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SUMMARY
Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the
relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization.
Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor
types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable
predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI
response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden,
and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer signifi-
cance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical
amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis re-
vealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2)
loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell
RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), com-
bined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic
markers of CPI sensitivity.
INTRODUCTION

To date, multiple biomarkers have been associated with immune

checkpoint inhibitor (CPI) response, which can be broadly
596 Cell 184, 596–614, February 4, 2021 ª 2021 The Authors. Publish
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grouped into four categories: (1) sources of antigen that elicit

T cell responses, (2) mechanisms of immune evasion that drive

resistance, (3) host factors, and (4) markers of immune infiltra-

tion. Despite these promising insights, large-scale studies of
ed by Elsevier Inc.
commons.org/licenses/by/4.0/).
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CPI response in patients with in-depth whole-exome and tran-

scriptome data have been lacking. Furthermore, given that

CPIs activate the immune system rather than target cancer-

cell-intrinsic pathways, we hypothesized that a systematic

pan-tumor analysis could help elucidate the critical features un-

derpinning CPI response and enable appropriately powered

biomarker discovery. Accordingly, we collated raw exome/tran-

scriptome data across multiple studies and cancer types,

totaling n = 1,008 CPI-treated patients (termed the ‘‘CPI1000+

cohort’’; Figure 1) from 12 individual cohorts (see STAR

methods), and reprocessed these data through a uniform bioin-

formatics pipeline to maximize comparability across cohorts.

Furthermore, we harmonized radiological clinical response defi-

nitions across the 12 studies to ensure strict consistency in

outcome measurement (‘‘responder’’ is defined as a RECIST-

criteria-based radiological response with complete response

[CR] or partial response [PR], and ‘‘nonresponder’’ is defined

as stable disease [SD] or progressive disease [PD]). We note

this is a conservative definition of response, and patients with

SD and extended survival can be considered as experiencing

clinical benefit from treatment; however, the ‘‘CR/PR versus

SD/PD’’ definition allows the clearest response interpretation

and is consistent with the most recent literature (Cristescu

et al., 2018; Mariathasan et al., 2018). Furthermore, in a subset

of patients with both radiological response and overall survival

data, we found a strong relationship in biomarker effect sizes

for response and survival (Figure S1A; p = 0.001). The

CPI1000+ cohort comprises data from seven tumor types (met-

astatic urothelial cancer [n = 387], malignant melanoma [n = 353],

head and neck cancer [n = 107], non-small cell lung cancer [n =

76], renal cell carcinoma [RCC] [n = 51], colorectal cancer [n =

20], and breast cancer [n = 14]), treated with three classes of

CPIs (anti-CTLA-4 [n = 155], anti-PD-1 [n = 432], and anti-PD-

L1 [n = 421]) (Table S1). Samples predominantly represented

baseline pretreatment specimens, treated with single agent

CPI, with a small number of exceptions (n = 55, 5.5%) in which

the patient had either undergone prior lines of anti-CTLA-4 treat-

ment or the biopsy was taken on treatment (see Table S1). As a

validation cohort, we obtained processed copy-number

segment and overall survival data from n = 1,600 cases from

CPI-treated patients profiled using the MSK-IMPACT panel

(Consortium, 2017; Samstein et al., 2019) (referred to hereafter

as the MSK1600 cohort; RECIST response outcome data were

not available for this cohort).

RESULTS

Benchmarking of previously reported biomarkers of CPI
response
Samples were processed from raw sequencing reads, and stan-

dardized processing/quality control procedures were executed

as described in STAR methods. We began the analysis by

benchmarking previously published predictors of CPI response

using a literature search to systematically identify relevant bio-

markers. We reviewed 723 articles that matched the search

terms (see STAR methods), yielding a panel of 55 unique bio-

markers (methods). To allow biomarkers with varying measure-

ment scales (e.g., mutation counts versus gene expression
values) to be compared equivalently based on effect size rather

than p value (Wasserstein et al., 2019), all biomarker values were

converted to standard Z scores. We note Z score conversion has

been similarly applied in other large-scale tumor mutation

burden (TMB) projects (Vokes et al., 2019), and as a control all

analyses were repeated without Z score conversion, with the

top-ranked biomarkers found to be the same (data not shown).

Finally, to avoid data pooling (Bravata and Olkin, 2001), each

biomarker in each study was analyzed individually, and then

the effect sizes/standard errors were combined through meta-

analysis (Figure 2A).

The biomarker with strongest effect size across all 12 studies

in the CPI1000+ cohort was clonal TMB (i.e., the number of non-

synonymous mutations estimated to be present in every cancer

cell) (odds ratio [OR] for ‘‘CR/PR’’ versus ‘‘SD/PD’’ = 1.74; 95%

confidence interval [CI], [1.41–2.15], p = 2.9 3 10�7), closely fol-

lowed by total TMB (OR = 1.70 [1.33–2.17], p = 1.93 10�5). Sub-

clonal mutation burden (subclonal TMB) was not significantly

associated with CPI response (OR = 1.18 [0.99–1.41], p =

0.07), indicating that the dominant biomarker associated with

CPI response is clonal mutational burden specifically. We note,

however, that the single-region nature of this study, combined

with tumor purity and modest sequencing depths, means we

are underpowered to detect the full subclonal mutation burden

of each tumor. Within the sources of antigen category, other bio-

markers such as frameshift insertion/deletion burden (indel TMB)

(OR = 1.34 [1.12–1.62], p = 1.6 3 10�3), nonsense-mediated

decay (NMD) escaping (NMD-escape) fs-indel burden (OR =

1.38 [1.15–1.66], p = 5.6 3 10�4), proportion of mutations fitting

tobacco (OR = 1.39 [1.02–1.88], p = 3.5 3 10�2), UV (OR = 1.34

[1.12–1.60], p = 1.2 3 10�3), and APOBEC (OR = 1.39 [1.09–

1.76], p = 8.13 10�3) mutation signatures, as well as SERPINB3

mutations (OR = 1.33 [1.12–1.59], p = 1.23 10�3), were all signif-

icantly associated with CPI response. Regarding nonsense

mediated decay, we note CPI response rates are particularly

elevated (�50%–70% CR/PR) in patients with R5 fs-indel

NMD-escapingmutations (Figure S1B).Within the sources of an-

tigen category, DNA damage response pathway mutations were

not associated with CPI response (OR = 1.14 [0.95–1.36, p =

0.17]), nor was the differential agretopicity index (OR = 1.03

[0.81–1.32, p = 0.79]), MUC16 neoantigen count (OR = 1.15

[0.98–1.35, p = 0.08]), or AxR neoantigen fitness model (OR =

1.12 [0.95–1.32, p = 0.18]). With regard to drivers of immune

escape, we observed no significant association between the

level of somatic copy-number alteration (SCNA), measured us-

ing the weighted genome instability index (wGII) (Endesfelder

et al., 2014), and CPI response (OR = 1.05 [0.87–1.25], p =

0.62), or copy-number loss burden (OR = 1.09 [0.93–1.28], p =

0.27). B2M, PTEN, JAK1/JAK2, KRAS, TP53, and receptor tyro-

sine kinase (RTK) mutations did not reach overall significance,

despite showing strong effect sizes in some individual cohorts

(see Figure 2A), nor did the ITH Shannon diversity index (Wolf

et al., 2019). Intriguingly, loss of heterozygosity (LOH) at the hu-

man leukocyte antigen (HLA) locus (LOHHLA) (McGranahan

et al., 2017) had a non-significant OR in the direction of improved

chances of CPI response (OR = 1.14, [0.95–1.36, p = 0.16), the

opposite of what may be expected, and possibly reflecting the

fact that LOHHLA is found at higher frequency later in tumor
Cell 184, 596–614, February 4, 2021 597



Figure 1. Design of the meta-analysis study

Input studies to the meta-analysis (Figure 2) results (top) and validation cohorts for the multivariable predictive modeling (Figure 3) (bottom).
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evolution and is enriched in hot versus cold tumors (Rosenthal

et al., 2019). As a technical validation LOHHLA analysis was

repeated using: (1) the ASCAT tool (Van Loo et al., 2010) to call

LOH, and (2) only calls concordant between ASCAT and

LOHHLA tools. Both of these additional analyses yielded the

same result (i.e., non-significant OR numerically > 1). Regarding

host factors, we did not observe a significant association be-

tween the level of germline HLA-I evolutionary divergence (Cho-
598 Cell 184, 596–614, February 4, 2021
well et al., 2019) (OR= 1.01 [0.80–1.28], p = 0.94) in the combined

meta-analysis, nor for maximal HLA heterozygosity (OR = 0.97

[0.83–1.14], p = 0.70), HLA B62 supertype (OR = 0.93 [0.78–

1.11], p = 0.45), HLA B1501 type (OR = 0.97 [0.81–1.16], p =

0.75) (Chowell et al., 2018), or germline variants in the KIR3DS1

gene (OR = 1.16 [0.99–1.37], p = 0.067). HLA B44 supertype was

found to be marginally nonsignificant (OR = 1.17 [1.00–1.37], p =

0.053), and sex was found to have a significant association (OR =
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1.22 [1.03–1.43, p = 1.93 10�2), with male patients experiencing

better response rates as previously described (Conforti et al.,

2018). In the markers of immune infiltration category, we

observedCXCL9 expression (House et al., 2020) as the predictor

with strongest effect size (OR = 1.67 [1.38–2.03], p = 1.33 10�7),

followed by significant associations for CD8A expression (OR =

1.45 [1.20–1.74], p = 1.0 3 10�4), the T cell inflamed gene

expression signature (Ayers et al., 2017) (OR = 1.43 [1.05–

1.96], p = 2.5 3 10�2), and CD274 (PD-L1) expression level

(OR = 1.32 [1.10–1.58], p = 3.0 3 10�3). CXCL9 is a critical che-

mokine that binds CXCR3 on T cells, enhancing recruitment of

cytotoxic CD8+ T cells into the tumor (Gorbachev et al., 2007)

and promoting the differentiation of inflammatory T helper type

1 (Th1) and Th17 CD4 T cells (Karin et al., 2016). Additional bio-

markers identified in the literature review that are either histology

specific or could not be measured in >75% of samples are

included in Figure S1C. Of these, the following were significant:

CD38 expression (OR = 1.29 [1.03–1.61, p = 2.6 3 10�2),

CXCL13 expression (OR = 1.38 [1.11–1.73, p = 3.8 3 10�3), IM-

PRES (OR = 1.31 [1.05–1.65, p = 1.83 10�2), T effector signature

from the POPLAR trial (OR = 1.38 [1.13–1.70, p = 1.9 3 10�3),

and cytolytic score (OR = 1.22 [1.00–1.51, p = 4.93 10�2). Three

signatures (stroma-EMT/pan-fibroblast transforming growth

factor b (TGF-b)/T effector score from IMmotion150 trial), while

nonsignificant, had p < 0.1 (Figure S1C).

We note that the lack of a statistically significant association

for any of these biomarkers does not rule out an important under-

lying biological role for these processes in determining CPI

response. Instead, these data provide insights into the universal

predictors of CPI response, with evidence of predictive utility

across multiple tumor types. Furthermore, for rarer mutational

events, this analysis is underpowered (e.g., B2M mutations/de-

letions were found only in 1.4%of cases), meaning larger sample

sizes are likely required to confirm the role of these events in

influencing CPI response. We next analyzed the CPI1000+

data split by cancer/drug type, assessing four groupings where

we had two or more independent cohorts available: melanoma

anti-PD-1/L1, melanoma anti-CTLA-4, urothelial carcinoma

anti-PD-1/L1, and non-small cell lung cancer anti-PD-1/L1. The

majority of biomarkers significant in individual subgroups were

the same as those attaining significance in the pan-cancer

meta-analysis, with the exception of HLA B44 supertype (Cho-

well et al., 2018) and germline HLA-I evolutionary divergence
Figure 2. The biomarker landscape of CPI response

(A) Previously published biomarkers are shown as rows and individual cohorts wi

each biomarker in each cohort, measured as the log2 odds ratio (OR) for respons

Blue denotes association with response, red association with no response. Drug

overall effect size and significance of each biomarker in meta-analysis across all s

values are shown from meta-analysis (random effects, on account of the differe

cohorts) and last set (p-meta validation cohorts) including validation cohorts only

excluded from the meta-analysis). For clarity of plotting, outlier OR values were

results skewed by rare event counts, and raw (uncapped) values were still used

(B) The CPI1000+ cohort broken into cancer/drug subgroups for combinations w

and biomarkers that are either significant in the pan-cancer 2A analysis or within

distinguish the groups.

