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A B S T R A C T

Radiomics has become a popular image analysis method in the last few years. Its key hypothesis is that medical
images harbor biological, prognostic and predictive information that is not revealed upon visual inspection. In
contrast to previous work with a priori defined imaging biomarkers, radiomics instead calculates image features
at scale and uses statistical methods to identify those most strongly associated to outcome. This builds on years of
research into computer aided diagnosis and pattern recognition. While the potential of radiomics to aid per-
sonalized medicine is widely recognized, several technical limitations exist which hinder biomarker translation.
Aspects of the radiomic workflow lack repeatability or reproducibility under particular circumstances, which is a
key requirement for the translation of imaging biomarkers into clinical practice. One of the most commonly
studied uses of radiomics is for personalized medicine applications in Non-Small Cell Lung Cancer (NSCLC). In
this review, we summarize reported methodological limitations in CT based radiomic analyses together with
suggested solutions. We then evaluate the current NSCLC radiomics literature to assess the risk associated with
accepting the published conclusions with respect to these limitations. We review different complementary
scoring systems and initiatives that can be used to critically appraise data from radiomics studies. Wider
awareness should improve the quality of ongoing and future radiomics studies and advance their potential as
clinically relevant biomarkers for personalized medicine in patients with NSCLC.

1. Introduction

Lung cancer remains the leading cause of cancer-related mortality
worldwide [1]. The 5 year survival for patients with non-small cell lung
cancer (NSCLC), the most common form of the disease, is 10−20%
[2,3]. Despite advances in treatment options in recent years, survival
rates have changed little [3,4].

Given the patient variability and tumor heterogeneity of this cancer,
personalizing treatment is key to improving survival beyond the current
poor prognosis [5]. One requirement for successful delivery of perso-
nalized medicine is the identification and validation of biomarkers that
can predict which patients will benefit from a given therapy. There is an
unmet need for such biomarkers in lung cancer [6].

Medical imaging plays a key role in the diagnosis and treatment of
lung cancer, making the use of image-based biomarkers to guide

clinical decision-making attractive. Over the last several decades, a
number of biomarkers derived from CT, PET and MRI that measure
tumor size, shape and texture, or quantify aspects of the tumor mi-
croenvironment have been used in lung cancer studies for diagnosis,
prediction, prognostication and response monitoring [6–8].

There is currently substantial interest in using computer algorithms
to extend this approach to extract tens to thousands of image ‘features’
in an analysis pipeline strategy termed ‘radiomics’. Such methods test
the hypothesis that medical images harbor data that will provide bio-
markers for personalized medicine, but that the optimum biomarkers
are not readily determined a priori [9]. Imaging biomarker studies
postulate that medical images contain biological, prognostic and pre-
dictive information that is not apparent when clinicians view scans
[10]. In radiomics, this information is extracted from digital images
using computer algorithms to form ‘radiomic signatures’, a type of

https://doi.org/10.1016/j.lungcan.2020.05.028
Received 12 March 2020; Received in revised form 18 May 2020; Accepted 23 May 2020

Abbreviations: AUC, area under the curve; CI, concordance index; HR, hazard ratio; ROI, region of interest; RQS, radiomics quality score; TRIPOD, Transparent
Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis

⁎ Corresponding author at: The University of Manchester, Division of Cancer Sciences, Wilmslow Road, Manchester, M20 4BX, UK.
E-mail address: Isabella.fornacon-wood@postgrad.manchester.ac.uk (I. Fornacon-Wood).

1 These authors contributed equally.

Lung Cancer 146 (2020) 197–208

0169-5002/ © 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/01695002
https://www.elsevier.com/locate/lungcan
https://doi.org/10.1016/j.lungcan.2020.05.028
https://doi.org/10.1016/j.lungcan.2020.05.028
mailto:Isabella.fornacon-wood@postgrad.manchester.ac.uk
https://doi.org/10.1016/j.lungcan.2020.05.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.lungcan.2020.05.028&domain=pdf


quantitative imaging biomarker formed by combining the radiomics
features that have the strongest association to the measured outcome.
The radiomics workflow consists of a series of steps [11]. summarized
in Fig. 1. Proponents of radiomics hypothesize that these data-driven
approaches will select the most statistically significant signature that
relates to an outcome measure of interest. This approach is extremely
popular, but to date the resultant imaging biomarkers have not been
validated as useful tools for personalized medicine [12].

CT is the most commonly used modality worldwide for diagnosis,
treatment planning, and follow-up in all stages of lung cancer, meaning
that informative imaging biomarkers discovered from these data could
be translated rapidly into clinical practice. In this review, we sum-
marize the literature supporting use of CT radiomic biomarkers to guide
decision-making in patients with NSCLC.

