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Abstract 12	

Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-13	

antigens, and maximal treatment efficacy requires that targeted alterations are present in all 14	

tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, 15	

creating uncertainty on whether alterations found in those samples are actually present in all 16	

tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region 17	

profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. 18	

By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that 19	

the information gain from additional sampling falls onto a simple universal curve that is directly 20	

measurable from multi-region profiling data. We found that in colorectal cancers, on average 30% 21	

of alterations identified as clonal with one biopsy proved subclonal when 8 samples were 22	

considered, and the probability of overestimating clonal alterations fell below 1% in 7/11 patients 23	

with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations 24	

by 40% with respect to a single biopsy, but the probability of overestimating clonal alterations 25	

remained as high as 92% in 7/10 patients due to the higher complexity of phylogenetic structures 26	
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in this tumour type. Furthermore, treatment was associated with more unbalanced tumour 27	

phylogenetic trees at resection, suggesting the need of denser sampling of tumours at relapse.  28	

Introduction 29	

Recent advances in next-generation sequencing have led to the widespread identification of 30	

somatic changes in the genomes of a large number of tumours, raising the hope to transform 31	

cancer therapy based on patient-specific data 1. Novel treatments aim at targeting cancer genomic 32	

alterations, or prime the immune system to neo-antigens expressed by tumour cells, allowing 33	

personalised cancer medicine 2-11.  34	

  35	

The success of this therapeutic strategy however, relies on selecting the correct targets in each 36	

patient 8,12-14. The number of potentially targetable tumour specific alterations is continuously 37	

increasing. However, any approach that targets sub-clonal alterations will at best eradicate only a 38	

proportion of cells in the tumour. For a maximal effective therapy (and any prospect of tumour 39	

eradication), tumour-specific alterations that are present in all cells of the tumour and thus are 40	

“truly” clonal must be targeted by therapy 13,15-17.  41	

 42	

However, intra-tumour heterogeneity and sampling bias complicate the correct classification of 43	

truly clonal and sub-clonal alterations. Independent multi-region profiling of spatially distinct tumour 44	

samples increases the information on individual tumours and allows the reconstruction of 45	

phylogenetic trees	18-26. Truly clonal alterations must appear in the “trunk” of these trees. However, 46	

the opposite is not necessarily true. An alteration that appears truncal in the “sampled” tree, may 47	

still be sub-clonal in the whole tumour because we cannot profile every cell in the neoplasm 23,27, 48	

see also Figure 1. Taking larger, more or spatially distant samples can mitigate the problem 19,22-25, 49	

but the fundamental question remains: how many samples of a tumour do we need to identify the 50	

list of all truly clonal alterations with a certain confidence?  51	

 52	
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Results 53	

Let us consider the complete phylogenetic tree of a tumour. Each leaf of this tree is a cancer cell. 54	

Leaves are separated by bifurcations representing cell divisions prone to inheritable alterations, 55	

which could be single nucleotide polymorphisms, gene duplications, translocations or any other 56	

genomic change.  Alterations that are in the trunk of the tree must be present in all cells of the 57	

tumour, if we neglect unlikely events of back mutations. The first bifurcation divides the tumour into 58	

two populations of fraction 𝑓 and 1 − 𝑓. The sizes of these fractions are the result of potentially 59	

complicated processes, e.g. clonal selection, immune system escape or random drift. If we were to 60	

sample from both sides of the tree, all alterations that appear clonal in both samples will also be 61	

truly clonal in the whole tumour. But if we only sample from either side, we will misclassify a 62	

fraction of sub-clonal alterations as clonal, see Figure 1. Thus the critical question is, how likely are 63	

we to sample from both sides of the tree in a multi-sampling strategy? Assuming we analysed 𝑖 64	

independent spatially separated tumour samples, the probability to sample from both sides of the 65	

tree is 66	

 67	

𝑝!(𝑖) = 1 − 𝑓! − (1 − 𝑓)!,                                           (1) 68	

 69	

see Methods for details. The information gained from multi-region sequencing follows a single 70	

universal curve and the balancing factor 𝑓 determines the shape of this curve, see Figure 1d. The 71	

probability to classify all truly clonal alterations correctly from a single sample is expected to be 72	

zero (𝑝! 𝑖 = 1 = 0). Including more samples 𝑖 to the analysis increases the probability to classify 73	

truly clonal alterations correctly. The probability increases fastest for trees in which the first 74	

bifurcation splits the tumour population approximately in half (𝑓 = 1/2). These are often referred to 75	

as ‘balanced’ phylogenetic trees, and are often, but not always, consistent with neutral growth (i.e. 76	

all the tumour driving alterations were present in the trunk of the tree)27. In this case, the 77	

information is gained exponentially 𝑝!/! 𝑖 = 1 − !
!