(C) Correlation between biomarkers that are measured on a continuous scale.

(D) Proportion of variance explained for each category of biomarker, for each stu
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(Chowell et al., 2019), which, while not significant overall, were

significant in the melanoma anti-CTLA-4 cohorts (OR = 1.65

[1.11–2.46], p = 1.3 3 10�2 and OR = 1.71 [1.07–2.75], p =

2.5 3 10�2, respectively). This latter association is potentially

consistent with the increase in T cell receptor (TCR) diversity

observed in anti-CTLA-4-treated patients (Cha et al., 2014),

and hence, a broader set of HLA presented peptides may facili-

tate improved response; however, other explanations are

possible. The only other exceptions were differential agretopicity

index (significant only in lung cancer anti-PD-1/L1 cohorts [OR =

1.90 (1.05–3.44), p = 3.53 10�2]) and subclonal TMB (significant

only in urothelial anti-PD-1/L1 cohorts [OR= 1.28 (1.01–1.62), p =

4.23 10�2]) (Figure 2B). Other cancer/drug histology differences

reflected expected patterns; for example, CD274 (PD-L1) was

significant in melanoma anti-PD-1 cohorts, but not anti-CTLA-

4 (Figure 2B). To formally test for histology/drug-specific

biomarker differences, we also conducted interaction tests and

found three significant interactions (Figure S2A), the first being

between histology and TMB/clonal TMB, with the predictive ef-

fect size of TMB being significantly lower in melanoma as

compared to urothelial carcinoma (p = 4.8 3 10�3) (Figure S2A).

Similarly, we also observed a significantly lower OR effect size

for CXCL9 expression in melanoma as compared to urothelial

cancer (p = 3.33 10�2) (Figure S2A). Third, SERPINB3mutations

were found to have significantly higher effect size in anti-CTLA-4

versus anti-PD-1/L1 cohorts (p = 3.9 3 10�2) (Figure S2A). We

next assessed the level of correlation between continuous bio-

markers, observing a high level of correlation between metrics

within each category (e.g., mutational metrics like TMB and

clonal TMB were strongly correlated with each other). Similarly,

markers of immune infiltration like CD8A and CXCL9were corre-

lated with each other (Figure 2C). However, the correlation be-

tween separate biomarker categories was generally low (e.g.,

sources of antigen biomarkers were largely not correlated with

markers of immune infiltration), suggesting potential nonredun-

dant utility in combining multiple markers together into a multi-

variable test. Finally, we quantified the total proportion of vari-

ance in CPI response that could be explained by all

biomarkers measured in Figure 2A, which for most studies

gave a value of �0.6, suggesting that up to 40% of the factors

determining CPI outcome are either still to be discovered or lie

outside of the exome/transcriptome (Figure 2D; values calcu-

lated using logistic regression pseudo-R2).
thin the CPI1000+ cohort as columns. The heatmap indicates the effect size of

e ‘‘CR/PR’’ versus no response ‘‘SD/PD/NE’’ derived from logistic regression.

class and cohort sizes are annotated, and the right-hand forest plot shows the

tudies, based on effect sizes and standard errors from each individual cohort. p

nt tumor types), with the first set of p-values including all samples (p-meta all

(i.e., when a biomarker was originally discovered in a cohort, this cohort was

capped between OR = 0.1 and OR = 10 (all outlier values were nonsignificant

in the meta-analysis).

ith two or more independent cohorts. OR effect sizes are shown on the y axis,

an individual subgroup are shown. Colors are arbitrary and are used only to

dy, calculated using logistic regression pseudo-R2.
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A multivariable predictor of CPI response
Given the complexity of the CPI biomarker landscape, we next

explored if biomarkers could be combined and converted into

a single score predicting the overall likelihood of CPI response

with improved accuracy. For this analysis, we started by

exploring the importance of predictive features in the largest

training cohort of matched exome and transcriptome data for

each tumor type: urothelial (n = 215; Mariathasan et al., 2018),

head and neck (n = 106; Cristescu et al., 2018), melanoma (n =

89; Cristescu et al., 2018), and renal (n = 44; McDermott et al.,

2018) (total across these four cohorts, n = 454). Themultivariable

model was trained using all biomarkers achieving overall signif-

icance in the Figure 2A meta-analysis (final column [11 total]),

validation cohort results), namely clonal TMB, indel TMB,

NMD-escape TMB, tobacco signature, UV signature, APOBEC

signature, sex, T cell inflamed GEP signature, and gene expres-

sion values for CD274 (PD-L1), CD8A, and CXCL9. TMB was

used as a univariable benchmark comparison measure, due to

it’s US Food and Drug Administration (FDA) approval. We utilized

a machine learning algorithm, XGBoost (see STAR methods), to

construct a multivariable predictive model for each cancer type

(using the 11 features described above), which demonstrated

some subtle differences by cancer type (e.g., the APOBEC

signature proportion was highly ranked in urothelial carcinoma

and the UV signature proportion in melanoma) (Figure 3A). How-

ever, themodels also displayed strong evidence of similarity. For

example, clonal TMB and CXCL9 expression were both ranked

as the top two in multiple models (Figure 3A). Hence, a final com-

bined pan-cancer model was trained using all CPI1000+ sam-

ples (n = 1,008) based on the set of 11 biomarkers listed above

(Figure 3B), with feature importance scores as displayed in

(Figure 3C).

In accordance with diagnostic accuracy best-practice stan-

dards, we tested the final parameterized multivariable predictor

in three independent cohorts of test samples not used in the

model training steps and not in the CPI1000+ cohort (test co-

horts were selected based on defined criteria; see STAR

methods). We calculated area under the receiver operating char-

acteristic curve (AUC) values for the multivariable predictive

model and benchmarked these to a TMB-only model for com-

parison purposes. Test cohort 1 was taken from KEYNOTE-

028, a set of samples from Cristescu et al. (2018) (n = 76), which

was selected as a test cohort due to its set of pan-cancer ‘‘other

tumor type’’ mix of patients. The multivariable predictor attained

an AUC value of 0.86, significantly better than the TMB AUC of

0.68 (p = 0.0049, DeLong’s test for comparison of AUCs; Fig-

ure 3D). Test cohort 2 was obtained from a recently published

cohort from University Hospital Essen of melanoma samples

(Liu et al., 2019) (n = 121), and similarly, a significantly better per-

formance was observed for the multivariable model (AUC = 0.66)

compared to the TMB AUC of 0.58 (p = 0.025, DeLong’s test;
Figure 3. A multivariable predictor of CPI response outperforms TMB

(A) Feature importance scores from XGBoost for the multivariable model, corres

(B) Design, samples included, and features utilized in the final model training.

(C) The top five feature importance scores from the final pan-cancer model.

(D) ROC curves and AUC values for themultivariable predictor benchmarked to TM

in any of the model training steps). p values report the significance of improved
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Figure 3D). Finally, test cohort 3 consisted of non-small cell

lung cancer (NSCLC) samples (n = 144; obtained from Shim

et al., 2020), and again, a significantly better performance was

observed for the multivariable model (AUC = 0.70) compared

to TMB (AUC = 0.62) (p = 0.047, DeLong’s test; Figure 3D) in

the NSCLC samples. Thus, in summary, a pan-cancer multivari-

able model trained on n = 1,008 samples was found to signifi-

cantly outperform TMB as a predictor of CPI response across

three independent test cohorts, totaling �350 samples. Lastly,

we assessed how a simpler two-parameter biomarker would

perform utilizing the top biomarker from the sources of antigen

and immune infiltration categories, namely clonal TMB and

CXCL9 expression. The two-parameter biomarker attained the

following AUC values in each test cohort: test cohort 1 AUC =

0.79 (for reference, TMB AUC = 0.68 and full multivariable model

AUC = 0.86), test cohort 2 AUC = 0.63 (for reference, TMBAUC =

0.58 and full multivariable model AUC = 0.66), and test cohort 3

AUC = 0.72 (for reference, TMB AUC = 0.62 and full multivariable

model AUC= 0.70) (Table S2). Overall, while not scoring as highly

as the full 11-marker model, we note that a two-marker model

may have potential utility as a simplifed alternative, which is su-

perior to TMB alone.

Mutational processes associated with CPI response
Acknowledging that the current set of published biomarkers pro-

vides only a partial explanation of CPI response, we next under-

took discovery analysis to search for additional predictors of

response in the CPI1000+ cohort. Given the importance of

TMB from the literature search, we started by assessing for evi-

dence of mutational processes associated with treatment

outcome. All samples in the CPI1000+ cohort withR50 somatic

mutations (n = 774) were analyzed to calculate the proportion of

mutations in a given sample attributable to each signature. The

complete set of COSMIC mutational signatures (v2) (Alexandrov

et al., 2015) was utilized. For each signature, we tested for asso-

ciation between the proportion of mutations fitting that signature

and CPI response. To avoid any confounding bias due to

different response rates across cancer types, all cohorts were

analyzed individually. For example, UV signature mutations

were compared within each melanoma cohort (comparing

more or less sun damage within melanoma patients), and then

study-level results were combined only via meta-analysis. Five

out of 20 mutational processes were found to be significant:

signature 1A (aging, OR = 0.65 [0.53–0.80], p = 4.5 3 10�5),

signature 4 (tobacco, OR = 1.39 [1.02–1.88], p = 3.5 3 10�2),

signature 7 (UV, OR = 1.34 [1.12–1.60], p = 1.23 10�3), signature

10 (POLE, OR = 1.35 [1.11–1.66], p = 3.4 3 10�3), and signature

2+13 (APOBEC, OR = 1.39 [1.09–1.76], p = 8.1 3 10�3) (Fig-

ure 4A). These associations remained significant after correction

for total mutation count (i.e., TMB), suggesting that clonality and

mutation quality characteristics are important. Several of these
ponding to 1,000 Monte Carlo sampling rounds.

B, as a univariable comparator, in the three independent test cohorts (not used

performance for the multivariable versus TMB model using DeLong’s test.
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associations have also been reported by others, including to-

bacco (Anagnostou et al., 2020), APOBEC (Chapuy et al.,

2019), and UV (Miao et al., 2018; Trucco et al., 2019). All of the

signatures (except 1A, aging) were associated with a signifi-

cantly improved chance of CPI response (Figure 4A). Next, we

sought to identify properties of these mutational processes

that may lead to more immunogenic epitopes. Interestingly, we

noted a strong association between signature 4 (tobacco)/signa-

ture 7 (UV) mutations and dinucleotide variant (DNV) count.

DNVs were particularly enriched in melanoma, correlating

strongly with signature 7 (UV) mutation proportion (rho = 0.65,

p < 2.2 3 10�16, Figure 4B) and significantly associated with

CPI response (Figure S2B). Up to 10% of UV mutations are

known to be CC > TT changes (Brash, 2015). Dinucleotide

changes have two unique properties compared to single-nucle-

otide variants (SNVs): (1) where they straddle two codons, a dou-

ble amino acid change can occur; and (2) in cases where both

nucleotide changes are in the same codon, a more radical

change in amino acid properties can result. While the first prop-

erty is of obvious immunogenic relevance, we note only a small

minority of DNVs produce a 2-amino-acid mutation (3.5%

[95% CI, 3.1%–4.0%]), which in absolute number equates on

average to�0.2 suchmutations per tumor. However, the second

property is of likely broader relevance, with DNVs being associ-

ated with a wider repertoire of amino acid change. Specifically,

for SNV mutations, a total of only 150 unique reference to alter-

native amino acid change combinations were observed,

whereas DNVs generated 250 different unique reference to alter-

native change combinations (p = 4.7 3 10�13, Figure 4C). Many

of the amino acid changes observed in the DNV group, such as

CCT codon (p = proline) change to TTT codon (F = phenylala-

nine), are impossible with only a single nucleotide change (Fig-

ure 4C). As such, DNVs were found to associate with a higher

proportion of radical versus conservative amino acid substitu-

tions (p < 2.2 3 10�16, Figure 4C), as well as a greater change

in Grantham distance (p < 2.2 3 10�16, Figure 4D). Importantly,

DNV changes were also associated with a larger increase in hy-

drophobicity compared to SNVs (p < 2.2 3 10�16, Figure 4D), a

feature known to enhance peptide immunogenicity (Chowell

et al., 2015). Indeed, we obtained functional data from mela-

noma/gastric cancer patient tumor-infiltrating lymphocyte (TIL)

samples, which were screened for reactivity against neoantigen

peptides (Chudley et al., 2014; Gros et al., 2016; Tran et al.,

2015), and found that T cell reactive epitopes had a significantly

higher hydrophobicity score compared to nonreactive epitopes
Figure 4. Mutational processes associated with CPI response

(A) Forest plot of each mutation signature and its association with CPI response,

analysis (hence the results are not biased by mixing histology types).