We appraise the published reports of CT radiomics biomarkers as
predictive, prognostic or biologically informative tools and review lit-
erature highlighting methodological limitations. Our aims are to eval-
uate how robust the conclusions of these studies are and to assess how
well the current standardization and reporting tools inform readers of
the potential limitations when interpreting their results.

2. The potential of radiomics for personalized decision-making in
NSCLC

A review of the literature found 43 CT image based studies that
evaluated the prognostic or predictive role of radiomic signatures in
patients with NSCLC (Table 1). Three of these studies, together with a
further 21 we separately identified, evaluated the role of radiomic
signatures in appraising aspects of tumor biology including genomic or
pathologic biomarkers, signalling pathways, and disease classification
in NSCLC (Table 2).

In addition, 42 studies reported on radiomics methodological lim-
itations, potential problems, and possible solutions in CT based studies
using data from NSCLC patients or imaging phantoms. The frequency of
publications, for all types of NSCLC radiomics study, has markedly in-
creased over the last six years (Fig. 2). Our search strategies are de-
scribed in detail in Supplementary Materials.

The initial studies labelled as ‘radiomics’ were published in 2014
and 2015. Aerts and colleagues showed that a radiomic signature based
on shape and texture metrics was associated with overall survival, va-
lidating the signature in patients with NSCLC and patients with head
and neck cancers [13]. The study also found positive associations be-
tween the radiomic signature and gene expression. Coroller and col-
leagues showed that a different set of texture metrics were associated
with the subsequent development of distant metastases [33]. The hy-
pothesized mechanism was that tumor heterogeneity, identified by the
radiomics analyses, drives worse outcomes. Both studies were per-
formed using radiotherapy planning CT data.

Over the next four years (2015–2019), 41 CT studies were published
that linked radiomics to lung cancer patient outcome. In general, stu-
dies sought to evaluate whether or not radiomic signatures could out-
perform existing methods for patient risk stratification. 20 studies re-
lated radiomics to overall survival [13–32], 18 to the likelihood of local
or metastatic recurrence [18–20,32–46], 6 to response, disease-free or
progression-free survival [32,47–51], and 2 to staging [54,55]. Two
further studies focused on the association of radiomics signatures to
lung toxicity [52,53], Four studies investigated multiple endpoints.

The majority of studies derived radiomics signatures in radio-
therapy planning or diagnostic images acquired prior to therapy. Nearly
all studies evaluated patients undergoing treatment with cytotoxic
chemo-radiotherapy. More recently, a number of studies have eval-
uated the potential of radiomics to improve patient stratification for
targeted therapies and immunotherapy agents [21,51,56]. For example,
Tang and colleagues linked radiomic features to a tumor immune
phenotype in patients with stage I-III NSCLC, finding patients with
heterogeneous tumors, which correlated with low PD-L1 and high CD3
cell count, had better prognosis [21].

There are 24 CT studies evaluating how radiomic signatures of
NSCLC relate to genomics [56–64], signalling pathways [15,65] and
histopathology [38,45,59,66–76]. For example, Rios Velazquez and
colleagues found distinct imaging phenotypes for EGFR and KRAS
mutations from CT images of patients with NSCLC [57]. Some of the
studies that relate radiomics to patient outcome also relate their
radiomic signature to genomics [13] or biological markers [28].

Fig. 1. Visualization of the steps in the radiomics workflow. First, images are acquired and reconstructed. The region of interest is then segmented, from which
features will be extracted. Next, pre-processing steps are performed to modify the images before feature extraction. Shape, first order (or histogram) and texture
features are then extracted from the region of interest. Finally, data analysis steps attempt to find correlations between features and the specified outcome.
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Table 1
Radiomics studies in NSCLC, categorized into sections based on their investigated endpoint. The Data column specifies the total number of patients involved in the
study, in brackets split by training and validation cohorts if applicable and specifying other cancer types of cohorts if applicable. Note: Studies marked with * are
validation studies and their RQS score components refer to methodology based on the previous published data. This table has been simplified to clarify presentation –
more details for each study are available in Supplementary Table 2.

Reference NSCLC stage Data (training+ validation) Radiomic features in
final model

Result

Overall survival
Aerts et al. 2014 [13] 1−3b 647 pCT

(422+225)
Shape, first order and
texture

CI= 0.65

Van Timmeren et al. 2017
[14]*

1−4 252 pCT and CBCT
(102+56+94)

Shape, first order and
texture

CI= 0.69, 0.61, 0.59 (pCT)
CI= 0.66,0.63,0.59 (CBCT)

Grossman et al. 2017 [15]* 1−3 351 diagnostic CT
(262+89)

Shape, first order and
texture

CI= 0.60

Grossman et al. 2017 [15] 1−3 351 diagnostic CT
(262+89)

Not specified CI= 0.61

Yu et al. 2017 [16] 1 442 diagnostic CT
(147+295)