!!!
 with the number of samples 𝑖. Two tumour 78	

samples have a probability of 50% to correctly classify all truly clonal alterations and the probability 79	

increases to 99% for 8 independent samples. However, the probability increases more slowly in 80	
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unbalanced tumours, e.g. in cases of strong on-going sub-clonal selection during tumour growth or 81	

as a result of treatment. For example, if one side of the tree is 5 times larger compared to the other 82	

side, two independent tumour samples result in a probability of 28% to correctly classify all 83	

alterations and increases to 73% for 8 independent samples (Figure 1). Given that the spatial 84	

distribution of mutations in the tumour cannot be known a priori, there cannot be a simple single 85	

sampling protocol, as different tumours might present with different relative 𝑓 and the uncertainty to 86	

identify truly clonal alterations might be dramatically different for two patients with the same 87	

number of samples. Ideally, the sampling strategy should be adjusted to account for each tumour’s 88	

individual evolutionary trajectory.  89	

 90	

 91	

The balancing factor 𝑓 can be inferred from multi-region profiling of individual tumours, see 92	

Methods for details. In short, comparing the lists of clonal alterations identified by all permutations 93	

of tumour samples gives a measure for the average information gained by additional sampling. 94	

This information gain should fall onto the universal curve (1) after adjusting for finite sampling (see 95	

Equation (8) in the Method section for details). For example, if we have 10 tumour samples in total, 96	

we can generate 45 unique combinations of 2 subsamples. If the tumour were perfectly balanced 97	

(𝑓 = 0.5), half of the subsample combinations would recover the exact minimal list of clonal 98	

alterations. For unbalanced tumours (𝑓 < 0.5) fewer combinations of subsamples will recover the 99	

minimal list of alterations. This procedure is then continued for all possible combinations of 100	

subsamples. Comparing the shape of the universal curve (8) to the actual information gain from 101	

the data allows assigning a balancing factor 𝑓 to a tumour. Each tumour specific balancing factor 102	

provides a rational of whether the current number of tumour samples is sufficient, or if additional 103	

sampling is necessary to ascertain the identity of truly clonal alterations in that particular patient. In 104	

addition, the value of 𝑓 would determine whether it makes sense to sequence additional parts of 105	

the tumour, if the expected information gain from each sample is very small. 106	

	107	
 First, we tested if the information on clonal alterations gained from multi-region sequencing data 108	

falls onto the theoretically predicted universal curve (8).  We evaluated ten cases of multi-region 109	
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sequenced clear cell renal carcinoma (between 5 and 11 samples per tumour, 74 samples in total) 110	

recently published by Gerlinger et al 18,22. Each sample had a volume of approximately 0.25 𝑚𝑚! 111	

and thus each sample contained ~10! cells. The protein coding region of the genome (exome) 112	

was sequenced with a depth of >70x for all samples, allowing the identification of clonal mutations 113	

within each single bulk sample with high precision.  114	

 115	

Intra-tumour heterogeneity was high in all 10 tumours. The number of coding mutations identified 116	

within a single sample ranged from 9 to 76 across tumours, see Figure 2 panel a1 to j1. 117	

Considering more samples in the analysis decreases the number of what appeared to be clonal 118	

mutations, as well as the variability in all 10 cases, e.g. 8 samples from the same tumour reduced 119	

the list of clonal mutations on average by 40% compared to a single sample and the reduction 120	

ranged from 14% to 72% in individual patients, see also Figure 2 panel a1 to j1.  121	