(B) Proportion of signature 7 (UV) mutations (left) and the number of dinucleotide v

shows the correlation between signature 7 proportion and DNV count. p value a

(C) Grid of substitutions from the reference amino acid (rows) to the mutated amin

count of each observed ref > alt change in the cohort, shown on a log10 scale. Th

data for DNVs. The first barplot (middle) then quantifies the number of unique ch

portion of amino acid changes resulting in a radical amino acid change (i.e., Gra

(Grantham distance < 100), with p-values derived from Fisher’s exact test.

(D) Grantham distances for SNV and DNV changes (left boxplot), and change in

Whitney U test.

(E) Hydrophobicity scores of neoantigen epitopes undergoing T cell reactivity sc
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(p = 0.04; Figure 4E). We note the nature of this analysis is hy-

pothesis generating, and further functional investigation of

DNVs will be of significant interest.

Loss of 9q34.3 sensitizes tumors to CPI response
Next, we undertook a genome-wide somatic copy-number anal-

ysis in the CPI1000+ sample set to search for genomic loci asso-

ciated with CPI response. The reasoning for this is that although

the total burden of SCNAs was not found to predict response

(Figure 2A), changes to specific loci may drive resistance or

sensitization to therapy. The frequency of somatic copy-number

gains and losses was traced across the genome for CPI re-

sponders (CR/PR) (n = 257) and nonresponders (SD/PD) (n =

731), using all samples with available QC validated exome

copy-number alteration data (Figure 5A) (CPI1000+ samples,

test cohort 1 and other available samples; see STAR methods),

and frequency differences were compared per cytoband (Fig-

ure 5B). The most significantly differential cytoband was 9q34,

which was lost in responders with a frequency of 44.4%

compared to nonresponders with 30.5% (p = 6.9 3 10�5, q =

0.02, CPI1000+ cohort) (Figure 5B). Hence, loss of 9q34 was

associated with sensitization to CPI therapy. Fine mapping of

this locus revealed a sharp peak in the frequency difference at

9q34.3, directly overlapping the gene TRAF2 (Figure 5C).

TRAF2 has been independently identified in recent functional

work (Vredevoogd et al., 2019) as the top hit in a genome-wide

CRISPR screen for genes, that when knocked out, sensitize tu-

mor cells to T cell-mediated elimination. Mechanistically,

TRAF2 loss was shown to enhance CPI efficacy by lowering

the tumor necrosis factor (TNF) cytotoxicity threshold and

increasing T cell-mediated tumor cell apoptosis (Vredevoogd

et al., 2019). TRAF2 loss was found to be significantly enriched

in responders in the overall pan-cancer cohort (p = 1.8 3

10�4), as well as urothelial cancer (p = 8.0 3 10�3), melanoma

(p = 3.23 10�2), and borderline nonsignificance in the ‘‘other tu-

mor types’’ cohort (p = 7.0 3 10�2) as individual cohorts (Fig-

ure 5D). We note the majority of 9q34 losses were found to be

single-allele events (i.e., not homozygous deletions); however,

supporting a potential functional impact from single-allele loss,

we analyzed human germline data on n = 125,748 individuals

from the gnomAD study (Karczewski et al., 2020) and found

TRAF2 to have a very high probability of being haploinsufficient

(p = 0.99979, probability of haploinsufficiency [pLI] score) (Fig-

ure 5E). In addition, we obtained drug screen data from the ‘‘Ge-

nomics of Drug Sensitivity in Cancer’’ database (Yang et al.,
with odds ratio values shown on the y-axis, and p-values derived from meta-

ariants (DNVs) per tumor (middle), split by histology type. The panel on the right

nd correlation coefficient are from Spearman’s rank test.

o acid (columns). The heatmap is colored from low to high, based on the simple

e first grid (left) shows the data for SNVs, and the second grid (middle) shows

anges observed for SNVs and DNVs, and the second barplot shows the pro-

ntham distance R 100) compared to those resulting in a conservative change

hydrophobicity score in the ridge plot (right), with p-value derived from Mann-

reening, with p-value derived from Mann-Whitney U test.
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Figure 5. Somatic copy-number alteration (SCNA) profile of CPI responders versus nonresponders

(A) Frequency of somatic copy-number gain (top) and loss (bottom) across the genome for CPI responders (‘‘CR/PR’’) versus nonresponders (‘‘SD/PD’’).

(B) Cytobands with significantly different loss or gain frequencies in responders versus nonresponders,with p-value derived from Fisher’s exact test, and q values

from FDR correction..

(C) Fine mapping of the 9q34 locus to identify the peak of differential loss frequency between groups.

(D) TRAF2-loss percentage frequencies for cohorts with a significant difference between responders and nonresponders, with p-value derived from Fisher’s

exact test.

(E) Probability of haploinsufficiency (pLI) scores from the gnomAD/ExAC consortium data (n = 125,748 germline human samples).
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2013) for two TNF pathway compounds that inhibit TRAF2 bind-

ing partners, BIRC2/BIRC3 (IAP-5620) and BIRC2 (AZD5582).

Cell lines with heterozygous TRAF2mutation (n = 32) were signif-

icantly more sensitive to IAP-5620 treatment than wild-type (n =

685) cell lines (Figure S3A; p = 2.53 10�2). Within the CPI1000+

cohort, we also observe higher rates of antigen-presentation-

pathway defects, (as defined in Rosenthal et al., 2019) in 9q34

(TRAF2)-loss tumors compared to wild-type, suggesting height-
ened immune pressure in TRAF2-loss samples (Figure S3B; p =

1.2 3 10�8).

The high frequency of 9q34 loss raises an important evolu-

tionary question as to why tumors would be selected with a

potentially disadvantageous event. Detailed inspection of the

9q34-loss events revealed that the majority of cases were in

fact whole-chromosome 9 losses, and analysis of independent

TCGA data for the same seven histologies considered in the
Cell 184, 596–614, February 4, 2021 605
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CPI1000+ cohort revealed that loss of chromosome 9 is themost

frequent whole-chromosome (p+q)-loss event (Figure S3C).

Chromosome 9 contains a number of tumor suppressor genes,

with loss of CDKN2A (9p21.3) in particular being under strong

positive selection and associated with aggressive tumor growth

in multiple tumor types (Smith and Sheltzer, 2018; Turajlic et al.,

2018; Watkins et al., 2020). By contrast, loss of TRAF2 is not

documented as a cancer-driver event (e.g., not listed in the Can-

cer Gene Census; https://cancer.sanger.ac.uk/census), and

hence, loss of this gene may be a passenger event. Following

CPI treatment, the potentially deleterious impact of TRAF2 loss

on tumor cell fitness is revealed, where it has potential to

enhance anti-tumor T cell activity (Vredevoogd et al., 2019).

Hence, these data suggest an evolutionary model where loss

of whole chromosome 9 is selected as a driver event early in tu-

mor evolution (e.g., due to CDKN2A), but then later leads to

collateral sensitivity (Zhao et al., 2016) to immunotherapy,

possibly due to 9q34 (TRAF2) loss. We note chromosome

9q34 loss was also identified in a recent RCC anti-PD-1 study

(Braun et al., 2020), as associated with increased immune cell

infiltration. However, the histology differences between RCC

and the pan-cancer cohort presented here should be noted,

and hence, these findings may not be linked to a common bio-

logical cause. We acknowledge our findings here of 9q34

(TRAF2) loss being associated with CPI sensitization are explor-

atory in nature and have not been externally validated. Lastly,

while primarily powered for pan-cancer copy-number analysis,

we also repeated the above copy-number analysis per tumor/

drug type (as per Figure 2B) and identified a number of candidate

cytobands significantly associated with CPI response in individ-

ual subcohorts (q < 0.1; Figure S4).

Focal amplification of CCND1 associates with CPI
resistance
Next, we considered focal (<3Mb) (Krijgsman et al., 2014) ampli-

fications (defined as copy number R 5) (Fontanilles et al., 2020)

and homozygous deletions (copy number = 0) in oncogenes and

tumor suppressor genes respectively, to understand if these

events are associated with CPI response. The most significant

association was found to be significantly lower rates of CPI

response in tumors with CCND1 amplification (response rate =

16.3%) compared to wild-type (26.6%) (p = 4.8 3 10�2; Fig-

ure 6A). Similarly to TRAF2, prior functional evidence supports

a role for CCND1 in determining CPI response (Zhang et al.,

2018). Specifically, Zhang et al. (2018) demonstrated that PD-

L1 protein abundance fluctuates during cell-cycle progression

and that Cyclin D-CDK4 negatively regulates PD-L1 protein sta-

bility. Urothelial carcinoma had the highest number of CCND1

amplified tumors (Figure 6B); accordingly we assessed mRNA

levels in this histology type and observed significantly higher

levels of CCND1 expression in urothelial cancer nonresponders

(SD/PD) versus responders (PR/CR) (p = 1.53 10�2) (Figure 6C).

To validate the effect of CCND1 amplification in an independent

cohort, we conducted overall survival analysis in n = 214 urothe-

lial cancer patients treated with CPI in the MSK1600 cohort and

observed a strong effect size whereby CCND1 amplification was

associated with significantly shorter overall survival (hazard ratio

[HR] = 3.6 [1.9–7.0], p = 1.33 10�4)(Figure 6D). As negative con-
606 Cell 184, 596–614, February 4, 2021
trol, we observed no overall survival difference in MSK-IMPACT

urothelial cancer patients not treated with CPI, controlling for the

possibility thatCCND1-amplified tumors have a generally poorer

prognosis irrespective of CPI treatment (Figure 6E). Finally, we

assessed the role of CCND1 amplification in a pan-cancer

context in MSK1600 and found a significant association with

reduced overall survival in CPI-treated patients (HR = 2.0 [1.4–

2.9], p = 3.3 3 10�4) (Figure 6F), but not the non-CPI-treated

MSK cohort (p = n.s., which is a larger cohort with arguably

greater power) (Figure 6G). The data suggest a predictive asso-

ciation between CCND1 amplification and CPI resistance, rather

than prognostic; however, formal treatment3 genotype interac-

tion analysis will be required to confirm this (we note the two

MSK cohorts, CPI and non-CPI, had considerably different

follow-up times and could not be reliably combined together

for interaction analysis; we further note the sensitivity to call sin-

gle-allele SCNA events was found to be reduced in the MSK

panel data, which was not encountered for validation of

CCND1 amplification events which have multiple copy gains;

therefore, we could not reliably address 9q34 (TRAF2) losses

in this cohort).

Single-cell RNA-seq identifies CXCL13 and CCR5

The identification of clonal mutation burden as the biomarker

with strongest effect size in the CPI1000+ cohort implicates a

central role for T cell responses targeting clonal neoantigens dur-

ing immunotherapy. To examine whether genes expressed by

clonal neoantigen-reactive T cells could help further elucidate

the drivers of CPI response, we performed single-cell RNA

sequencing (RNA-seq) on ex vivo CD8 TILs from a treatment-

naive NSCLC patient (L011) sorted according to positivity for a

clonal neoantigen (MTFR2) multimer (as previously described;

McGranahan et al., 2016). 846 genes were significantly upregu-

lated in multimer-positive (Mult+) cells relative to multimer-nega-

tive (Mult�) cells from the same region (q < 0.05; Figure 7A),

including major histocompatibility complex class II (MHC class

II) presentation machinery (e.g., HLA-DOA and HLA-DMB) and

glycoprotein enzymes upregulated during T cell activation

(e.g., CD38), trafficking (CCR5), and T cell dysfunction

(CXCL13, IL-10, IL27RA, FAS, and MYO7A) (Figure 7A). Of the

genes significantly enriched in Mult+ cells (>2-fold upregulation

and q < 0.05), 101 were also significantly more highly expressed

in responders (‘‘CR/PR’’) versus nonresponders (‘‘SD/PD’’) in the

CPI1000+ cohort dataset (p < 0.05) (Figure 7B). CXCL13 ex-

hibited the most marked selective expressions in CPI re-

sponders (Figure 7B) and was the second highest differentially

expressed gene in Mult+ cells (log2 fold change [FC] = 13.4

versus Mult�, q = 0.0047) (Figures 7A–7C). We note this result

validates recent work from Thommen et al. (2018), and taken

together, highlights that CXCL13 expression may be a feature

of clonal neoantigen-reactive CD8 TILs that associates with

CPI outcome in a pan-cancer cohort. The gene next most highly

expressed in responders was CCR5, a chemokine receptor cen-

tral to T cell migration within draining lymph nodes and tumor tis-

sues, which was also significantly higher in Mult+ cells (log2 FC =

8.9 versus Mult�, q = 0.002) (Figures 7A–7C). To control for the

possibility that in the CPI1000+ patient data high CXCL13/

CCR5 expression merely reflects higher CD8 infiltration, we

https://cancer.sanger.ac.uk/census
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Figure 6. Focal amplification and deletion profile of CPI responders versus nonresponders

(A) CPI response rate (% ‘‘CR/PR’’) in patientswith focal amplification (defined as copy numberR 5) or homozygous deletion (copy number = 0) compared towild-

type (nonamplified/deleted) tumors. The analysis was conducted for all oncogenes/tumor suppressor genes with greater than 5% amplification/deletion fre-

quency, and p-values were derived from Fisher’s exact test.