First order and texture CI= 0.64

Chaddad et al. 2017 [17] 1−3b 315 pCT Shape and texture Average AUC=0.70−0.76
Fave et al. 2017 [18] 3 107 4DCT end of exhale, pCT and CBCT Shape and texture CI= 0.672
Li et al. 2017 [19] 1−2a 59 follow up CT Texture AUC=0.81
Li et al. 2017 [20] 1−2a 92 4DCT

Average-CT or 50 % phase-CT
Shape and first order AUC=0.728

Tang et al. 2018 [21] 1−3 290 staging CT
(114+176)

Shape, first order and
texture

CI= 0.72

Bianconi et al. 2018 [22] 1−3 203 pCT Shape and texture HR=1.06−1.48
De Jong et al. 2018 [23]* 4 195 diagnostic CT Shape, first order and

texture
CI= 0.576

Lee et al. 2018 [24] 1−3 339 CT Shape, first order and
texture

CI= 0.772

He et al. 2018 [25] 1−3 186 CT
(298 after oversampling (223+ 75))

Not specified AUC=0.9296

Starkov et al. 2018 [26] 1 116 pCT Texture High risk vs low risk median
p-values=0.04–0.07

Yang et al. 2018 [27] 1−4 371 CT
(239+132)

First order and texture CI= 0.702

Wang et al. 2019 [28] 3 70 pre-treatment and 97 post-treatment CT from
118 patients

Texture CI= 0.743

Shi et al. 2019 [29] 3 11 CBCT from 23 patients First order HR=0.21
Van Timmeren et al. 2019 [30] 1−4 337 pCT and 2154 CBCTs from 337 patients

(141+ 94+61+41)
First order and texture CI= 0.59, 0.54, 0.57

Huang et al. 2019 [31] 1−4 371 CT
(254+63+54)

Shape, first order and
texture

CI= 0.621, 0.649

Franceschini et al. 2019 [32] 1−2 102 4DCT start of inspiration
(70+ 32)

Shape and texture AUC=0.85

Local or metastatic recurrence
Coroller et al. 2015 [33] 2−3 182 pCT

(98+ 84)
First order and texture CI= 0.6

Mattonen et al. 2016 [34] 1 45 follow-up CT First order and texture AUC=0.85
Huynh et al. 2016 [35] 1−2 113 CT First order and texture Median CI= 0.67
Huynh et al. 2017 [36] 1−2a 112 CT and AIP CT Shape, first order and

texture
AIP radiomics CI= 0.667
FB radiomics CI= 0.601

Fave et al. 2017 [18] 3 107 4DCT end of exhale, pCT and CBCT Shape and texture CI= 0.632, 0.558 (DM, LRR)
Li et al. 2017 [19] 1−2a 59 follow up CT Texture AUC=0.80, 0.80 (RFS, LR-RFS)
Li et al. 2017 [20] 1−2a 92 4DCT

Average-CT or 50 % phase-CT
Shape AUC=0.747, 0.690 (RFS, LL-RFS)

Dou et al. 2018 [37] 2−3 200 pCT
(100+100)

Texture CI= 0.65

Ferreira Junior et al. 2018 [38] 1−4 68 CT
(52+ 16)

Shape and texture AUC=0.75, 0.71
(lymph node metastasis, DM)

Yang et al. 2018 [39] 1−3 159CT
(106+53)

Shape, first order and
texture

AUC=0.856

Zhong et al. 2018 [40] 1−2 492 CT First order and texture AUC=0.972
Lafata et al. 2019 [41] 1 70 CT Texture Maximum AUC=0.72, 0.83, 0.60 (recurrence,

LR, non-LR)
Akinci D’Antonoli et al. 2019

[42]
1−2b 124 CT Shape, first order and

texture
AUC 0.731, 0.750 (LR, DM)

He et al. 2019 [43] Not specified 717CT
(423+294)

First order and texture CI= 0.734

Xu et al. 2019 [44] 3−4 132 CT
(106+26)

Texture AUC=0.642

Franceschini et al. 2019 [32] 1−2 102 4DCT start of inspiration
(70+ 32)

Shape, first order and
texture

AUC=0.73

Ferreira-Junior et al. 2019 [45] 1−4 85 CT Shape, first order and
texture

AUC=0.92, 0.84 (DM, nodal metastasis)

Cong et al. 2019 [46] 1a 649 venous phase CT
(455+194)

Shape, first order and
texture

AUC=0.851

(continued on next page)
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Collectively, these 64 studies present a positive view of the potential
for radiomics signatures to deliver personalized medicine. However,
two important limitations are readily apparent. Firstly, while nearly all
studies report at least one positive association between CT radiomic
signature and either outcome (OS, PFS, recurrence or toxicity) or tumor
biology (genomic or pathology biomarkers and signalling pathways),
the particular radiomic signature derived varies substantially between
studies. Consequently, few study signatures are directly comparable
with one another, and so the literature does not identify specific can-
didate radiomic signatures for further large multicenter evaluation.