 122	

Strikingly, the universal curve (8) describes the information gain from additional samples very well 123	

in all 10 cases and we can assign balancing factors to all 10 tumours. We found balanced 124	

phylogenetic trees (𝑓 = 0.5) in only two tumours, see Figure 2 panel a2 to j2. In these cases, eight 125	

tumour samples suffice to identify all truly clonal mutations with a probability of 99%. One tumour 126	

had a slightly unbalanced tree (𝑓 = 0.35), while 7 tumours appeared to be highly unbalanced 127	

(𝑓 < 0.01). In the latter cases, distinct clonal expansions were likely driven by selection, supporting 128	

the original findings of the authors of on-going clonal selection and convergent evolution in the 129	

majority of the patients analysed 18,22. In these cases, a study with fewer or different samples on 130	

the same tumour would have identified very different sets of clonal mutations. Based on the data, 131	

two samples have a median probability of 68% (a 95% CI of 55% to 77%) to overestimate the 132	

number of clonal mutations, highlighting the potential risk of suboptimal treatment strategies due to 133	

incomplete information on clonal genomic changes of tumour cells. Adding more tumour samples 134	

to the analysis of the 7 unbalanced tumours would likely reduce the list of putative clonal mutations 135	

further, allowing for a better-informed course of treatment.  136	

 137	
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We note that the balancing factor 𝑓 was independent from the total number of uniquely detected 138	

mutations (Spearman Rho = -0.38, p=0.3), or the percentage of uniquely detected mutations 139	

defined as clonal across all samples of a single tumour (Spearman Rho = 0.18, p=0.62). The 140	

mutational load of a tumour is the result of many potentially interacting factors, e.g. the age of a 141	

patient or the intrinsic (potentially elevated) mutation rate. Furthermore a majority of mutations are 142	

likely neutral passengers or provide only a weak selective advantage to the tumour and 143	

correlations might be masked by treatment induced selection biases. This suggests that a 144	

sampling strategy based on mutational diversity alone may not be optimal. As we show, the 145	

change of diversity across independent tumour samples is the variable of interest.  146	

 147	

We then tested the robustness of our estimates by applying our analysis to a subset of tumour 148	

samples. We inferred the balancing factor 𝑓 for all possible combinations of subsets with a 149	

minimum of 4 samples. For example, all combinations of 6 out of 12 tumour samples yield 924 150	

independent estimates for 𝑓. The distributions of values for 𝑓 are summarised in Figure 2 panel a3 151	

to j3. Most combinations of samples resemble the balancing inferred from the full data set. We 152	

observe a trend towards a bimodal distribution for small sample numbers (e.g. Fig 2 d3, i3 and j3). 153	

This might be a direct consequence of the spatial sampling scheme. Few samples in close spatial 154	

proximity are more likely to show balanced (neutral) growth characteristics, whereas samples with 155	

maximal spatial distance likely diverged early during tumour development23,27,28. This suggests that 156	

conclusions about the evolutionary history of tumours based on only a few samples can be 157	

misleading. Sufficiently many spatially distant tumour samples are required for a reliable inference 158	

(and interpreted in the context of 𝑓).  159	

 160	

Interestingly, 6/7 unbalanced tumours received treatment before resection (and sequencing) and 161	

all 7 cases developed metastatic disease. In contrast, 2/3 balanced tumours were treatment naive 162	

at the time of sequencing and the only 2 tumours without metastatic disease (Figure 2 i,j) were 163	

balanced. Indeed, tree unbalancing was associated with treatment (p=0.02, t-test), indicating that 164	

treatment likely contributes to high selection pressures that lead to unbalanced phylogenetic 165	

structures. This has important biological and clinical implications, suggesting that treated tumours 166	
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may require more samples to design the optimal therapeutic strategy based on truly clonal 167	

alterations. In addition, it appears that multi-region sequencing before initiation of any therapy may 168	

simplify the identification of truly clonal abnormalities that could be the targets of therapy. Future 169	

studies are needed to test this observation further. It will also be important to stratify patients for 170	

potentially other confounding factors, such as tumour size, tumour stage, and the spatial 171	

distribution of tumour samples. 172	

 173	

Next, we tested if the information on copy number changes also follows our theoretical prediction 174	