(B) Counts of CCND1 amplification by histology.

(C) mRNA expression for CCND1 in responders versus nonresponders from the Mariathasan et al. urothelial cancer cohort, with p-value derived from Mann-

Whitney U test.

(D) Overall survival analysis in MSK-IMPACT urothelial cancer CPI-treated patients for CCND1-amplified versus wild-type tumor groups.

(E) Overall survival analysis in MSK-IMPACT urothelial cancer non-CPI-treated patients for CCND1-amplified versus wild-type tumor groups.

(F) Overall survival analysis in MSK-IMPACT pan-cancer CPI-treated patients for CCND1-amplified versus wild-type tumor groups.

(G) Overall survival analysis in MSK-IMPACT pan-cancer non-CPI-treated patients for CCND1-amplified versus wild-type tumor groups.
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tested a logistic regression model with CD8 only compared to

CD8 + CXCL13 + CCR5 and found the latter model to be signif-

icantly better (p = 0.05, likelihood ratio test). Other notable genes

significantly upregulated in Mult+ cells and selectively expressed

by responders in the CPI1000+ cohort included co-stimulatory

molecules targeted by immunotherapeutic antibodies under

clinical investigation (ICOS), negative regulators of TCR signaling

or cytokine production (SLA2, IKZF3), loci associated with IFN

activity and predisposition to autoimmunity (NCF1, EPSTI1,

and PARP9) or allograft rejection (GBP4), and regulators of

type I IFN signaling (FBX06) (Figure 7B). These data suggest

that expression of molecular circuits related to chemotaxis, T

cell activation, IFN signaling, and T cell exhaustion may help to

identify patients that will benefit from CPI and allude to potential

immunological networks involving neoantigen reactive T cells

that may confer sensitivity of tumors to immunotherapy.

DISCUSSION

Here, we present meta-analysis of data across >1,000 patients

to assess the reproducibility of CPI response predictors across
seven different tumor types. Our combined pan-cancer

approach is supported by the common role for tumor antigen

recognition and consequent initiation of T cell effector responses

that underlie the activity of CPI in a breadth of clinical and exper-

imental models, irrespective of tumor type (Havel et al., 2019).

Although clonal TMB and TMB were strongly correlated, clonal

TMB emerged as the predictor with strongest effect size and

subclonal TMB being nonsignificant. In terms of markers of

immune infiltration, CXCL9 expression had the highest ranking

effect size, outperforming CD8 effector and T cell inflamed sig-

natures. In addition to subclonal TMB, a number of other putative

predictors also failed to show consistent evidence of association

with response. It is important to note the failure of individual

markers to reach statistical significance across all seven tumor

types does not rule out their importance in specific histology or

drug contexts, nor does it undermine their potential biological

relevance. A notable observation from this study is the relative

homogeneity in CPI biomarker associations across histologies,

as >80% of the biomarkers significant in individual histologies

(Figure 2B) were also significant at the pan-cancer level. Indeed,

histology-specific biomarkers were rare (less than five examples
Cell 184, 596–614, February 4, 2021 607
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Figure 7. CD8+ neoantigen-reactive single-cell RNA-seq and CPI1000+ cohort analysis

(A) Single-cell RNA sequencing (RNA-seq) data from neoantigen multimer negative versus positive CD8+ TILs. The top plot shows the sorting of multimer positive

versus negative T cells, and the bottom plot shows differential gene expression analysis between multimer-positive versus multimer-negative cells, with log2 fold

change (FC) shown on the x axis and�log10 value on the y axis. Significant genes with > 2 FC upregulation (log2(FC) > 1) and false discovery rate (FDR) < 0.05 are

shown blue.

(B) The same FC upregulation values from (A) on the y axis and then overlaid on the x axis is upregulation scores from the CPI1000+ cohort (log2[FC] values for

responders ‘‘PR/CR’’ versus nonresponders ‘‘SD/PD’’). The panel only shows genes significantly upregulated in both experiments.

(C) Patient-level mRNA data for the two most strongly unregulated genes (CXCL13 and CCR5) from (B) from the CPI1000+ cohort, with p-value derived from

Mann-Whitney U test..

ll
OPEN ACCESS Article
identified). However, we note the statistical power in individual

histologies is reduced, and as sample sizes increase, additional

histology-specific associations may emerge. Adding further

complexity, we identified significant differences in effect size be-

tween histologies, with TMB, for example, having significantly

weaker predictive utility in melanoma as compared to urothelial

carcinoma.

To improve the clinical utility of biomarker stratification in

immunotherapy-treated patients, progress is required in two

areas: (1) the array of biomarkers identified in a research context

needs to be validated and simplified into a single clinical grade

test, and (2) evidence is needed to validate that sufficiently
608 Cell 184, 596–614, February 4, 2021
high AUC values can be attained with such a test and that this

provides useful information to support clinical decision-making.

In this context, we propose a multivariable model trained on

>1,000 samples and validated in three independent test cohorts,

which attains an AUC value of 0.86 in a pan-tumor independent

test cohort, superior to TMB alone (0.68). In the short term, the

most promising translational strategy is likely to be a panel or

exome sequencing approach combined with a targeted gene

expression quantification assay. Such a combination would

allow the critical measures of antigenicity (e.g., TMB, clonal

TMB, and indel TMB) and immune infiltration (e.g., CXCL9,

CD8A, CD274, and CXCL13) to be captured in a cost-effective
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scalablemanner. Regarding antigenicity, our data would support

the utility of exome sequencing over panel-based approaches,

given the importance of mutational signatures such as APOBEC,

Tobacco, and UV. Hence, a beneficial path forward would be for

a standardized assay to be established, combining exome

sequencing and targeted gene expression data (e.g., Nano-

String) to give a multivariable predictive score of CPI response.

An important question is whether predictive models will need

to be customized for each cancer/treatment type or if a pan-can-

cer approach is sufficient. We note that with current sample

sizes, the vast majority of biomarkers that were significant in

one cancer type also achieved pan-cancer significance. Also,

without multiple well-powered cohorts in each specific histol-

ogy/drug combination, it is difficult to differentiate between

study-specific phenomena and genuine tumor/drug-type-spe-

cific biology. Thus, until datasets mature in size to thousands

of samples per specific combination, a pan-cancer predictive

model may provide the most reliable utility. Clearly, any predic-

tive test would require further validation in either a prospective

study or additional large-scale retrospective cohorts to assess

if the negative and positive predictive values can indeed exceed

the threshold of clinical utility. One final observation from this

study is the distinction between associations of biological/mech-

anistic relevance, compared to reproducible clinical grade bio-

markers. Hence, caution should be applied in translating

research findings into clinical practice too rapidly.

In the longer term, further discovery work is required to build a

more complete understanding of CPI response, and in this

context, our analysis shows that previously published bio-

markers explain only �0.6 of the variance in CPI outcome. To

address this gap, we conducted additional discovery analysis,

identifying a number of other pan-cancer factors influencing

CPI response, namely 9q34.3 (TRAF2) loss, CCND1 amplifica-

tion, DNV count, and expression of CXCL13. 9q34.3 (TRAF2)

loss was found to occur via the evolutionary phenomenon of

collateral sensitivity (Zhao et al., 2016), where whole-chromo-

some 9 loss creates a strong pro-tumor driver effect in un-

treated patients, which then switches to vulnerability under

CPI therapy. From a clinical perspective, the observation of

CCND1 amplification as a cause of CPI resistance may offer po-

tential therapeutic relevance, either as genetically defined sub-

group unlikely to benefit from anti-PD-1/PD-L1 treatment or as a

population suitable for combined CPI/anti-CDK4/6 therapy. We

note the prognostic role of CCND1 outside of immunotherapy

response is complex and well studied (Watkins et al., 2020),

with some reports highlighting reduced survival in CCND1-

amplified tumors (Mahdey et al., 2011; Seiler et al., 2014; Vı́zke-

leti et al., 2012; Wang et al., 2012), others reporting the opposite

(Li et al., 2020; Ren et al., 2014), and a recent large study finding

no association (Smith and Sheltzer, 2018). Analysis of muta-

tional processes revealed a potential immunogenic role for

DNVs through generation of more radical amino acid substitu-

tions and a shift toward more hydrophobic epitopes, a known

driver of immune response. Lastly, we show with single-cell

RNA-seq that CXCL13, a marker of exhausted T cells in multiple

human cancers, is preferntially expressed in both T cells reac-

tive to a clonal neoantigen and responders in the CPI1000+

cohort. This provides independent validation of prior work by
Thommen et al. (2018) and suggests that neoantigen reactivity

is coupled to a CXCL13-secreting ‘‘exhausted’’ phenotype,

possibly induced by chronic TCR signaling, as we have recently

proposed occurs in NSCLC (Ghorani et al., 2020). If we combine

the insights from published biomarker analysis with discovery

results, a number of summary observations emerge. Starting

within the tumor genome, we find CPI response to be under-

pinned by a high burden of clonal mutations enriched for immu-

nogenic characteristics such as APOBEC or dinucleotide signa-

tures. Armed with this rich baseline level of antigenicity,

elevated CXCL9 expression then supports ongoing recruitment

of cytotoxic CD8+ T cells. The selective expression of CCR5 and

CXCL13 in neoantigen-specific T cells further suggests that a

key feature of CPI-responsiveness is the ability to sustain

ongoing priming and recruitment of tumour reactive T cells sup-

ported by CXCR5+ lymphocytes, which may include T and B

cells (Helmink et al., 2020). This model can then be perturbed

by tumor-intrinsic alterations, promoting either resistance

(e.g., CCND1 amplification) or sensitization (e.g., 9q34

[TRAF2] loss) to treatment. While simplified in nature, these re-

sults serve to highlight recurrent features of CPI response

across multiple cancer types.

Regarding study limitations, we acknowledge that the

CPI1000+ cohort is made up from a diverse set of underlying

previously published studies; however, the bioinformatics pro-

cessing and clinical classifications have been fully harmonized.

Second, we note that IHC PD-L1 data are only available in a mi-

nority of cohorts, and hence, we have estimated expression at

the mRNA rather than protein level in the CPI1000+ cohort.

Lastly, we note the single-tumor-region nature of the CPI1000+

dataset means that subclonal mutation counts are underesti-

mated, impairing our ability to observe an association (or lack

thereof) between subclonal mutation burden and response. In

summary, here, we build and utilize a large cohort of CPI-treated

patients that can be extended as new data emerge, with whole-

exome sequencing and transcriptomic data, to enable a greater

understanding of the determinants of treatment response. As

biomarker datasets continue to grow in size, there is tangible op-

portunity to build a more complete understanding of CPI

response, which holds the promise of augmenting immune sur-

veillance and disease control in molecularly defined patient

cohorts.
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Bouchard-Côté, A., and Shah, S.P. (2014). PyClone: statistical inference of

clonal population structure in cancer. Nat. Methods 11, 396–398.