Secondly, it has become clear that studies can suffer from significant
technical limitations. Studies of these limitations have also increased
over the last five years, although at a slower pace than the patient
outcome studies (Fig. 2).

3. Reported methodological limitations of CT based radiomics
studies

All biomarkers, including radiomic signatures, must undergo tech-
nical and biological validation to become robust tools used to guide
clinical decision-making. These validation steps take a biomarker from
discovery to research assay where the biomarker can be used with
confidence to determine an outcome in a research setting (termed
‘crossing translational gap 1′). The regulatory approval process
(through e.g. the FDA or EMA) then takes the biomarker from research
assay to clinically approved assay for use in decision-making in patients
(termed ‘crossing translational gap 2′) [12].

To date, very few radiomics signatures have crossed either of these
translational gaps. The first radiology product with radiomics cap-
abilities to receive such approvals was QuantX for detection of breast
abnormalities based on MRI, receiving FDA approval in 2017 [77].
Soon afterwards, Feedback Medical received CE approval for TexRAD
Lung, a quantitative image texture analysis technology [78].

In this section, we evaluate the methodological limitations pre-
venting CT based radiomics signatures from crossing these translational
gaps. We review the potential problems and proffered solutions iden-
tified in 42 studies of imaging phantoms or patients with NSCLC
(summarized in Table 3 and expanded in Supplementary Table 1).

3.1. Image acquisition

Many radiomics studies are retrospective evaluations of CT images,
often with data acquired at multiple different institutions and on

different CT scanner vendor platforms. Consequently, nearly all studies
contend with variations in image acquisition and reconstruction pro-
tocols.

Studies assessing the impact of different CT scanners and protocols
on radiomic features have shown some features have poor reproduci-
bility [79,80,84–87]. Performing phantom studies on different scanners
as a quality assurance step may ensure a level of feature consistency
[84]. Indeed, one study showed that using a controlled protocol across
different CT scanners reduced feature variability by over 50 % com-
pared to using local protocols [79]. Other studies used post-extraction
deep learning [100] or correction factors [89] to reduce feature
variability.

Restricting study data to one scanner make and model along with
one set of acquisition parameters, to reduce variability in image capture
acquisition, is seldom feasible for a multicentre research study.
Therefore, many of these issues still remain when setting up a well
powered prospective clinical trial with radiomic signatures as ex-
ploratory endpoints.

3.2. Image reconstruction

Retrospective data analyses are constrained by image reconstruction
parameters determined by clinical department protocols, chosen to
optimize image anatomical quality. While variations in image re-
construction, slice thickness and in plane pixel dimensions may have
negligible effect for clinical interpretation, they can induce variability
in radiomic feature values, since many features correlate to these
parameters [79,94–98].

Resampling the image to an equal voxel size has reduced feature
dependency on acquisition in some studies [94,96] but not others
[79,95]. Smoothing filters have also been suggested as a method for
reducing voxel size dependency [95], as has limiting inclusion criteria
to particular resolution ranges. For example, Lu et al. found that fea-
tures calculated from images with 1.25mm and 2.5 mm thick slices
were comparable to each other but that both differed from those cal-
culated on 5mm slice thickness images [97].

Reconstruction techniques also influence feature values with studies
demonstrating differences between features calculated on images re-
constructed with soft or sharp kernels [97,102]. Potential solutions
include the application of correction factors based on the image noise
power spectrum [101]. Solutions that balance feature robustness with
the need to make image inclusion criteria as permissive as possible are
vital given the small cohorts size issues that blight many studies.

Table 1 (continued)

Reference NSCLC stage Data (training+ validation) Radiomic features in
final model

Result

Treatment response, disease-free or progression-free survival
Coroller et al. 2016 [47] 2−3 127 pCT Shape, first order and

texture
Median AUC=0.65, 0.61 (GRD, pCR)

Huang et al. 2016 [48] 1−2 282 CT (141+141) First order and texture HR=2.09
Song et al. 2016 [49] 1−4 152 CT

(80+ 72)
Texture HR=2.35, 2.75

Coroller et al. 2017 [50] 2−3 85 pCT Shape, first order and
texture

Median AUC=0.68,= 0.71 (pCR, GRD)

Tunali et al. 2019 [51] 3b-4 228 CT Texture AUC=0.804
Franceschini et al. 2019 [32] 1−2 102 4DCT start of inspiration