(8). We revaluated copy number changes in multiple single crypts (each crypt contains ~10! cells) 175	

of 11 treatment naive colorectal tumours (7-13 crypts per tumour, 107 samples in total) previously 176	

published in 23. Again the information gain from multiple tumour samples is well described by our 177	

theoretical model (see Figure 3 panels a2 to k2). Five tumours are characterised by balanced 178	

phylogenetic trees (𝑓 ≈ 0.5), two cases show slightly unbalanced trees (𝑓 = 0.19 and 𝑓 = 0.3) and 179	

four cases have unbalanced trees (𝑓 < 0.01). Based on this data, two samples have a median 180	

probability of 58% (95% CI of 38% to 75%) to overestimate the number of clonal copy number 181	

changes. Overall, these results support previous observations of largely a single clonal expansion 182	

in a majority of colorectal tumours that would lead to more balanced phylogenetic trees 19,27. In 183	

these cases, a few samples can identify truly clonal copy number changes. However, we also 184	

identified four cases with an unbalanced phylogenetic history, similar to the 7 cases in renal cell 185	

carcinoma. Treatment strategies for these patients might benefit from an analysis of additional 186	

samples.  187	

 188	

There was no correlation between tumour balancing and the total number of unique copy number 189	

changes (Spearman Rho = 0.16, p=0.63). However, we observed a strong positive correlation 190	

between the balancing factor 𝑓 and the percentage of unique copy number changes (Spearman 191	

Rho = 0.76, p=0.007). Balanced tumours (𝑓 ≈ 0.5) acquired fewer sub-clonal copy number 192	

changes (relative to the number of clonal copy number changes) compared to unbalanced 193	

tumours. This is in contrast to the mutational burden in renal cancer patients, where we could not 194	

observe a similar correlation. There are several potential reasons for this observation. All colon 195	
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cancer samples were treatment naive. Copy number changes occur less frequently compared to 196	

mutations and do not accumulated with age in healthy tissues. Furthermore it seems plausible that 197	

a larger fraction of copy number changes is under selection (either positive or negative), whereas 198	

the majority of mutations are likely neutral passengers. The balancing estimates on all possible 199	

combinations of tumour samples yield results similar to the mutational burden in renal cancer (Fig 200	

2 panels a2 to j2 and Fig 3 panels a2 to k2). The majority of subsamples resemble balancing 201	

estimates from the full data set. Again, we observe the trend of a bimodal distribution of the 202	

balancing factor 𝑓 for small numbers of tumour samples.     203	

 204	

 205	

We note that our analysis does not depend on the detailed effects of selection, i.e. whether 206	

selection acts on copy number changes, mutations or epigenetic alterations. Changes in tree 207	

balance caused by any type of fitness advantage could potentially be detected. Moreover, the 208	

evolutionary mechanisms that generate balanced or unbalanced trees can be arbitrarily complex 209	

29. Our method is agnostic to the specific evolutionary dynamics of the tumour, but instead it 210	

leverages on the existing data and in particular on the topology of the phylogenetic tree. Our 211	

approach is based on the assumption that multi-region profiling represents the tumour’s 212	

evolutionary history, e.g. the samples are equally spatially distributed throughout the whole tumour 213	

and are not restricted to a small region only.   214	

 215	

 216	

Discussion 217	

 218	

Accumulating evidence indicates that future personalised treatment strategies of human 219	

malignancies must be based on information from multi-region profiling of tumours8,30. Once multi-220	

region sampling becomes available in routine clinical practice, physicians will have to make 221	

informed decisions on how many samples per tumour in the individual patient need to be 222	
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independently sequenced for optimal therapy. Our study provides a rationale for how many 223	

samples are necessary to achieve a certain level of confidence that truly clonal alterations in a 224	

tumour have been identified from multi-region profiling. Assigning clonality to specific alterations 225	

implies also the identification of sub-clonal alterations. The distribution of sub-clonal alteration 226	

contains important information on the evolutionary history of tumours25,27. However, here we 227	

investigated the impact of standard multi-region profiling on treatment decision and focused on 228	

clonal alterations. Our method allows tailoring of the number of independent samples that is 229	

necessary for each individual tumour. Although the cost of genome sequencing is decreasing 230	

rapidly, the prospect of multiple sample profiling in each patient may present a new and daunting 231	

financial burden on healthcare systems, especially as the identification of truly clonal alterations in 232	

unbalanced tumours (𝑓 ≪ 0.5) may be difficult and perhaps less cost-effective, posing new 233	