Samstein, R.M., Lee, C.H., Shoushtari, A.N., Hellmann, M.D., Shen, R., Janji-

gian, Y.Y., Barron, D.A., Zehir, A., Jordan, E.J., Omuro, A., et al. (2019). Tumor

mutational load predicts survival after immunotherapy across multiple cancer

types. Nat. Genet. 51, 202–206.
Cell 184, 596–614, February 4, 2021 613

http://refhub.elsevier.com/S0092-8674(21)00002-7/sref53
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref53
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref54
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref54
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref54
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref55
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref55
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref55
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref56
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref56
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref57
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref57
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref57
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref57
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref58
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref58
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref58
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref59
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref59
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref59
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref59
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref60
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref60
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref60
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref60
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref61
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref61
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref61
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref62
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref62
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref62
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref62
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref63
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref63
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref63
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref63
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref63
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref64
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref64
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref64
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref64
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref65
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref65
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref65
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref65
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref66
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref66
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref66
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref66
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref67
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref67
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref67
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref67
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref67
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref67
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref68
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref68
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref68
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref68
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref69
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref69
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref69
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref69
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref70
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref70
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref70
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref70
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref71
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref71
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref71
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref71
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref72
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref72
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref72
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref72
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref73
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref73
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref73
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref74
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref74
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref74
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref75
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref75
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref75
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref76
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref76
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref76
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref76
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref77
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref77
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref77
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref77
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref78
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref78
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref78
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref78
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref79
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref79
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref79
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref79
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref80
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref80
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref80
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref81
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref81
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref81
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref81
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref82
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref82
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref82
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref83
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref83
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref83
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref83
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref84
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref84
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref84
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref84
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref84
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref85
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref85
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref85
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref86
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref86
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref86
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref86


ll
OPEN ACCESS Article
Seiler, R., Thalmann, G.N., Rotzer, D., Perren, A., and Fleischmann, A. (2014).

CCND1/CyclinD1 status in metastasizing bladder cancer: a prognosticator

and predictor of chemotherapeutic response. Mod. Pathol. 27, 87–95.

Shim, J.H., Kim, H.S., Cha, H., Kim, S., Kim, T.M., Anagnostou, V., Choi, Y.L.,

Jung, H.A., Sun, J.M., Ahn, J.S., et al. (2020). HLA-corrected tumor mutation

burden and homologous recombination deficiency for the prediction of

response to PD-(L)1 blockade in advanced non-small-cell lung cancer pa-

tients. Ann. Oncol. 31, 902–911.

Shin, D.S., Zaretsky, J.M., Escuin-Ordinas, H., Garcia-Diaz, A., Hu-Lieskovan,

S., Kalbasi, A., Grasso, C.S., Hugo, W., Sandoval, S., Torrejon, D.Y., et al.

(2017). Primary resistance to PD-1 blockade mediated by JAK1/2 mutations.

Cancer Discov. 7, 188–201.

Shrestha, R., Nabavi, N., Lin, Y.Y., Mo, F., Anderson, S., Volik, S., Adomat,

H.H., Lin, D., Xue, H., Dong, X., et al. (2019). BAP1 haploinsufficiency predicts

a distinct immunogenic class of malignant peritoneal mesothelioma. Genome

Med. 11, 8.

Shukla, S.A., Rooney, M.S., Rajasagi, M., Tiao, G., Dixon, P.M., Lawrence,

M.S., Stevens, J., Lane, W.J., Dellagatta, J.L., Steelman, S., et al. (2015).

Comprehensive analysis of cancer-associated somatic mutations in class I

HLA genes. Nat. Biotechnol. 33, 1152–1158.

Smith, J.C., and Sheltzer, J.M. (2018). Systematic identification of mutations

and copy number alterations associated with cancer patient prognosis. eLife

7, e39217.

Snyder, A., Makarov, V., Merghoub, T., Yuan, J., Zaretsky, J.M., Desrichard,

A., Walsh, L.A., Postow, M.A., Wong, P., Ho, T.S., et al. (2014). Genetic basis

for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371,

2189–2199.

Snyder, A., Nathanson, T., Funt, S.A., Ahuja, A., Buros Novik, J., Hellmann,

M.D., Chang, E., Aksoy, B.A., Al-Ahmadie, H., Yusko, E., et al. (2017). Contri-

bution of systemic and somatic factors to clinical response and resistance to

PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLoS

Med. 14, e1002309.

Thommen, D.S., Koelzer, V.H., Herzig, P., Roller, A., Trefny, M., Dimeloe, S.,

Kiialainen, A., Hanhart, J., Schill, C., Hess, C., et al. (2018). A transcriptionally

and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in

non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24,

994–1004.

Tokunaga, R., Nakagawa, S., Sakamoto, Y., Nakamura, K., Naseem,M., Izumi,

D., Kosumi, K., Taki, K., Higashi, T., Miyata, T., et al. (2020). 12-Chemokine

signature, a predictor of tumor recurrence in colorectal cancer. International

Journal of Cancer 147, 532–541.

Tran, E., Ahmadzadeh, M., Lu, Y.C., Gros, A., Turcotte, S., Robbins, P.F., Gart-

ner, J.J., Zheng, Z., Li, Y.F., Ray, S., et al. (2015). Immunogenicity of somatic

mutations in human gastrointestinal cancers. Science 350, 1387–1390.

Trefny, M.P., Rothschild, S.I., Uhlenbrock, F., Rieder, D., Kasenda, B., Stanc-

zak, M.A., Berner, F., Kashyap, A.S., Kaiser, M., Herzig, P., et al. (2019). A

variant of a killer cell immunoglobulin-like receptor is associated with resis-

tance to PD-1 blockade in lung cancer. Clin. Cancer Res. 25, 3026–3034.

Trucco, L.D., Mundra, P.A., Hogan, K., Garcia-Martinez, P., Viros, A., Mandal,

A.K., Macagno, N., Gaudy-Marqueste, C., Allan, D., Baenke, F., et al. (2019).

Ultraviolet radiation-induced DNA damage is prognostic for outcome in mela-

noma. Nat. Med. 25, 221–224.

Tumeh, P.C., Harview, C.L., Yearley, J.H., Shintaku, I.P., Taylor, E.J., Robert,

L., Chmielowski, B., Spasic, M., Henry, G., Ciobanu, V., et al. (2014). PD-1

blockade induces responses by inhibiting adaptive immune resistance. Nature

515, 568–571.

Turajlic, S., Litchfield, K., Xu, H., Rosenthal, R., McGranahan, N., Reading, J.L.,

Wong, Y.N.S., Rowan, A., Kanu, N., Al Bakir, M., et al. (2017). Insertion-and-

deletion-derived tumour-specific neoantigens and the immunogenic pheno-

type: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021.
614 Cell 184, 596–614, February 4, 2021
Turajlic, S., Xu, H., Litchfield, K., Rowan, A., Chambers, T., Lopez, J.I., Nicol,

D., O’Brien, T., Larkin, J., Horswell, S., et al.; PEACE; TRACERx Renal Con-

sortium (2018). Tracking cancer evolution reveals constrained routes tometas-

tases: TRACERx Renal. Cell 173, 581–594.e12.

Van Allen, E.M., Miao, D., Schilling, B., Shukla, S.A., Blank, C., Zimmer, L.,

Sucker, A., Hillen, U., Foppen, M.H.G., Goldinger, S.M., et al. (2015). Genomic

correlates of response to CTLA-4 blockade in metastatic melanoma. Science

350, 207–211.

Van Loo, P., Nordgard, S.H., Lingjærde, O.C., Russnes, H.G., Rye, I.H., Sun,

W., Weigman, V.J., Marynen, P., Zetterberg, A., Naume, B., et al. (2010).

Allele-specific copy number analysis of tumors. Proc. Natl. Acad. Sci. USA

107, 16910–16915.

Vı́zkeleti, L., Ecsedi, S., Rákosy, Z., Orosz, A., Lázár, V., Emri, G., Koroknai, V.,
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ménez-Sánchez, A., Trabish, S., Lee, J.S., et al. (2019). UVB-induced tumor

heterogeneity diminishes immune response in melanoma. Cell 179, 219–

235.e21.

Yang, W., Soares, J., Greninger, P., Edelman, E.J., Lightfoot, H., Forbes, S.,

Bindal, N., Beare, D., Smith, J.A., Thompson, I.R., et al. (2013). Genomics of

Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker dis-

covery in cancer cells. Nucleic Acids Res. 41, D955–D961.

Zhang, J., Bu, X., Wang, H., Zhu, Y., Geng, Y., Nihira, N.T., Tan, Y., Ci,

Y., Wu, F., Dai, X., et al. (2018). Cyclin D-CDK4 kinase destabilizes PD-

L1 via cullin 3-SPOP to control cancer immune surveillance. Nature

553, 91–95.

Zhao, B., Sedlak, J.C., Srinivas, R., Creixell, P., Pritchard, J.R., Tidor, B., Lauf-

fenburger, D.A., and Hemann, M.T. (2016). Exploiting temporal collateral

sensitivity in tumor clonal evolution. Cell 165, 234–246.

http://refhub.elsevier.com/S0092-8674(21)00002-7/sref87
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref87
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref87
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref88
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref88
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref88
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref88
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref88
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref89
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref89
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref89
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref89
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref90
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref90
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref90
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref90
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref91
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref91
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref91
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref91
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref92
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref92
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref92
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref93
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref93
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref93
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref93
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref94
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref94
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref94
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref94
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref94
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref95
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref95
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref95
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref95
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref95
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref95
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref95
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref116
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref116
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref116
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref116
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref96
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref96
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref96
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref97
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref97
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref97
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref97
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref98
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref98
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref98
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref98
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref99
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref99
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref99
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref99
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref100
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref100
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref100
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref100
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref101
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref101
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref101
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref101
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref102
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref102
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref102
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref102
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref103
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref103
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref103
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref103
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref104
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref104
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref104
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref104
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref105
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref105
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref105
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref105
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref105
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref106
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref106
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref106
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref106
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref107
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref107
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref107
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref108
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref108
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref108
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref108
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref109
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref109
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref109
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref109
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref110
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref110
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref110
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref110
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref110
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref110
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref111
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref111
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref111
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref111
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref112
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref112
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref112
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref112
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref113
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref113
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref113
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref113
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref114
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref114
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref114
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref114
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref115
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref115
http://refhub.elsevier.com/S0092-8674(21)00002-7/sref115


ll
OPEN ACCESSArticle
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-human CD3 BV711 Biolegend 300464; RRID: AB_2566036

Mouse anti-human CD4 AF700 Biolegend 344622; RRID: AB_2563150

Mouse anti-human CD8 BV510 Biolegend 301048; RRID: AB_2561942

Live/dead exclusion Alexa Fluor-ef780 ThermoFisher Scientific 65-0865-18

Streptavidin PE Biolegend 405203

Streptavidin APC Biolegend 405207

Chemicals, peptides, and recombinant proteins

BD FACS Aria Fusion Becton Dickinson cat # 656700

C1 Single cell autoprep capture instrument Fluidigm N/A

EVOS FL Auto Imaging System Thermo Fisher Scientific N/A

Bovine serum albumin Sigma-aldrich 9048468

phosphate buffered saline Fisher Scientific cat # 14190

Critical commercial assays

HiSeq 2500 Sequencing System Illumina SY-401-2501

SMARTer v4 Ultra Low RNA Kit Takara Clontech 634892

Qubit dsDNA HS Thermo Fisher Scientific Q32851

C1 Single cell IFC 10-17um diameter Fluidigm 1006041

Nextera XT DNA Sample Preparation kit Illumina FC-121-1030

NextSeq 500 (150bp paired end kits) Illumina SY-415-1001

Software and algorithms

Flowjo for MAC v10.6.2 Becton Dickinson N/A

FacsDIVAv9.0 Becton Dickinson N/A

Burrows-Wheeler Aligner (BWA) v0.7.15 Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

Samtools v1.3.1 Li and Durbin, 2009 http://samtools.sourceforge.net/

Picard 1.81 N/A http://broadinstitute.github.io/picard/

Mutect v1.1.7 Cibulskis et al., 2013 https://software.broadinstitute.org/cancer/

cga/mutect

VarScan v2.4.1 Koboldt et al., 2012 http://varscan.sourceforge.net/

Annovar Wang et al., 2010 http://annovar.openbioinformatics.org/en/

latest/

R package ‘Copynumber’ Nilsen et al., 2012 http://bioconductor.org/packages/release/

bioc/html/copynumber.html

ASCAT Van Loo et al., 2010 https://github.com/

Crick-CancerGenomics/ascat
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Charles

Swanton (Charles.Swanton@crick.ac.uk).