(70+ 32)
Texture AUC=0.88

Lung toxicity
Moran et al. 2017 [52] 1 14 diagnostic CT First order and texture AUC=0.689−0.750
Krafft et al. 2018 [53] Not specified 192 50 % 4DCT phase First order and texture Average AUC=0.68
Staging
Yuan et al. 2018 [54] 1 327 CT First order and texture AUC=0.938
Yang et al. 2019 [55] 1−3 256 CT First order and texture AUC=0.93

Abbreviations: AUC, area under the curve; CBCT, cone-beam CT; CI, concordance index; DFS, disease free survival; DM, distant metastasis; GRD, gross residual
disease; H&N, head and neck; HR, hazard ratio; LR, local relapse; LRR, local regional recurrence; LR-RFS, loco-regional recurrence-free survival; OS, overall survival;
pCR, pathological complete response; pCT, radiotherapy planning CT scan; PFS, progression free survival; RFS, recurrence free survival.
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3.3. Segmentation

The ROI definition for feature extraction is known to be a particu-
larly sensitive step in the radiomics pipeline [103–107]. Radiomics
studies are popular in radiotherapy given the ready availability of pre-
defined ROIs on treatment planning scans, typically using the clinically
defined Gross Tumor Volume (GTV). The subjectivity of GTV definition
can depend on the operator, as expert delineations may generate fea-
tures with better predictive power than those from a non-specialist
[103].

Frequently suggested solutions include the inclusion of multiple
observers or the use of semi-automated delineation tools [106,107].
However, few studies have adopted these solutions, most likely due to
the difficulty of getting clinically qualified staff to delineate ROIs. In
studies not using radiotherapy planning CT scans, the ROIs must be
drawn specifically for the purpose of the radiomics analysis and will
suffer from all of the same issues discussed above.

3.4. Pre-processing

The preparation of images for feature extraction has a marked effect
on feature value. Reducing the number of image grey-levels (voxel
depth re-binning) is a commonly used method to supress image noise.
However, studies have shown that radiomic features are not compar-
able when computed with a differing intensity bin sizes [94,96,98].
This has led to the proposed use of standardized bin resolution [98].

3.5. Feature extraction

Radiomics features span a range of calculation classes. Shape fea-
tures contain information about the ROI morphology (such as volume
and measures of sphericity). First-order image intensity features assess
properties of the intensity histogram of voxels within the ROI (e.g. the
mean intensity and other statistical moments of the histogram). Texture
features summarize different measures of the way in which voxel in-
tensities change across the ROI (e.g. voxel variation coarseness and

Table 2
Radiomics studies in NSCLC with an aspect of biology as the endpoint. The column labeled ‘Data’ specifies the total number of patients involved in the study, in
brackets split by training and validation cohorts if applicable and specifying other cancer types of cohorts if applicable. This table has been simplified to clarify
presentation – more details for each study are available in Supplementary Table 3.

Reference Stage Endpoint Data (training+ validation) Radiomic features in final
model

Result

Genomics
Aerts et al. 2016 [56] Early stage EGFR 47 diagnostic CT and follow-up Shape and texture AUC=0.74−0.91
Rios Velazquez et al. 2017

[57]
1−4 EGFR, KRAS 705 diagnostic CT

(353+352)
Shape, first order and texture AUC=0.69−0.80

Mei et al. 2018 [58] Not specified EGFR 296 CT Texture AUC=0.664
Digumarthy et al. 2019 [59] Not specified EGFR 93 CT First order AUC=0.713
Jia et al. 2019 [60] 1−4 EGFR 504 CT

(345+158)
Shape, first order and texture AUC=0.802

Li et al. 2019 [61] 1−4 EGFR subtypes (19Del and L858R) 312 CT
(236+76)

Shape, first order and texture AUC=0.775−0.793

Tu et al. 2019 [62] 1−4 EGFR 404 CT
(243+161)

First order and texture AUC=0.775

Yang et al. 2019 [63] Not specified EGFR 467 CT
(306+161)

Shape, first order and texture AUC=0.789

Wang et al. 2019 [64] 1−2 EGFR, TP53 61 CT
(41+ 20)

First order and texture AUC=0.604, 0.586

Wang et al. 2019 [64] 1−2 Tumor mutation burden 61 CT
(41+ 20)

Texture AUC=0.606

Signaling pathways
Grossman et al. 2017 [15] 1−3 Various 351 CT

(262+89)
Shape, first order and texture AUC=0.62−0.72

Bak et al. 2018 [65] 1−4 Various 57 CT First order and texture OR=0.08−23.94
Histopathology
Patil et al. 2016 [66] Not specified ADC, LCC, SCC, NOS 317 pCT Shape, first order and texture 88 % accuracy
Wu et al. 2016 [67] 1−4 ADC, SCC 350 pCT

(198+152)
First order and texture AUC=0.72

Ferreira Junior et al. 2018
[38]

1−4 ADC, SCC 68 CT
(52+ 16)

