conditions may be associated with SLE. A more relevant
and well-known individual pathway associated with this
disease is the renin–angiotensin system associated with
ACE2 function (Fig. 4B). There is also an enrichment of
RIG-I-like receptor signaling pathway representing
potential anti-viral event through pathogen-associated
molecular patterns32. Multiple chemokine/cytokine and
metabolism pathways were enriched as a part of the CoV-
Up-gene signature in the KEGG database (Fig. 4B).

Changes in subcellular regulatory networks associated
with PBMC of coronavirus-infected patients
While these genes to network processes provide infor-

mation related to coronavirus infection, we were inter-
ested in investigating the next level in the hierarchy and
the potential subcellular interaction networks that may
inform viral interaction within host cells. Interestingly,
cell–cell adhesion processes, secretory granules, vesicles,
and exosomes spanning plasma membrane and lipid
complexes and cytoplasm were enriched in CoV-Up-gene
signature (Fig. 4C), suggesting that this may indicate the
viral infection of monocytes. Furthermore, these were
related to the enrichment of fatty acid synthase complex
that is known to be involved in the plasma membrane and
vesicle formation33 (Fig. 4C and Supplementary Table
2D). The data also suggests potential interaction of the
virus with host immune cells through cell–cell adhesion
processes, which requires further understanding.

Nonetheless, the host-specific subcellular changes in
PBMC are also evident from this analysis. An increased
replication and proliferation of potential host cells, mainly
involving the innate immune system, may be evident
based on the enrichment of genes associated with DNA
polymerase processivity factor and proliferating cell
nuclear antigen complex. Also, the production of immu-
noglobin complexes along with NFkB complex was higher
in the patient gene signature, again, representing poten-
tially increased immune responses. At the same time, the
host’s potential responses to death signals associated with
BCL2 complex are also enriched in this analysis. Again,
this potentially represents lymphocyte-related apoptosis
in connection with an enriched apoptotic pathway in Fig.
3C. Neutrophil-specific S100A8/A9 complexes are also
enriched (Fig. 4C). Overall, these results suggest potential
PBMC-based subcellular level changes associated with the
viral integration in immune cells and associated
pathophysiology.

Recovery from coronavirus infection is potentially
associated with increased cytolytic activity and IFN-γ but
not increased B cell levels
In order to gain insight into the cellular dynamics of the

SARS-CoV-2 immune response, we calculated immune
signature scores based on the gene markers from Rooney
et al.34 (see “Methods”). In this case, we separated the
coronavirus patient samples into those with acute-like or
recovering-like disease and compared these with healthy
control samples. As expected, we observed that the innate
immune system involving macrophages and neutrophils
were highly active in the acute-like patients, suggesting
that they may be the first to encounter the coronavirus,
with these decreasing in recovering patients (Fig. 5A and
Supplementary Table 2E).
Perhaps most interestingly, a significant (FDR < 0.2)

increase in natural killer (NK) cells, cytolytic activity, and
plasmacytoid dendritic cells (pDCs) in recovering-like
patients compared to acute-like patients was observed (Fig.
5A). It is noteworthy that the absolute levels of CD8+ T cells
and co-stimulating helper T cells are not different between
recovering-like and acute-like patients (Fig. 5A). This result
suggests that the CD8+ T cells are potentially activated
(cytolytic) in the recovering patients. Certain results from
SARS patients were assessed using PBMC from limited

(see figure on previous page)
Fig. 4 Highly represented related networks of molecular, cellular, and development pathways show cytokine (storm) network and innate
immunity in coronavirus-infected patients. A REACTOME28 database-based connection of different but related pathways that were enriched
(hypergeometric test of FDR < 0.2 and overlap a similar index of 0.5 using hypeR57) in infected patients using network plots. B KEGG60 pathways-
based network showing enrichment (hypergeometric test of FDR < 0.2 and overlap a similar index of 0.25 using hypeR57) of different diseases and
infection related pathways. For A and B, nodes and edges are of same size and length, respectively. C Enrichment statistical analysis (hypergeometric
test of FDR < 0.2 using hypeR57) using CoV-Up-gene signature and pathways/processes based on gene sets from COMPARTMENTS database61.
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number of COVID-19 samples (n= 3; FDR < 0.2; Fig. 5B
and Supplementary Table 2F). No difference in B cells
between both types of patients and healthy individuals was
found. Intriguingly, higher level of expression of interferon
(IFN)-γ type-II gene was found in the recovering-like
patients and lower levels in both acute-like patients and
healthy volunteers (Fig. 5A). These results suggest that T cell
responses may be pivotal in successful response to

coronavirus infection, consistent with the recent study by
Grifoni et al.35 which found SARS-CoV-2 reactive T cells in
70% of convalescent COVID-19 patients.
Next, we examined the differential expression of major

histocompatibility complex (MHC) class-I and class-II
HLA that may reflect antigen presentation to and/or
activation of CD4+/CD8+ T cells, and whose levels are
increased by IFN-γ (Fig. 5C). Among the MHC class-II