Materials availability
This study did not generate new unique reagents.
Cell 184, 596–614.e1–e7, February 4, 2021 e1

mailto:Charles.Swanton@crick.ac.uk
http://bio-bwa.sourceforge.net/
http://samtools.sourceforge.net/
http://broadinstitute.github.io/picard/
https://software.broadinstitute.org/cancer/cga/mutect
https://software.broadinstitute.org/cancer/cga/mutect
http://varscan.sourceforge.net/
http://annovar.openbioinformatics.org/en/latest/
http://annovar.openbioinformatics.org/en/latest/
http://bioconductor.org/packages/release/bioc/html/copynumber.html
http://bioconductor.org/packages/release/bioc/html/copynumber.html
https://github.com/Crick-CancerGenomics/ascat
https://github.com/Crick-CancerGenomics/ascat


ll
OPEN ACCESS Article
Data and code availability
The code used for this manuscript is available at: https://github.com/kevlitchfield1/CPI1000_paper.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human clinical datasets
The CPI1000+ cohort utilizes raw whole exome and RNA sequencing data from the following studies:

1. Snyder et al. (Snyder et al., 2014), an advanced melanoma anti-CTLA-4 treated cohort.

2. Van Allen et al. (Van Allen et al., 2015), an advanced melanoma anti-CTLA-4 treated cohort.

3. Hugo et al. (Hugo et al., 2016), an advanced melanoma anti-PD-1 treated cohort.

4. Riaz et al. (Riaz et al., 2017), an advanced melanoma anti-PD-1 treated cohort.

5. Cristescu et al. (Cristescu et al., 2018) an advanced melanoma anti-PD-1 treated cohort.

6. Cristescu et al. (Cristescu et al., 2018) an advanced head and neck cancer anti-PD-1 treated cohort.

7. Snyder et al. (Snyder et al., 2017), a metastatic urothelial cancer anti-PD-L1 treated cohort.

8. Mariathasan et al. (Mariathasan et al., 2018), a metastatic urothelial cancer anti-PD-L1 treated cohort.

9. McDermott et al. (McDermott et al., 2018), a metastatic renal cell carcinoma anti-PD-L1 treated cohort.

10. Rizvi et al. (Rizvi et al., 2015), a non-small cell lung cancer anti-PD-1 treated cohort.

11. Hellman et al., an unpublished cohort of non-small cell lung cancer samples treated with anti-PD-1.

12. Le et al. (Le et al., 2015), a colorectal cancer cohort treated with anti-PD-1 therapy.

In order to allow studies to be grouped by histology, additional patients from the KEYNOTE-028 and KEYNOTE-012 cohorts from

Cristescu et al. were utilized to create two additional cohorts, cohort 13: Cristescu et al. urothelial cancer and cohort 14: Cristescu

et al. breast cancer. For cohort 2, in line with the original authors separate categorization (Van Allen et al., 2015), the additional cohort

of n = 10 patients who achieved long-term survival but with early tumor progression were excluded. For cohort 1, in line with previous

treatment by (Miao et al., 2018), tumor samples from non-responding lesions from patients who otherwise had clinical benefit from

immune checkpoint therapy were excluded (n = 8). Samples with truncated raw fastq file downloads, which remained truncated after

multiple download attempts were also excluded. A breakdown of sample numbers for each study/histology is contained in Table S1.

For validation purposes the following cohort was utilized: Cristescu et al. (Cristescu et al., 2018) ‘‘all other tumor types’’ (n = 76) cohort

(fromKEYNOTE-028 andKEYNOTE-012 studies), treatedwith anti-PD-1. This was reserved as a test validation cohort for the Figure 3

multivariable model analysis (i.e., not included in the Figure 2meta-analysis), on account of its set of pan-cancer ‘‘other tumour type’’

mix of patients, which was selected as suitable for validation of a pan-cancer predictive model. Two additional test validation cohorts

were utilized from recently published papers (Liu et al., 2019) and (Shim et al., 2020) as additional test samples for the multivariable

model (Figure 3), with data being taken from supplementary tables of these papers. Cohort 9 (McDermott et al., 2018) comprised a

treatment arm with anti-PD-L1 and anti-VEGF treatment, these samples were excluded from the meta-analysis of previously pub-

lished biomarkers (Figure 2) and multivariable AUC analysis (Figure 3) but retained for the discovery analysis (Figure 5 and Figure 6)

to maximize discovery power. Similarly, the ‘‘all other tumor types’’ (n = 76) set was also used in (Figure 5 and Figure 6) discovery

analysis. Regarding prior lines of treatment, we note (n = 55, 5.5% of patients) had either undergone prior line of anti-CTLA-4 treat-

ment or the biopsy was taken on treatment (see Table S1). Age and gender information of each cohort is available in the correspond-

ing references. To assess if sex affected the results of the Figure 2meta-analysis, the analysis was repeated including sex as an addi-

tional term in the model, and no difference was observed in the top ranked biomarkers. Validation data for copy number analysis was

reused from Samstein et al. (Samstein et al., 2019), a cohort of 1662 patients treated with CPI and profiled using the MSK-IMPACT

gene panel (referred to as the MSK1600 cohort). Segment copy number data for these samples was downloaded from the GENIE

Synapse portal (syn7222066), https://www.synapse.org/, and clinical data were utilized from the Samstein et al. paper. In addition,

a cohort of MSK-IMPACT sequenced, but non-CPI treated patients was utilized for negative control analyses, to distinguish CPI pre-

dictive from generally prognostic biomarkers. Copy number segment data for this non-CPI cohort were similarly obtained from the

GENIE Synapse portal (syn7222066), https://www.synapse.org/, and clinical response data were reused from Bielski et al. (Bielski

et al., 2018), and patients overlapping with the Samstein et al. were removed. Lastly, single cell RNA sequencing was conducted

on CD8 TILs from patient L011, a patient diagnosed with non-small cell lung cancer who underwent definitive surgical resection prior

to receiving any adjuvant therapy. Patient L011 was a 49 year old female smoker (45 pack years). Informed consent was obtained

under study UCLHRTB 10/H1306/42.

METHOD DETAILS

Clinical end points
In the CPI1000+ cohort, a uniform clinical end-point of responsewas defined across all the 15 studies based on radiological response

as per the RECIST criteria, with ‘‘CR/PR’’ being classified as a responder and ‘‘SD/PD,’’ as well as any ‘‘NE’’ cases, being classed as a

non-responder. We note this is a definition of response that may undercount the number of patients who derive clinical benefit, as
e2 Cell 184, 596–614.e1–e7, February 4, 2021
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patients with SD and extended survival have in some previous studies been considered as experiencing clinical benefit from treat-

ment. Conversely, a radiological complete or partial response does not always equate to extended survival, and subtle distinctions

between these measures should be recognized. However the ‘‘CR/PR’’ versus ‘‘SD/PD’’ definition used here allows for uniform con-

sistency across cohorts, clearest interpretation and is consistent with the most recent literature (Cristescu et al., 2018; Mariathasan

et al., 2018). For RECIST response evaluations we utilized the clinical data provided by the original authors, which in > 90% of cases

was best response time point. In a minority of cases the time point of RECIST evaluation was not directly specified. For the (Cristescu

et al., 2018) cohort response labels were not available as a supplementary file, however they could be inferred from cross-reference

of Table S2 and Figure S3 of that paper, and validated by re-computing p values from the paper to ensure exact match (e.g., Figure 2

multivariable model p values stated in the paper, we were able to match to the 4 decimal places accuracy provided in the paper). In

addition, the inferred labels were further validated when we checked the numbers of responders per detailed histology in Table S3 of

(Cristescu et al., 2018) and found the inferred data matched exactly the reported results. RECIST response data was not available for

the MSK1600 cohort, so instead overall survival was used as the clinical end-point, combined with negative control analysis in MSK-

IMPACT profiled samples not treated with CPI, to distinguish predictive from prognostic biomarkers.

Multimer sorting of neoantigen reactive T cells
We have previously identified CD8+ neoantigen reactive T cells (NARTs) targeted against a clonal neoantigen (arising from the

mutated MTFR2 gene) in NSCLC tumor regions derived from patient L011 (McGranahan et al., 2016). Briefly, neoantigen-specific

CD8 T cells were identified using high throughput MHC multimer screening of candidate mutant peptides generated from patient-

specific neoantigens of predicted < 500nMaffinity for cognate HLA as previously described (McGranahan et al., 2016). 288 candidate

mutant peptides (with predicted HLA binding affinity < 500nM, includingmultiple potential peptide variations from the samemissense

mutation) were synthesized and used to screen expanded L011 TILs. In patient L011, TILs were found to recognize the HLA-B*3501

restricted, MTFR2D326Y-derived mutated sequence FAFQEYDSF (netMHC binding score: 22nM), but not the wild-type sequence

FAFQEDDSF (netMHC binding score: 10nM). No responses were found against overlapping peptides AFQEYDSFEK and KFAF-

QEYDSF. Neoantigen-specific CD8+ T cells were tracked with peptide-MHC multimers conjugated with either streptavidin PE (Bio-

legend, cat#405203), APC (Biolegend, cat#405207) BV650 (Biolegend, cat#405231) or PE-Cy-7 (Biolegend, cat#405206) and gated

as double positive cells among live, single CD8+ cells. Phenotypic characterization of neoantigen-specific CD8 T cells in L011 was

performed as previously described (McGranahan et al., 2016).

Single-cell RNA sequencing of neoantigen reactive T cells
Multimer-positive and negative single CD8+ T cells from NSCLC specimens were sorted directly into the C1 Integrated Fluidic Circuit

(IFC; Fluidigm). Cell lysing, reverse transcription, and cDNA amplification were performed as specified by the manufacturer. Briefly,

1000 single, multimer positive or negative CD8 T cells were flow sorted directly into a 10- to 17-mm-diameter C1 Integrated Fluidic

Circuit (IFC; Fluidigm). Ahead of sorting, the cell inlet well was preloaded with 3.5 mL of PBS 0.5% BSA. Post-sorting the total well

volume was measured and brought to 5 mL with PBS 0.5% BSA. 1 mL of C1 Cell Suspension Reagent (Fluidigm) was added and

the final solution was mixed by pipetting. Each C1 IFC capture site was carefully examined under an EVOS FL Auto Imaging System

(Thermo Fisher Scientific) in bright field, for empty wells and cell doublets. An automated scan of all capture sites was also obtained

for reference. Cell lysing, reverse transcription, and cDNA amplification were performed on the C1 Single-Cell Auto Prep IFC, as

specified by the manufacturer. The SMARTer v4 Ultra Low RNA Kit (Takara Clontech) was used for cDNA synthesis from the single

cells. cDNA was quantified with Qubit dsDNA HS (Molecular Probes) and checked on an Agilent Bioanalyzer high sensitivity DNA

chip. Illumina NGS libraries were constructed with Nextera XT DNA Sample Preparation kit (Illumina), according to the Fluidigm Sin-

gle-Cell cDNA Libraries for mRNA sequencing protocol. Sequencing was performed on Illumina� NextSeq 500 using 150bp paired

end kits.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample quality control
First, samples were clustered using a panel of common germline SNPs, to ensure no duplicate participants were included (Figure S5).

Next, we assessed for any technical correlations between mutation counts and purity or sequencing coverage (Figure S6A). While at

the combined CPI1000+ cohort level we did not observe any significant relationships (Figure S6A), we note in a minority of individual

studies (3 out of 15) there was a significant relationship between TMB and purity (Figure S7). This technical correlation is linked to low

sequencing coverage, for example the Snyder et al. NEJM 2014 cohort has the strongest correlation and is also the cohort with

lowest average depth per tumor sample. These findings are consistent with recent results published by Anagnostou et al. (Anagnos-

tou et al., 2020), who demonstrate a relationship between purity and TMB, which is mitigated with higher coverage. Finally, we as-

sessed for any evidence of different exome capture kits across the cohorts impacting results, and found no significant difference in

TMB scores based on exome capture kits utilized (Figure S6B). We note however that Agilent SureSelect kits were used in nearly all

studies, except for one cohort, Snyder et al. (Snyder et al., 2017), which used IDT xGen WES capture, and in addition we found no

specification of the capture kit used in the Hugo et al. manuscript (Hugo et al., 2016).
Cell 184, 596–614.e1–e7, February 4, 2021 e3
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Whole exome sequencing (DNA) pipeline–variant calling
For all studies we obtained germline/tumor whole exome sequencing data in either BAM, SRA or FASTQ format, from the relevant

sequencing repository or directly from the original authors, and where applicable reverted these files back to FASTQ format using

Picard tools (version 1.107) SamToFastq. Raw paired-end reads in FASTQ format were aligned to hg19 obtained from the GATK

bundle (v2.8) using bwa mem (bwa v0.7.15) (Li and Durbin, 2009; McKenna et al., 2010). Picard tools (picard v1.107) was used to

remove duplicates (http://broadinstitute.github.io/picard), andGATKwas additionally used for local indel realignment. Quality control

metrics were produced with picard tools (v1.107), FastQC (v0.11.5 - http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

and GATK(v3.9). Platypus v0.8.1 was used to call homozygous and heterozygous germline SNPs (Rimmer et al., 2014). The default

parameters were used, but the genIndels flag was set to FALSE. Only SNPs with a minimum depth of coverage of 20x were taken

forward. Somatic variants were detected using two tools (MuTect v1.1.7 & VarScan2 v2.4.1) (Cibulskis et al., 2013; Koboldt et al.,

2012), using the followingmethod: SAMtools mpileup (version 0.1.19) was used to locate non-reference positions in tumor and germ-

line samples. Bases with a Phred score of less than 20 or reads with amapping quality less than 20were omitted. The Base alignment

quality (BAQ) calculation option was deactivated and a threshold of 50 was set for the coefficient of downgrading mapping quality.