Not specified AUC=0.81

Zhu et al. 2018 [68] Not specified ADC, SCC 129 CT
(81+ 48)

First order and texture AUC=0.893

Digumarthy et al. 2019 [59] Not specified ADC, SCC 93 CT First order AUC=0.744
E et al. 2019 [69] Not specified ADC, SCC, SCLC 229 CT Shape, first order and texture AUC=0.657−0.875
Ferreira-Junior et al. 2019

[45]
1−4 ADC, SCC 85 CT Shape, first order, texture AUC=0.88

Liu et al. 2019 [70] Not specified ADC, LCC, SCC, NOS 349 CT
(278+71)

Not specified AUC=0.86

Zhou et al. 2018 [71] 1−4 Ki-67 110 CT Shape and texture AUC=0.61−0.77
Gu et al. 2019 [72] Not specified Ki-67 245 CT First order and texture AUC=0.776
Song et al. 2017 [73] 1−3 Micropapillary pattern 339 CT First order AUC=0.751
Chen et al. 2018 [74] Not specified Degree of differentiation 487 CT

(303+184)
First order and texture AUC=0.782

She et al. 2018 [75] Not specified Invasive vs non-invasive
adenocarcinoma

402 CT
(207+195)

Shape, first order and texture AUC=0.89

Yang et al. 2019 [76] Not specified Invasive vs non-invasive
adenocarcinoma

192 CT
(116+76)

First order and texture AUC=0.77

Abbreviations: ADC, adenocarcinoma; AUC, area under the curve; CI, concordance index; EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma viral
oncogene homolog; LCC, large cell carcinoma; NOS, not otherwise specified; OR, odds ratio; SCC, squamous cell carcinoma.
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homogeneity). These features may be calculated on the original image
or derived after various filters have been applied that modify particular
aspects of it, for example to enhance the edges where image intensity
changes [11].

Many different software platforms exist for performing the feature
extraction step, including free open-source software, commercial soft-
ware, and software developed in-house by individual institutions. The
Image Biomarker Standardization Initiative (IBSI) is an international
collaboration between research groups with the aim of standardizing

image biomarker extraction [121]. To date only one study has in-
vestigated whether feature extraction software influences radiomic
features from CT scans of patients with NSCLC [122], which shows,
consistent with data from other cancer types [123,124], that this can
have substantial impact on feature values.

3.6. Feature correlation

Since many tens to thousands of features are calculated from images

Fig. 2. Frequency of CT NSCLC radiomics studies published
from 2014 to 2019. Publications are categorized as those in-
vestigating radiomics methodological concerns, those evalu-
ating radiomic signatures as prognostic or predictive bio-
markers of patient outcome, and those evaluating radiomic
signatures as biomarkers of tumor biology.

Table 3
Potential problems at each step of the radiomics workflow along with possible solutions offered by the literature. Each workflow step with potential problems and
solutions identified by the literature is labelled with a letter A-H to reference in-text. Note: Modelling does not have a letter associated with since there is no
consensus on the best statistical modelling strategies.

Problem area Potential problems Potential solutions

Image acquisition A Different scanners and acquisition protocols affect feature
reproducibility [79–91]

Image phantoms on different scanners to provide baseline [79],
establish credibility of scanners and protocols [84], catalogue
reproducible features [86,90], model a correction algorithm [89],
harmonize data [91].

B Patient motion affects feature reproducibility [80,92,93] Set motion tolerances, reduce ROI boundaries [80], use single phase
from 4D images [92], find robust features using 4DCT data [93].

Image acquisition and
reconstruction

C Image resolution parameters (voxel size, slice thickness) affect
feature values [79,88,94–98] model performance [99].

Control resolution [79] parameters in prospective studies, resample to
common resolution and voxel depth [94–96,98], apply smoothing
image filters [95], apply deep learning methods [100].

Image reconstruction D Image reconstruction algorithm and reconstruction parameters
(kernel) affects features [97,101,102]

Pre-processing image correction [101] and harmonization of
acquisition techniques [97,102].

Segmentation E Delineation variability [90,103–107] affects features and is time
consuming [106,107]. Results from one disease site are not
necessarily transferrable to another [108].

Expert ROI definition [103], multiple observers [103,104,108],
identification of stable features with respect to delineation
[90,104,105], automated segmentation [106,107], image filtering
[108]

Pre-processing F Number of grey levels used to discretize histogram and texture
features affects feature values [96,98,109], as does bin width [94].

Texture features can be normalized to reduce dependency on the
number of grey levels [98], number of grey levels used for
discretization should be recorded with feature formula. 128 grey levels
may be optimal for texture features, along with thresholding [109]

Feature extraction No studies found in the literature search.
Feature correlation G Strong correlations between tumor volume and radiomic features

exist [98,110–112]
Normalization of features to volume [98], bit depth resampling [110],
feature redesign [110], more robust statistics to check added value of
radiomics signatures [111].