challenges. However, in many cases the required number of independently sequenced samples 234	

appears surprisingly manageable.  235	

 236	

Our approach is independent of any threshold that is often imposed from a statistical analysis of 237	

the distribution of mutations identified in a tumour. Our analysis also suggests that the optimal time 238	

to perform genome profiling in tumours is at the time of diagnosis since therapy appears to 239	

introduce strong selection that may interfere with the identification of the therapeutically relevant 240	

truly clonal mutations or immune therapeutic targets 8,18. Tumours at relapse might require denser 241	

sampling compared to treatment naive tumours. The list of truly clonal mutations identified by our 242	

approach will potentially include tumour driver alterations that could be a targeted for therapy. 243	

Although our approach cannot identify a priori the driver mutations, this method will significantly 244	

restrict the search for such drivers. This study represents one of many necessary steps to advance 245	

from purely descriptive tumour sequencing towards individualized therapies based on quantitative 246	

evolutionary principles.  247	

 248	
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Methods 249	

	250	
Mathematical	model	251	
	252	
Let us consider the true phylogenetic tree of a tumour at a certain time t (e.g. at diagnosis). Each 253	

leaf of this tree is a clonal subpopulation of cancer cells. Assume there are N leaves and therefore 254	

N-1 bifurcations in the tree. By definition, alterations present in the trunk of this tree are truly clonal 255	

and thus are present in all cells of the tumour. The first bifurcation splits the tumour into two 256	

subpopulations, the “left” side with proportion 𝑓, and the “right” side with proportion 1 − 𝑓. If we 257	

were to take a single tissue sample, many alterations carried by this subpopulation would likely not 258	

be truncal. If we took a second tissue sample, we would increase our chance to identify truly clonal 259	

alterations. In this case, we have three possibilities: with probability 𝑓! we have two tissue samples 260	

from one side, with probability (1 − 𝑓)! we have two tissue samples from the other side, and with 261	

probability 2𝑓(1 − 𝑓) we have one tissue sample from each side. Only in this last case, the 262	

alterations common to both samples would represent the true set of truncal (clonal) alterations and 263	

consequently must be present in all cells of the tumour. With 𝑛 independent samples, the 264	

probability 𝑝 to have picked both sides of the tumour becomes 265	

 266	

𝑝! 𝑛 = 1 − 𝑓! − 1 − 𝑓 !,                                                  (2) 267	

 268	

resulting in a non-linear dependence of the probability to find the true set of clonal mutations 269	

through 𝑛 samples.  A single sample never provides the full information, as 𝑝! 1 = 0 for 𝑛 = 1.  270	

The expected gain of information with an additional sample 𝑛 + 1 is 271	

 272	

𝑝! 𝑛 + 1 − 𝑝! 𝑛 = 1 − 𝑓 !𝑓 + 1 − 𝑓 𝑓!.                             (3) 273	

 274	

For example consider the case of a perfectly balanced tree (e.g. a neutrally expanding tumour 27). 275	

This implies 𝑓 = 0.5 and the expected gain of information from sample 𝑛 to sample 𝑛 + 1 is  276	

 277	
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𝑝! 𝑛 + 1 − 𝑝! 𝑛 = !
!

!
.                                                          (4) 278	

 279	

The information gain due to the inclusion of additional samples decreases exponentially, in other 280	

words: in the case of balanced trees with 𝑓~0.5, such as neutral or nearly-neutral trees, relatively 281	

few independent tumour samples are needed to identify all true clonal alterations. If we define the 282	

remaining uncertainty to have missed the true clonal alterations to be 𝜎 = 1 − 𝑝, we can rearrange 283	

Equation (2) for the case of a balanced tree with 𝑓 = 0.5 and find the required number of samples 284	

𝑛 necessary for a certain confidence  285	

 286	

𝑛 = 1 − log! 𝜎 .                                                                        (5) 287	

 288	

For example, a remaining uncertainty of 1% requires only 𝑛 ≈ 8 independent tumour samples. This 289	

level of resolution has already been reached in several recent multi-region sequencing studies 290	

18,20,23,25 and poses a realistic target for daily clinical care in the near future.   291	