VarScan2 somatic (version 2.3.6) used output from SAMtools mpileup to identify somatic variants between tumor and matched

germline samples. VarScan2 processSomatic was used to extract the somatic variants. Single nucleotide variant (SNV) calls were

filtered for false positives with the associated fpfilter.pl script in Varscan2, initially with default settings then repeated with min-

var-frac = 0$02, having first run the data through bam-readcount (version 0.5.1). MuTect (version 1.1.4) was also used to detect

SNVs, and results were filtered according to the filter parameter PASS. Default parameters were used in both tools with the exception

of: i) minimum coverage for the germline sample was set to 10, ii) minimum coverage for the tumor sample was set to 30 andminimum

alternative allele read depth of 3, iii) minimum somatic variant allele frequency (VAF) was set to 0.01 and minimum alternative read

coverage set to 5, iv) alternative reads in the germline had to be % 5 and germline VAF % 1%, v) variant had to be not present in

EXAC03 database at 5%or higher frequency. In final QC filtering, an SNVwas considered a true positive if the variant allele frequency

(VAF) was greater than 1% and the mutation was called by both VarScan2, with a somatic p value% 0.01, and MuTect. Alternatively,

a frequency of 5% was required if only called in VarScan2, again with a somatic p value % 0.01. For small scale insertion/deletions

(INDELs), the same filters above were applied, and only calls classified as high confidence by VarScan2 processSomatic were kept

for further analysis, with somatic_p_value scores less than 1.0 3 10�3. Variant annotation was performed using ANNOVAR (version

2016Feb01) (Wang et al., 2010).

Whole exome sequencing (DNA) pipeline–copy number calling
VarScan2(v2.4.1) was used to generate logR depth ratios from paired tumor region/germline samples. These values were subse-

quently GC corrected (Cheng et al., 2011). Default parameters were used to generate this data with the exception of: min-coverage =

8 andmin-segment-size = 50. B-Allele Frequencies (BAFs)–the proportion of reads with a SNP variant relative to the total read depth–

were calculated using the SNPs called in the germline by platypus. The GC-corrected logR values and BAF values are then used by

ASCAT (v2.3) (Van Loo et al., 2010) to generate segmented allele-specific copy number data, including estimates of tumor ploidy and

cellularity. Sequenza (Favero et al., 2015) was additionally run on all samples in parallel. To ensure accuracy, default ASCAT copy

number solutions were quality control checked, and where a sample failed any of the following quality flags it then underwent manual

review: i) unexpectedly high purity, defined as tumor cellularity > 80%, ii) unexpectedly low levels of loss of heterozygosity, defined as

fraction of the genome LOH of < 0.1, iii) unexpectedly high level of the genome with both alleles at even copy number, defined as the

fraction of the genome with alleles A and B both even as > 0.7, iv) unexpectedly high level of the genome with copy number = 0,

defined asR 4Mb with copy number = 0. In addition, an orthogonal measure of tumor purity was derived based on mutation variant

allele fraction, as previously described (Jamal-Hanjani et al., 2017), and samples with a mismatch in purity between ASCAT and

orthogonal measurements of greater than 1 standard deviation were additionally flagged for manual review. Samples that had

been flagged for manual review underwent dual analyst inspection, which involved review of the default and alternative copy number

solutions from ASCAT and Sequenza tools. Where a better fitting solution was available (based on the rules above, as well as obtain-

ing consistency in solutions between ASCAT and Sequenza) this was utilized rather than the ASCAT default.

RNA sequencing pipeline
RNAseq data was obtained in BAM/SRA/FASTQ format for all studies, and reverted back to FASTQ format using bam2fastq (v1.1.0).

FASTQ data underwent quality control andwere aligned to the hg19 genome using STAR (Dobin et al., 2013). Expression counts were

normalized using DESeq2 variance stabilizing transformation (vst) function and transcripts per kilobase million (TPM) values calcu-

lated using RSEMwith default parameters (Li and Dewey, 2011). Within the meta-analysis and multivariable modelling sections (Fig-

ures 2 and 3), individual gene expression analyses across samples were conducted using vst normalized expression counts, and for

signatures involving multiple genes, TPM values were used (to give consistency with the majority of original authors methodologies).

For other RNAseq analyses the relevant measure used is indicated in the axis labels.

Mutation clonality analysis
PyClone (Roth et al., 2014) version 0.12.7 was used to determine the clonal status of mutations. For each sample variant calls were

integrated with local allele specific copy number (obtained from ASCAT), tumor purity (also obtained from ASCAT), and variant allele
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frequency data. All mutations were then clustered using the PyClone Dirichlet process clustering. This enables mutations to be

grouped together based on likely co-occurrence in the same set of cancer cells (clones), from which the founding (truncal) clone

can be identified. We ran PyClone with 10,000 iterations and a burn-in of 1000, and using parameters as previously described (Ja-

mal-Hanjani et al., 2017).

HLA and neoantigen analysis
Neoantigen predictions were derived by first determining the 4-digit HLA type for each patient, along with mutations in class I HLA

genes, using POLYSOLVER (Shukla et al., 2015). Next, all possible 9, 10 and 11-mer mutant peptides were computed, based on the

detected somatic non-synonymous SNV and INDEL mutations in each sample. Binding affinities of mutant and corresponding wild-

type peptides, relevant to the corresponding POLYSOLVER-inferred HLA alleles, were predicted using NetMHCpan (v3.0) and

NetMHC (v4.0) (Andreatta and Nielsen, 2016). Neoantigen binders were defined as IC500 < 500 nM or rank < 2.0. Grantham distances

between HLA gene allele pairs were calculated using the same procedure described in Pierini et al. (Pierini and Lenz, 2018), utilizing

the Grantham distance metric originally designed for investigating protein evolution from physiochemical differences in amino acid

sequences (Grantham, 1974). Aligned protein sequences for HLA alleles were obtained from the IMGT database (Robinson et al.,

2016) for the different HLA alleles as called by Polysolver from the raw germline data files for the HLA-A, B and C genes. A custom

R script was created to calculate the Grantham distance at each position on exons 2 and 3 of two aligned HLA alleles (exon 2 and 3

being the peptide binding region of the HLA protein). The final Grantham distance score between two HLA alleles was calculated as

the sum of the scores at each position divided by length of the amino acid sequence. The average Grantham score for an individual

patient was then calculated by taking the mean of the separate Grantham scores for HLA-A, B and C. It should be noted that to be

consistent with the approach used in Pierini et al. (Pierini and Lenz, 2018), these scores do not correct for possible loss of heterozy-

gosity of the HLA alleles (LOHHLA) that frequently occur somatically during cancer evolution but instead reflect the germline HLA

divergence of a patient pre-cancers. HLA loss of heterozygosity analysis was performed using the LOHHLA tool as previously

described (McGranahan et al., 2017). We implemented two additional filters to the HLA LOH calls. The first is based on the expected

depth of the HLA allele in the tumor. This is calculated as the depth of the allele in the germline divided by the tumor purity and multi-

plied by the ratio of the number of unique reads in the tumor to the germline bam, where the allele depth in the germline sample is the

median depth across the mismatches. We filtered out calls for genes that had at least one allele with an expected depth in the tumor

of less than 10. We also filtered out HLA LOH calls for genes that had a minor copy number less than �0.5.

Literature search
PubMed abstract/title fields were searched for the following sets of keywords:

‘‘Predictive biomarker AND immunotherapy,’’ ‘‘Associated AND checkpoint inhibitor response,’’ ‘‘Sensitivity ANDPD-1 blockade,’’

‘‘Sensitivity AND CTLA-4 blockade,’’ ‘‘Sensitivity AND PD-L1 blockade,’’ ‘‘Resistance AND PD-1 blockade,’’ ‘‘Resistance AND

CTLA-4 blockade,’’ ‘‘Resistance and PD-L1 blockade,’’ ‘‘Immunotherapeutic AND escape mechanism,’’ ‘‘Predictors AND immune

checkpoint blockade,’’ ‘‘Immune checkpoint blockade AND determinants,’’ ‘‘Immune checkpoint blockade ANDmarkers,’’ ‘‘Cancer

immunotherapy AND determinant,’’ ‘‘Effectiveness AND immune checkpoint inhibitors,’’ ‘‘Prediction AND immune checkpoint

blockade,’’ ‘‘Predict AND cancer immunotherapy,’’ ‘‘Predictive biomarkers AND checkpoint blockade therapies,’’ ‘‘Response

AND checkpoint blockade immunotherapy,’’ ‘‘Predicts AND checkpoint blockade immunotherapies,’’ ‘‘Prediction AND immunother-

apies.’’ Articles matching human species and date range [2015-2020] were selected, yielding a total of 723 unique manuscripts. The

final search was conducted on 12th August 2020. Each paper was reviewed, and where human data was presented to support a

biomarker associated with checkpoint inhibitor response, this was added to the analysis. Case reports were excluded, along with

review papers, and biomarkers that could not be calculated with exome or transcriptome data. In total 55 unique biomarkers

were identified and included in the study for analysis.

Derivation of published biomarkers
The following previously published biomarkers were tested for association with response to CPI therapy: tumor mutation burden

(TMB) (Rizvi et al., 2015; Snyder et al., 2014; Van Allen et al., 2015) (also split out into Clonal (McGranahan et al., 2016) and Subclonal

TMB), frameshift insertion/deletion (indel) mutation burden (Turajlic et al., 2017), burden of indels escaping nonsensemediated decay

(Lindeboom et al., 2019), Tobacco mutation signature (Anagnostou et al., 2020), UV signature (Knepper et al., 2019), APOBEC signa-

ture (Chapuy et al., 2019), Differential Agretopicity Index (Ghorani et al., 2018),MUC16 neoantigens (Balachandran et al., 2017), Neo-

antigen fitness model (quksza et al., 2017), SERPINB3/SERPINB4mutations (Riaz et al., 2016), DNA damage response pathway mu-

tations (Conway et al., 2018), Shannon diversity index for intratumor heterogeneity (SDI-ITH) (Wolf et al., 2019), burden of somatic

copy number alterations (Davoli et al., 2017), burden of somatic copy number losses (Roh et al., 2017), HLA-I evolutionary divergence

(Chowell et al., 2019), maximal HLA heterozygosity, HLAB44/B62 supertypes, HLAB1501 type (Chowell et al., 2018),KIR3DS1 germ-

line variants (Trefny et al., 2019), loss of heterozygosity at the HLA locus (McGranahan et al., 2017), sex (Conforti et al., 2018), B2M

mutations (Gettinger et al., 2017), JAK1/JAK2 mutations (Shin et al., 2017), KRAS and TP53mutations (Aredo et al., 2019), PTENmu-

tations (Peng et al., 2016), RTKmutations (Anagnostou et al., 2020), STK11mutations (Aredo et al., 2019), BAP1mutations (Shrestha

et al., 2019), CD8A (Tumeh et al., 2014), CD274 (PD-L1) (Gibney et al., 2016), CD38 (Chen et al., 2018), HAVCR2 (TIM3)/LGALS9

(Koyama et al., 2016), MEX3B (Huang et al., 2018) and CXCL9 expression (Chow et al., 2019), as well as the CD8 T cell effector
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(McDermott et al., 2018), proliferation (Pabla et al., 2019), cytolytic (Rooney et al., 2015), stroma-EMT (Wang et al., 2018), TGF beta

pan fibroblast (Mariathasan et al., 2018), IMPRES (Auslander et al., 2018), CD8 T effector from the POPLAR trial (Fehrenbacher et al.,