Test re-test H Radiomic features may not be repeatable over multiple
measurements [113–115], repeatable features are not
generalizable to other disease sites [116].

Test-retest data acquisition [113,116], use of multiple 4D phases
[113,115], use of simulated retest by image perturbation [114].

Modelling clinical outcome Different modelling strategies affect model performance
[117–120]

Sample sizes above 50 give better predictive performance [118], as
does normalizing features [117]. No consensus on best modelling
strategies to use.
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in radiomics, it is unsurprising that many features often correlate with
one another. However, the fact that features often correlate strongly
with tumor volume and clinical factors [98,110,111] is not well ap-
preciated. While it has been suggested that radiomic feature calcula-
tions formulae should be modified to be account for tumor volume
[98], it is crucial that studies also include transparent and robust fea-
ture reduction steps to account for other clinical prognostic and pre-
dictive factors. Robust feature reduction is also crucial in limiting the
risk of model overfitting.

3.7. Test-retest

As highlighted by several studies, [113,116] and by consensus
statements on imaging biomarkers [12], radiomics studies usually lack
an assessment of the signatures’ single centre repeatability or multi-
centre reproducibility. The use of test-retest datasets in which multiple
images of the same subjects or phantom have been acquired in quick
succession have been proposed as a means to assess repeatability
[113,116]. Alternative options include the use of multiple 4D image
phases [113] and the simulation of retest data by image perturbation
[114] where test-retest data are not available. Few radiomic studies
incorporate any of these approaches.

3.8. Modelling clinical outcome

Typically, studies derive between tens to a few thousand image
features in development datasets [125]. Dimensionality reduction to
remove highly correlated and unstable radiomic features is often em-
ployed before finding the most informative features for a specific out-
come, such as overall survival, treatment-related toxicities or cancer
recurrence in a test dataset. Many different statistical options exist for
deriving a model based on radiomic features. The choice of model and
statistical methods can influence results [118–120].

Random forests have been found by some authors to give higher
performance compared to other methods for classification tasks using
radiomics features [118,120], with Naïve Bayes and Support Vector
Machines also reported to perform well [118]. For radiomic feature
based time-to-event analyses, one study found cox regression with
gradient boost performed better than traditional cox regression (0.614
versus 0.660 concordance index) [119]. In terms of feature selection,
there is no consensus on the best method to use. Optimal performance
of feature selection techniques depend on the outcome of interest
[118]. A contemporary non-radiomics study of classifier performance in
radiotherapy datasets found that random forest and elastic net logistic
regression performed best, but that classification accuracy depended on
the specific dataset [126]. To summarize, there is limited consensus as
to the best machine learning methods to employ for radiomics studies,
and that the optimum choice may depend on the specific dataset used in
the study.

Regardless of feature selection and modelling methodology, the
resulting model (often termed a ‘radiomic signature’) should be ro-
bustly validated in line with the TRIPOD guidelines to ascertain if it is
reproducible across different clinical datasets. This tests if the observed
signature relates to the desired outcome in a different patient group,
and aims to reduce the risk of overfitting in the training cohort [125].

Lastly, whatever approach is taken it is vital that investigators test
whether incorporating radiomic features into a clinical model adds any
benefit to well-known clinical prognostic factors such as tumor stage
and performance status. Radiomic features will only have clinical utility
if they provide more predictive information than is currently available
in the clinic.

4. Assessing the quality of radiomics studies in NSCLC

We evaluated the quality of the 43 radiomics studies we identified
that report a relationship between a CT defined radiomic signature and

clinical outcome in patients with NSCLC (Supplementary Table 2) using
both established assessment tools and the results of our review of
methodological limitations reported above. We then applied the same
tools to the 24 studies that evaluated the relationship between CT
radiomic signatures and genomic, protein expression, and pathology
biomarkers in patients with NSCLC (Supplementary Table 3). Some
studies investigated multiple endpoints, so in total we evaluated 75
outcomes. The four tools we use to interpret the technical validation of
these studies are:

1 The strength of the validation in each study, assessed by the
Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD) guidelines [127].
TRIPOD provides an ordinal score (1−4, with 4 being the most
robust). These guidelines are not specific to radiomics studies, but
provide insight into the level of validation in a study (details in
Supplementary Table 4).

2 The Radiomics Quality Score (RQS) developed by Lambin and col-
leagues [128]. RQS provides a checklist to evaluate aspects of study
design, by assessing various technical and statistical aspects of the
radiomics pipeline. It consists of 16 components, each of which
award or penalize points, to provide the RQS. The total number of
points available range from -8 to 36 (the more points the better) and
are often presented as a percentage (Supplementary Table 5).