 292	

However, one “side” of the tumour could be very small with 𝑓 ≪ 0.5 (i.e. the tumour is highly 293	

unbalanced), implying that different parts of the tree have grown at radically different rates, e.g. 294	

due to clonal selection. In this case, Equation (2) can be approximated by 𝑝!→! 𝑛 ≈ 𝑛𝑓 and the 295	

remaining uncertainty decreases linearly in 𝑛. For sufficiently small 𝑛, the gain of information by an 296	

additional tumour sample becomes incremental 297	

 298	

𝑝!→! 𝑛 + 1 − 𝑝!→! 𝑛 ≈ 𝑓.                                                           (6) 299	

 300	

In this case, many tumour samples are required to reach a high level of confidence of finding all 301	

true clonal alterations. However, a very slowly growing side contributes very little, if at all, to the 302	

overall aggressiveness of the tumour, especially if this side virtually vanishes (𝑓 → 0). Although, 303	

many samples are needed to infer all true clonal alterations in this situation, the clonal alterations 304	

of the extremely dominant and tumour-driving side are of practical interest and again fewer 305	
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samples may suffice. However, very small ancient sub-clones might drive tumour relapse, as is for 306	

example observed in certain Leukemias31,32.  307	

 308	

In general, the remaining uncertainty is given by  309	

 310	

𝜎! = 𝑓! − 1 − 𝑓 !,                                                            (7) 311	

 312	

which lies between a linear  (𝑓 → 0) and an exponential (𝑓 → 1/2) gain of confidence with 313	

additional samples 𝑛. 314	

 315	

Data analysis 316	

Here we propose a method to calculate the probability 𝑝!(𝑛) to find all clonal alterations from 𝑛 317	

independent tumour samples. This method allows us to infer the balancing factor 𝑓 of a tumour 318	

with respect to the first bifurcation and thus to estimate the expected gain of information with 319	

respect to truly clonal alterations by including additional tumour samples in the analysis: 320	

 321	

(i) Collect 𝑛 samples of a tumour. 322	

(ii) Analyse the 𝑛 samples and determine all alterations. 323	

(iii) Take the intersection of all alterations of all 𝑛 tumour samples. 324	

(iv) Take the intersection of all alterations of all possible combinations of 1 to 𝑛 − 1 tumour 325	

samples. 326	

(v) Calculate the probability that the alteration identified in step (iii) and (iv) coincide. 327	

 328	

By definition, this probability approaches 1 for the combination of all 𝑛 samples.  329	

To allow a comparison with Equation (2), we have to normalise accordingly and get 330	

 331	

𝑝! 𝑖, 𝑛 = !!!!!(!!!)!

!!!!!(!!!)!
                                                    (8) 332	

 333	
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Here, 𝑛 is the maximal number of available samples and 𝑖 = 1,⋯ , 𝑛 denotes possible sub-334	

samples. The only free parameter of this equation is 𝑓. Thus fitting Equation (8) to actual tumour 335	

data allows us to infer 𝑓, see for example Figure 2 and 3. We use standard least square regression 336	

to infer the single free parameter 𝑓.  337	

Our algorithm is sensitive to misclassified mutations, e.g. mutations not found in a subset of 338	

samples due to normal contamination or limitations of sequencing depth (false negatives). Those 339	

are inevitable problems in multi-region sequencing studies, leading to a few mutations that seem to 340	

contradict the phylogenetic history of these tumours, the so-called “homoplasy” events. Standard 341	

phylogenetic reconstruction algorithms, such as Maximum Parsimony, discard those, hence we 342	

filtered the few homoplasy events present in a small subset of renal patients (3/10) from our 343	

analysis.  344	

 345	
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Figures: 428	

 429	

 430	

 431	

 432	

Figure 1:     The sampling bias of a multi region analysis depends on a tumour’s 433	

evolutionary history. a), b) The most recent common ancestor of all cells in the 434	

tumour contains all alterations that are truly clonal (top square). The first bifurcation 435	

from the ancestor divides the tumour into two populations that will constitute a fraction 436	

of 𝑓 and 1 − 𝑓 at diagnosis. These fractions are the result of complex processes (e.g. 437	

clonal selection) and tumours might be balanced (both populations reach a similar 438	

size, 𝑓 = 0.5), or one population gains a significant fitness advantage and the tumour 439	

becomes unbalanced (𝑓 ≪ 0.5). During growth, cells accumulate further alterations 440	

that contribute to intra tumour heterogeneity at diagnosis. c) This implies that different 441	

multi-region samples will identify different alterations and different combinations of 442	

samples will identify different sets of clonal and sub-clonal alterations. Only if we 443	
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sample cells from both sides of the phylogenetic tree, we can identify all true clonal 444	

alterations. d) The probability that at least one out of 𝑖 samples is from each side of the 445	

phylogenetic tree depends on the relative sizes of both sides 𝑓 and is given by 446	