2016), 12-cheomokine (Messina et al., 2012; Tokunaga et al., 2020), HERV-3 family expression (Panda et al., 2018) and T cell inflamed

gene expression signatures (Ayers et al., 2017). TMB was measured on a per megabase basis using the Friends of Cancer Research

TMB Harmonization Project phase I guidelines (Merino et al., 2020), clonal TMBwas measured as per (McGranahan et al., 2016) with

samples which failed pyclone clustering assumed that all mutations were clonal, SCNA load was defined using the weighted genome

instability index (wGII) (Endesfelder et al., 2014), expression of individual genes was measured using varianceStabilizingTransforma-

tion (vst) normalized expression count from DESeq2 (for datasets with RNaseq) or normalized nanostring expression values for the

Cristescu et al. cohort. In the Cristescu et al. cohort, where transcriptome data is only available for a subset of genes, gene expression

signatures were calculated with as many genes as were available. For inactivating pathway mutations (i.e., B2M, PTEN, JAK1/JAK2,

DNA damage response) loss of function mutations (i.e., those causing a premature stop codon) and homozygous deletions were

included. DNA damage response pathway genes were defined as: BRCA1, BRCA2, ATM, POLE, ERCC2, FANCA, MSH2, MLH1,

POLD1 and MSH6 based on (Conway et al., 2018). All other biomarkers were defined as per the method outlined in the original un-

derlying publication as referenced above. Associations with responsewere tested using logistic regression. To allow biomarkers with

varying measurement scales (e.g., mutation counts versus gene expression values) to be compared equivalently based on effect size

rather than p value (Wasserstein et al., 2019), all biomarker values (continuous and binary) were converted to standard z-scores (i.e.,

mean normalized to equal zero, and standard deviation normalized to one). To avoid data pooling, each biomarker was tested indi-

vidually in each sub-study, and then the effect sizes and standard errors were combined through random effects meta-analysis to

derive a final p value per biomarker. Meta-analysis was conducted using R package ‘meta’. Proportion of variance explained anal-

ysis. The total proportion of variance explained by all biomarkers was calculated by logistic regression pseudo-R2, using R function

‘PseudoR20.

Fitting a multivariable model of CPI response
The predicative utility of a multivariable model was benchmarked against TMB as a univariable comparator. The multivariable model

was made up of all biomarkers attaining significance in the Figure 2A meta-analysis (final column, p-meta validation cohorts only),

comprising 11 measures in total: Clonal TMB, Indel TMB, NMD-escape TMB, UV signature, Tobacco signature, APOBEC signature,

sex, T cell inflamed GEP signature, and gene expression values for CD274 (PD-L1), CD8A and CXCL9. All 11 biomarkers were input-

ted into the gradient boosted tree algorithm XGBoost (R package ‘xgboost’), a widely used machine learning algorithm effective for

classification tasks. The variation in feature importance scores across tumor types was demonstrated using the largest cohort of

matched exome and transcriptome data for each tumor type: urothelial: (Mariathasan et al., 2018), head and neck: (Cristescu

et al., 2018), melanoma: (Cristescu et al., 2018) and renal: (McDermott et al., 2018). All training samples (n = 1008) were then utilized

to build a final predictive model with the 11 biomarkers, with maximum tree depth of 2, nrounds set as 15 and eta set 0.2—these

values were derived using grid search in ‘caret’ R package with 5-fold cross validation using (n = 1008) training cohort samples.

All other parameters were kept as default values. TMB predictions were made using an identical model desgin. R package

‘ROCR’ was used for the ROC curve analysis. Three cohorts were utilized as independent test/validation sets (not used in model

training process): 1) the KEYNOTE-028 ‘‘other tumour type’’ cohort from (Cristescu et al., 2018), 2) Liu, Schilling et al., 2019 mela-

noma cohort (Liu et al., 2019), and 3) Shim et al., 2020 lung cancer cohort (Shim et al., 2020). Test set 1) was selected as this consists

of ‘‘other tumour type’’ samples, and the final model from Figure 3b/c is trained on a combined set of pan-cancer samples, hence this

mixed tumor type cohort was selected as an appropriate validation set. Test sets 2) and 3) were selected as test datasets based on

their publication timing, i.e., they are the most recently published datasets, which became available after model training was

completed. Data for test cohort 1) was obtained as raw data, and data for test cohorts 2) & 3) was obtained from supplementary pub-

lished tables on account of the recent publication of these studies. We note that for test cohort 3) (Shim et al., 2020) only TMB, PD-L1,

smoking signature (inferred from smoking history) and sex data was available, and hence only these four variables were used in the

multivariable model, and PD-L1 was used in place of CXCL9 expression in the two-parameter model.

Mutation signature analysis
DeconstructSigs (Rosenthal et al., 2016) was used to derive COSMIC mutational signatures (v2) (Alexandrov et al., 2015) for each

tumor samples withR 50 somatic mutations (n = 872 patients). Grantham distance, which considers three properties: composition,

polarity and molecular volume, was used to measure difference in amino acid properties (Grantham, 1974). A Grantham distance

change of R 100 was considered radical, or less than 100 conservative (Dagan et al., 2002). Hydrophobicity scores per amino

acid were derived using the scale from Kyte & Doolittle (Kyte and Doolittle, 1982). Data from melanoma/gastric cancer patient tumor

infiltrating lymphocyte (TIL) samples, which were screened for reactivity against neoantigen peptides, was taken from (Chudley et al.,

2014; Gros et al., 2016; Tran et al., 2015).

Pan-cancer analysis of copy number losses and gains
Copy number segment data from ASCAT for all responders and non-responders were inputted to the R package ‘copynumber’ (Nil-

sen et al., 2012) to derive the gain and loss frequency across the genome for each group (i.e., for responders and non-responders

separately). Region level cytoband coordinates were obtained from the UCSC Table Browser, with 286 autosomal chromosomes
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cytobands defined. For gains and losses (separately) the frequency per cytobandwas converted back to absolute patient counts and

the difference between responders and non-responders was compared using a 2x2 Fisher’s exact test. Results were corrected for

multiple testing using the p.adjust function in R, with the FDR method. The frequency of whole chromosomal losses was analyzed

using genome-wide SNP6 segmented data per sample from the TCGA GDAC Firehose repository (http://firebrowse.org/), for histol-

ogy types overlapping with the CPI1000+ cohort, i.e., TCGA cohorts: BLCA, BRCA, COADREAD, HNSC, KIRC, LUAD, LUSC and

SKCM. The immune evasion alteration analysis (Figure S3B) was conducted as per previously published method by Rosenthal

et al., 2019 (Rosenthal et al., 2019), which defines antigen-presentation-pathway genes as components of the HLA enhanceosome,

peptide generation, chaperones or the MHC complex itself. In the analysis we included disruptive events (non-synonymous muta-

tions or copy-number loss defined relative to ploidy) of the following genes: CIITA, IRF1, PSME1, PSME2, PSME3, ERAP1,

ERAP2, HSPA, HSPC, TAP1, TAP2, TAPBP, CALR, CNX, PDIA3 and B2M. The analysis was also repeated for non-synonymous mu-

tations only (i.e., no copy number loss events). In addition, a multivariable logistic regression test was also performed, adjusting for

wGII and cancer type, which also confirmed a significant association between 9q34 loss and a higher rate of immune evasion.

Pan-cancer analysis of focal amplifications and deep deletions
Copy number segment data from ASCAT for all responders and non-responders were utilized to identify tumors with either focal

amplification (copy number R 5 and segment length < 3Mb) or homozygous deletions (copy number = 0 and segment length <

3Mb), in known oncogenes (for amplifications) or tumor suppressor genes (for deep deletions). Oncogenes and tumor suppressor

genes were defined according to the Cancer Gene Census (https://cancer.sanger.ac.uk/census), accessed 23rd October 2019,

and events with greater than 5% frequency in the CPI1000+ cohort were analyzed. The difference in Oncogene/TSG amplifica-

tion/deletion frequency was compared between responders and non-responders using a one-sided 2x2 Fisher’s exact test (events

were hypothesized to associate with resistance only, as they are not collateral passenger events that may cause sensitization).

Analysis of single cell RNA sequencing data
All sequencing data was assessed to detect sequencing failures using FASTQC and lower quality reads were filtered or trimmed us-

ing TrimGalore. Outlier samples containing low sequencing coverage or high duplication rates were discarded. Analyses using the

RNaseq data were performed in the R statistical computing framework, version 3.5 using packages from BioConductor version 3.7.

The single cell RNAseq samples were mapped to the GRCh38 reference human genome, as included in Ensembl version 84, using

the STAR algorithm and transcript and gene abundance were estimated using the RSEM algorithm. After quantification, the scater

package was used to set filtering thresholds, based on using spike ins and mitochondrial genes to filter out bad quality cells, filtering

by total number of genes and filtering by total number of sequenced reads. The remaining cells were used after normalizing using

size-factors estimated by the SCRAN package. Downstream analyses used log2 transformed normalized count data. All count

data, metadata and intermediate results were kept within a SummarizedExperiment/SingleCellExperiment R object. The data was

processed using the edgeR BioConductor package that was used for outlier detection and differential gene expression analyses.

Differentially expressed genes were assessed based on their protein coding status. The combined single cell and CPI1000+ bulk

sequencing analysis was conducted as follows: i) genes discovered in single cell sequencing dataset were filtered for q < 0.05

(FDR corrected p value), log10 fold-change > 2 and T cell receptor variable genes (e.g., TRAV19) were removed, ii) filtering from

the previous step yielded n = 846 genes, which were then each validated for an association with response in patients from the

CPI1000+ cohort with full RNAseq data (n = 564). TPM expression values were used and tested for an association with response

using logistic regression, with all samples combined together but corrected for study as a covariate, iii) the previous step yielded

110 genes with p < 0.05, we note these p values were not corrected for multiple testing as this was a validation of the single cell iden-

tified hits. Of the 110 genes, 101 were upregulated in CPI responders, and this was utilized for figure plotting.

Statistical methods
Unless otherwise stated (e.g., the section above ‘‘Derivation of published biomarkers’’), odds ratios were calculated using Fisher’s

exact test for count data, Kruskal-Wallis test was used to test for a difference in distribution between three or more independent

groups, and Mann Whitney U test was used to assess for a difference in distributions between two population groups. Logistic

regression was used to assess multiple variables jointly for independent association with binary outcomes. Overall survival analysis

was conducted using a Cox proportional hazardsmodel. Statistical analysis were carried out using R3.4.4 (http://www.r-project.org/)

or greater. We considered a p value of 0.05 as being statistically significant. Any discovery analysis with more than 20 comparisons

was subject to multiple testing correction using the R p.adjust function, with FDR method.
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Supplemental Figures

Figure S1. Supplementary meta-analysis data, related to Figure 2

Panel A shows the correlation in biomarker effect sizes for radiological response and overall survival clinical endpoints (Spearman’s correlation). Panel B shows

response rate by number of NMD-escape mutations for all available samples. Panel C shows results from previously published histology specific biomarkers, or

metrics that could not be calculated in > 75% of the cohort samples.
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Figure S2. (A) shows significant histology or drug-specific biomarker interactions identified in the CPI1000+ cohort (using histo-

logy*biomarker and drug*biomarker interaction terms in logistic regression), and (B) shows dinucleotide variant associations with CPI

response, related to Figures 2 and 4
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Figure S3. 9q34 (TRAF2) analysis and immune evasion data, related to Figure 5

Panel A shows drug sensitivity screening data for two compounds, for TRAF2 heterozygously mutated versus TRAF2wild-type cell lines. Panel B shows immune

evasion analysis, measuring as the % of patients with an antigen presentation pathway defect between tumors with 9q34 wild-type (i.e., no loss) compared to

9q34 loss tumors. The left barplot includes either a somatic copy number loss, or a non-synonymousmutation, in an antigen presentation pathway gene. The right

plot includes non-synonymous mutations only. Antigen presentation pathway genes were defined as per (Rosenthal et al., 2019), also see methods. Panel C

shows the frequency of whole chromosome loss in TCGA for the set of cancer types included in the CPI1000+ study.
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Figure S4. Cytobands with significantly different copy-number loss or gain frequencies in responders versus nonresponders, related to

Figure 5

Analysis is split by 4 tumor/drug types.
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Figure S5. Clustering by common germline SNP panel to ensure no duplicate participants were recorded in the CPI1000+ cohort, related to

STAR methods
Columns are patients, rows are SNPs.
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Figure S6. Purity, sequencing coverage, and choice of exome capture kits do not correlate with TMB scores in the CPI1000+ cohort, related

to STAR methods
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Figure S7. Purity vs TMB correlations by study, related to STAR methods
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