Fig. 5 Immune cells, their activities and HLA types in progression stage-specific coronavirus-infected patients. A, B Immune cell scores using
ssGSEA analysis and specific immune signature from Rooney et al. representing specific immune cells and their activities in acute-like (n= 7), and
recovering-like (n= 3) SARS patients and control healthy individuals (n= 4) (A), and COVID-19 patients and control healthy individuals (B). FDR for
A and B are <0.2. C HLA profiles in acute-like, and recovering-like SARS patients and control healthy individuals. Kruskal–Wallis statistical nominal
p values for HLA-DQA1 and HLA-DOB are <0.1 and HLA-F is <0.05. Multiple testing correction was not performed due to small sample size for C (the
intention of the study is to infer from publicly available limited data). D. Enrichment analysis (hypergeometric test using hypeR57) of CoV-Up-gene
signature using MSigDB’s C7 immune gensets20.
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HLA genes, two of them were lower in acute-like patients
compared to recovering-like and/or healthy individuals
(borderline significance with nominal p < 0.1 due to low
sample size). While most of the MHC class-II HLA genes
showed no difference in expression levels between the
acute-like and recovering-like patients, HLA-DQA1
showed an increasing trend in the recovering-like
patients towards the healthy individuals and low level in
acute-like patients. Similarly, MHC class-I HLA gene,
HLA-F showed a trend akin to HLA-DQA1 (Fig. 5C and
p < 0.05). On the other hand, there was no change in the
antigen processing machinery (data not shown). However,
all these speculations from limited data warrant further
validation, and their functional immunological sig-
nificance is currently unclear.
To confirm these analyses of immunologic composition,

we performed two additional independent analyses.
Hypergeometric test-based enrichment analysis of
MSigDB’s C7 immune signature20 showed similar con-
clusions that innate immunity and myeloid (neutrophils
and macrophages) cells are upregulated in coronavirus
patients (in general), whereas adaptive immunity is
downregulated in these patients (Fig. 5D and Supple-
mentary Table 2G). Similarly, analysis using the BioGPS
database—gene sets36 demonstrated an increased
enrichment of CD33+ myeloid and CD14+ monocytes
associated with upregulated genes in our CoV expression
signature (Fig. 6A and Supplementary Table 2H). In
contrast, CD8+ and CD4+ T cells showed up along with
enrichment of CD56+ NK cells and CD19+ B in the CoV-
Down-gene signature (Fig. 6B and Supplementary Table
2I). Compared to healthy individuals, these cells were
under-represented in CoV-Up-gene signature or lower in
coronavirus-infected patients (Fig. 6B).

Coronavirus-infected patients’ PBMC reveals genes that
overlap with known diseases and disease conditions
Based on information in Supplementary Fig. 3, we rea-

soned that the disease conditions from coronavirus
infection may be similar to other immune-related dis-
eases. To perform this, we applied enrichment analysis to
study the overlap of genes between CoV-Up-gene sig-
nature and other diseases and disease conditions. We
found that CoV-Up-gene signature was enriched for
various immune-related diseases, including septicemia,
pneumonia, lung disease, arthritis, cystic fibrosis, tha-
lassemia, pre-eclampsia, bacterial infections, asthma,
acute coronary syndrome, and others (Fig. 7A and Sup-
plementary Table 2J). The overlap of CoV-Up-gene sig-
nature and those genes from selected diseases—
septicemia, pneumonia, lung diseases, arthritis, and cystic
fibrosis—are shown in Fig. 7B. These results suggest that
the diseases and disease conditions due to coronavirus
may be complex and highly variable and may affect

differently in patients with pre-existing disease conditions
as recently reported7, which warrants further systematic
investigation.