𝑝! = 1 − 𝑓! − (1 − 𝑓)!. Balanced trees (𝑓 = 0.5) need few samples to identify all true 447	

clonal mutations with high confidence, while unbalanced trees (e.g. 𝑓 = 0.166) require 448	

more samples for the same confidence.  449	

 450	

 451	

 452	

 453	

 454	

 455	

 456	

 457	
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 458	

Figure 2:     Information gain from multi-region sequencing in patients with clear cell renal 459	

carcinoma.  (Panels a1 to j1) If from a set of 𝑛 multi-region samples from a patient we 460	

consider different subsets of samples (𝑛 is between 5 and 11 per patient) with size 461	

𝑖 = 1,2,… 𝑛, we will identify different numbers of putatively clonal alterations, with great 462	

variation between different sets of the same size. The more samples we consider, the 463	

closer we get to the minimal identifiable set of clonal mutations, i.e. mutations that may 464	

have appeared clonal with one or few samples, turn out to be indeed sub-clonal in the 465	

whole tumour. (Panels a2 to j2) The probability to find the minimal set of clonal 466	

mutations falls onto the universal curve (8). Dots represent the data; lines correspond 467	

to best fits of 𝑓 via Equation (8). In 2 cases (c2 and j2) we find a balanced left and right 468	

side (𝑓 = 0.5). One case (i) appears slightly unbalanced (f=0.32) while all other cases 469	

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

Number of tumor samples

N
um
be
ro
fc
lo
na
lm
ut
at
io
ns

1 2 3 4 5 6 7 8
0

20

40

60

Number of tumor samples

N
um
be
ro
fc
lo
na
lm
ut
at
io
ns

1 2 3 4 5
0

20

40

60

Number of tumor samples

N
um
be
ro
fc
lo
na
lm
ut
at
io
ns

1 2 3 4 5
0

20

40

60

Number of tumor samples

N
um
be
ro
fc
lo
na
lm
ut
at
io
ns

1 2 3 4 5 6 7
0

20

40

60

Number of tumor samples

N
um
be
ro
fc
lo
na
lm
ut
at
io
ns

1 2 3 4 5 6 7 8
0

20

40

60

Number of tumor samples

N
um
be
ro
fc
lo
na
lm
ut
at
io
ns

1 2 3 4 5 6 7 8
0

20

40

60

Number of tumor samples

N
um
be
ro
fc
lo
na
lm
ut
at
io
ns

1 2 3 4 5 6
0

20

40

60

Number of tumor samples

N
um
be
ro
fc
lo
na
lm
ut
at
io
ns

1 2 3 4 5 6 7 8
0

20

40

60

Number of tumor samples

N
um
be
ro
fc
lo
na
lm
ut
at
io
ns

1 2 3 4 5 6 7 8
0

20

40

60

Number of tumor samples

N
um
be
ro
fc
lo
na
lm
ut
at
io
ns

a,1) b,1) c,1) d,1) e,1)

f,1) g,1) h,1) i,1) j,1)

EV001 EV002 EV003 EV005 EV006

EV007 RMH002 RMH004 RMH008

RK26

Number of clonal mutations for different number of tumour samples in 10 renal cancer patients 

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Number of tumour samples

Pr
ob
ab
ilit
y

2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Number of tumour samples

Pr
ob
ab
ilit
y

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Number of tumour samples

Pr
ob
ab
ilit
y

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Number of tumour samples

Pr
ob
ab
ilit
y

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

Number of tumour samples

Pr
ob
ab
ilit
y

2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Number of tumour samples

Pr
ob
ab
ilit
y

2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Number of tumour samples

Pr
ob
ab
ilit
y

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Number of tumour samples

Pr
ob
ab
ilit
y

2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Number of tumour samples

Pr
ob
ab
ilit
y

2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Number of tumour samples

Pr
ob
ab
ilit
y

a,2) b,2) c,2) d,2) e,2)

f,2) g,2) h,2) i,2) j,2)