Discussion
The clinical course of COVID-19 patients remains

enigmatic, and no treatment options exist with proven
efficacy37. The variety of clinical presentations of this
disease has alarmed healthcare providers across the globe.
The rampant spread of COVID-19 during asymptomatic
stage is attributed to the high SARS-CoV-2 viral shedding
in the upper respiratory tract38. We reasoned that the
blood, in real-time, may reflect changes occurring in
immune and other cells and potentially infected tissues in
PBMC, thereby acting as a potential remote biosensor of
highly complex system-wide changes. There is no sys-
tematic study performed to our knowledge that attempts
to use PBMC samples to understand the system-wide
changes along with the disease symptoms in COVID-19
patients. This type of study will have the strength to
distinguish systemic changes during acute and recovering

Fig. 6 PBMC-based gene signatures show association with subset
of immune cells in coronavirus-infected patients. A, B Enrichment
(hypergeometric test using hypeR57) of subsets of immune cell genes
in multiple BioGPS—gene portal system36 using CoV-Up-gene
signature (A) and CoV-Down-gene signature (B).
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stages of the patient’s infection. This proof-of-concept
study, in the future with further refinement and extensive
validation, may support the development of personalized
prognostic biomarkers (not the focus of the current study)
and may provide the opportunity to save patients who are
most likely to die of the disease.
In this proof-of-concept study, we performed a com-

prehensive analysis using publicly available blood cell
RNA profiles from SARS and COVID-19 patients and
cross-validated with patients with other infections or
healthy individuals. Using IS approaches in our COVID-
engine platform, we were able to develop a blood cell
RNA profile-based gene signatures that are differentially
expressed at different stages of infection (acute vs. reco-
vering). In addition, our COVID-engine platform pro-
vided hierarchical and comprehensive analysis describing
infection-associated changes in genes, pathways, net-
works, subcellular components, and cells, covering almost
the whole system. This “integrated” analysis can help
understand which other disease-related symptoms could
manifest in COVID-19 patients.
Our results, using limited coronavirus-infected patient

samples, represent that the innate immune system asso-
ciated with increased neutrophils, macrophages, and
monocytes with potential cytokine storm (including the
expression of IL6, TNF, IL8 (CXCL8) and CCL13) is high
in CoV-Up-gene signature and specifically in acute-like
patients. Macrophages and monocytes are known to serve
as factories for viral replication in other disease condi-
tions24. These changes in immune cells may also be
connected to increased neutrophil counts in these
patients39. The cytokine storm-related to innate immune
changes may be linked to changes in angiogenesis and
coagulation, suggesting a potential relationship between
inflammation, thromboembolism40, and coagulation41.

While there is no change in overall CD8+ T cell popula-
tion between patients in their acute-like vs. recovering-
like stages (that may, however, attribute to the sample
size), the change in cytolytic activity, pDCs, and NK cells
suggests that the adaptive immunity is a late event
represented in patients recuperating from this disease42.
Congruently, this is associated with lower innate immu-
nity in recovering-like patients than acute-like patients
and associated with increased expression of anti-viral
genes OAS2 and IL16.
Similarly, the higher expression levels of MHC Class-I

HLA-F gene, which is known to be associated with the
interaction between CD4 T cells and NK cells to inacti-
vate human immunodeficiency virus (HIV)43, in
recovering-like patients suggests the anti-viral effect in
these individuals. Remarkably, the supposedly anti-viral
CD4 T and NK cells, along with B cells, are low in cor-
onavirus patients and are associated with low HLA-DR-
expressing monocytes in these patients with severe
respiratory failure25,44,45. This report corroborates with
our results that HLA-DRA gene and all the above three
cell types are low in acute-like patients. Specifically, B cell-
based adaptive immunity seems to vary among patients
and mostly low in coronavirus patients with severe
respiratory failure25,46. Our data suggest that this may
impact the development of effective vaccines for this
infection. In addition, CoV-Up-gene signature was high in
methicillin-resistant Staphylococcus aureus (Supplemen-
tary Fig. 2), which, similar to coronavirus, colonizes upper
respiratory track and causes pneumonia. It is interesting
to note that there is no vaccine for S. aureus infection47.
While there are more changes in T cells than B cells, it
may be interesting to consider T cell therapy for COVID-
19 patients48. In our study, there are disease links and
potential comorbidities (Fig. 7) that has evidence from

Fig. 7 PBMC-based gene signature identifies links to known and novel diseases and disease conditions in coronavirus-infected patients. A,
B Enrichment analysis (hypergeometric test using hypeR57) of disease-based gene sets from DisGeNET62 (A). Top five diseases and associated PBMC
genes (B).
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recent reports7. Further refinement of our current
COVID-engine platform may help to identify hidden/
silent pre-existing symptoms and develop an effective
personalized COVID-19 treatment strategy using PBMC.
There are a number of questions that arose from this

study that could be of relevance in tackling the current
pandemic. How does coronavirus infection downregulate
the adaptive immune system? Is the dysregulation of the
immune system described causally linked with clinical
outcomes? Does the dysregulated immune system alert
the body to respond, and how? The dysregulated immune
system could alert the host response to produce an active
adaptive immune response, which typically takes
10–14 days. Our findings may suggest that individuals
with activated, appropriate immune responses, especially
with increased INF-γ type-II responses and cytolytic
activity, which may also serve as biomarkers with further
validation, maybe on their way to recovery from symp-
toms. Moreover, those patients’ incapable of such pro-
gression may have multiorgan failures that may be
represented in our data.
Although our study may be timely for the current

pandemic, there are limitations. We have performed
analysis using publicly available small number of
coronavirus-based training (n= 10) and test (n= 47)
samples from less annotated datasets with limited clinical
data, which may be appreciated provided the current
global lock-down scenario. Also, the acute-like and
recovering-like patients may overlap with the sympto-
matic and asymptomatic patients, respectively, described
in the original publication from where the training dataset
was derived16. Further validation was curtailed due to lack
of associated clinical data, which is difficult to obtain in
the current scenario.
In conclusion, PBMC has information related to infec-

tion status, immune states, disease progression, severity,
and disease conditions that are likely going to be mani-
fested due to coronavirus infection and COVID-19 dis-
ease (Fig. 8).

Methods
Data sources
PBMC transcriptomes from SARS, COVID-19, and

other patients were obtained from published studies16–19

with GEO Omnibus identifiers—GSE1739 and GSE6269,
and normalized data directly from the original publica-
tions. Raw.CEL files from Affymetrix Human HG-Focus
Target Array for GSE1739 were obtained from the
authors of the original publication16 and robust micro-
array analysis-based normalization was performed using
R-based Bioconductor package—affy49. GEOquery R
package50 was used to obtained gene expression and/or
phenotypic data from GEO Omnibus for GSE6269.

Overall analysis strategy
COVID-engine refers to a pipeline of different IS

methods described below.

Differential PBMC gene expression analysis and validation
PBMC-based differential gene signatures between

healthy volunteers and coronavirus-infected patients were
selected by performing supervised SAM51 using R-based
siggenes package52. Differentially expressed genes with
FDR < 0.05 were chosen as described in our previous
publications53–55. Gene scores for signatures up or
downregulated in coronavirus-infected patients in other
validation datasets were derived using ssGSEA20 using R
scripts from GenePattern platform56.

Enrichment and other IS analysis for systems level under-
standing of the disease
Briefly, the differentially expressed gene expression

signatures from PBMC of patients infected with cor-
onavirus were used to query multiple databases for meta-
signatures such as pathways, mechanistic processes, and
their associated networks that are connected with differ-
ent disease manifestations by enrichment analysis-based
IS. These gene signatures and meta-signatures were fur-
ther systematically linked to wire the pathophysiology in

Fig. 8 COVID-engine workflow. Schematic summarizing the gene signature and their relevance at systems level to disease progression stages, and
disease conditions for personalized COVID-19 medicine.
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patients, again, in a hierarchical fashion, from cells to
whole organism level (Fig. 1A).
Hypergeometric gene enrichment analysis for most of

the studies were performed using R-based hypeR tool57.
Disease conditions-based enrichment analysis was per-
formed using R-based Dose package58. Nearest Template
Prediction22 using R-based tool from GenePattern plat-
form56 was used to derive distance between two sig-
natures—acute-like vs. recovering-like patients. Different
gene set databases were from downloaded from EnrichR59

and MSigDB20. Immune gene sets were from Rooney
et al.34. Additional gene sets and databases used in this
study are: REACTOME28, KEGG60, COMPARTMENTS
database61, BioGPS—gene portal system36 and
DisGeNE62.
Detailed information regarding intermediate data from

COVID-engine are provided in Supplementary Tables 1
and 2. The number of samples used in this exploratory
study was determined by public availability of tran-
scriptomic datasets and for the need of the hour.
Kruskal–Wallis and t-test statistical analysis were per-
formed where appropriate.
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