Balancing of each tumour with respect to the first detectable bifurcation based on all available tumour samples

R2 = 1 R2 = 1 R2 = 0.985 R2 = 1 R2 = 0.958

f < 0.01 f < 0.01 f < 0.01 f < 0.01f = 0.5

R2 = 0.997 R2 = 1 R2 = 1 R2 = 0.993 R2 = 0.999

f < 0.01 f < 0.01 f < 0.01 f = 0.5f = 0.32

EV001 EV002 EV003 EV005 EV006

EV007 RMH002 RMH004 RMH008 RK26

4 5 6 7 8 9 10 11
-0.2

0.0

0.2

0.4

0.6

0.8

Number of tumour samples

B
al
an
ci
ng
fa
ct
or
f

4 5 6 7
-0.2

0.0

0.2

0.4

0.6

0.8

Number of tumour samples

B
al
an
ci
ng
fa
ct
or
f

4 5 6 7 8
-0.2

0.0

0.2

0.4

0.6

0.8

Number of tumour samples

B
al
an
ci
ng
fa
ct
or
f

4 5
-0.2

0.0

0.2

0.4

0.6

0.8

Number of tumour samples

B
al
an
ci
ng
fa
ct
or
f

4 5
-0.2

0.0

0.2

0.4

0.6

0.8

Number of tumour samples

B
al
an
ci
ng
fa
ct
or
f

4 5 6 7
-0.2

0.0

0.2

0.4

0.6

0.8

Number of tumour samples

B
al
an
ci
ng
fa
ct
or
f

4 5 6 7 8
-0.2

0.0

0.2

0.4

0.6

0.8

Number of tumour samples

B
al
an
ci
ng
fa
ct
or
f

4 5
-0.2

0.0

0.2

0.4

0.6

0.8

Number of tumour samples

B
al
an
ci
ng
fa
ct
or
f

4 5 6 7 8
-0.2

0.0

0.2

0.4

0.6

0.8

Number of tumour samples

B
al
an
ci
ng
fa
ct
or
f

4 5 6 7 8
-0.2

0.0

0.2

0.4

0.6

0.8

Number of tumour samples

B
al
an
ci
ng
fa
ct
or
f

a,3) b,3) c,3) d,3) e,3)

f,3) g,3) h,3) i,3) j,3)

Distribution of balancing factor f for all combinations of tumour samples 

EV001 EV002 EV003 EV005 EV006

EV007 RMH002 RMH004 RMH008 RK26



	 18	

are unbalanced (f <0.01), supporting the presence of convergent evolution and on-470	

going clonal selection. All patients but (i2) and (j2) developed metastasis. Only 471	

patients (h2 to j2) are treatment naïve. For balanced tumours, the information on the 472	

true set of clonal alterations quickly plateaus with few samples (for example 5 samples 473	

in patient (j)).  (Panels a3 to j3) We repeat the inference of the balancing factor 𝑓 on all 474	

available combinations of subsets of tumour samples with a minimum of 4 samples. 475	

The violin plots show the corresponding distributions of 𝑓 values for each possible 476	

combination of 𝑖 = 4,5,… 𝑛-1  subsets. Most combinations of samples resemble the 477	

balancing inferred from the full data set. However, there is a trend towards a bimodal 478	

distribution for small 𝑖, which might be a direct consequence of the spatial evolution of 479	

tumours. Data from Gerlinger et al. 2014 22.  480	

 481	

 482	
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 483	

 484	

Figure 3      Information gain from multi-region copy number profiling in patients with 485	

colorectal cancer. Copy number changes were inferred from spatially distributed 486	

single glands of 11 colorectal tumours. Based on the shape of the universal curve 487	

(Equation (8)), 7 tumours appear balanced or nearly balanced and 4 tumours appear 488	

unbalanced. Balanced tumours require fewer samples to identify truly clonal copy 489	

number changes, whereas uncertainty remains high in unbalanced trees. Data from 490	

Sottoriva et al. 2015 23. 491	
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