3 Qualitative assessment of radiomics methodological limitations re-
sulting from our literature review and labelled as A–H and listed in
Table 3.

4 The reported evidence for added value of the radiomics signature to
a clinical model of outcome tested in the study (for the patient
outcome studies only). This provides an assessment of clinical uti-
lity.

5. Interpreting the quality of radiomics studies in NSCLC

Studies linking CT radiomics signatures to clinical outcome and
tumor biology were found to have a high incidence of methodological
limitations (summarized in Table 4). Overall, half of studies had a
TRIPOD type of either 1a or 1b (meaning the results were not validated
or validated within the same dataset). Only 13/75 studies had TRIPOD
type of 3 or 4 (meaning the results were validated in an external da-
taset). The median RQS was 6 (range of -8 to 36). Details on RQS and

Table 4
Summary of the 4 assessment criteria - TRIPOD score, RQS, number of meth-
odological limitations and testing the added value of radiomics to a clinical
model. The added value of radiomics to a clinical model was only tested for the
patient outcome studies (N=50).

N=75

TRIPOD type (n (%))
1a – no validation 10 (13)
1b – internal validation 27 (36)
2a – dataset randomly split for validation 18 (24)
2b – dataset non-randomly split for validation 7 (9)
3 – external validation 10 (13)
4 – validation only 3 (4)
RQS (median, [IQR]) 6 [2−12.25]
Number of methodological limitations (n (%))
0−2 0 (0)
3 4 (5)
4 4 (5)
5 15 (20)
6 21 (28)
7 23 (31)
8 8 (11)

N=50
Added value of radiomics to clinical model tested? (n (%))
Yes 32 (64)
No 18 (36)
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TRIPOD are found in Supplementary Material. We found that 70 % of
studies (52 of 75) had six or more methodological limitations, and no
study had less than three methodological limitations. Finally, over half
of studies relating radiomics to patient outcome did test the added
benefit of the radiomic signature to a clinical model.

Our analysis suggests that the four assessment tools provide useful
and complimentary critiques. Fig. 3A shows that the TRIPOD ordinal
score focusing on validation and the RQS score focusing on study re-
porting are correlated (Pearson correlation coefficient 0.70). This re-
flects the importance the RQS places on study validation. However,
both the TRIPOD score and RQS score were relatively independent of
our assessment of study methodological limitations (Fig. 3B-C, Pearson
correlation coefficients -0.12 and 0.13). Indeed, some studies with high
TRIPOD and RQS scores had several technical limitations listed. For
example, two studies with a TRIPOD score of 4 and the highest reported
RQS scores (16 and 18 respectively) [14,15], had five and six identified
methodological limitations respectively. In contrast, one study with a
low TRIPOD score of 1b and a moderate RQS score (of 7) had just three
pipeline technical limitations [18].

An illustrative example is given by three studies [14,15,23] that
externally validated the landmark radiomic signature developed by
Aerts and colleagues in 2014 [13]. However, subsequent work
[111,129] has suggested that the prognostic value of the signature re-
flected the correlation of the signature with tumor volume, rather than
reflecting underlying tumor heterogeneity. An important workflow step
our review identified is the assessment of feature correlations and po-
tential confounders (G). While the RQS recommends performing mul-
tivariable analysis and testing the benefit of the radiomics signature to a
gold standard, it does not explicitly recommend testing for feature
correlations or confounders.

Study quality depends not only on quality of reporting, but also on
ensuring that features used are robust against potential problems. There
is a raised recognition of the methodological issues that limit the po-
tential utility of the radiomics concept, as shown by the increase in
studies in this area (Fig. 2). However, we find that only 39 % of the
patient outcome studies and 50 % of the biology studies we identified

cite methodology papers. This suggests that there is still limited ap-
preciation of the need to employ more rigorous radiomics workflows.
The IBSI guidelines and RQS are aimed at addressing these issues. For
example the IBSI reference manual gives recommendations for image
processing techniques as well as suggesting standardized feature defi-
nitions, nomenclature, and guidelines for reporting [121]. The RQS
rewards the use of test-retest approaches, multiple segmentation ana-
lyses, and the use of phantoms to resolve inter-scanner differences.

However, our review of limitations highlights further concerns, such
as differing slice thickness or voxel size (C) and the specification of
grey-level binning size (F). These are not included in RQS (only 58 % of
studies in Tables 1 and 2 specified the grey-level binning method or
size). The IBSI guidelines, the RQS and TRIPOD assessment schemes are
important steps that should improve the technical quality of radiomics
studies. However, they are not sufficient alone and review of the lit-
erature suggests a need to either update them to include more granular
limitations or to use them alongside other assessment tools.

One result of the increase prevalence of studies investigating
methodological limitations that would accelerate clinical translation
would be the identification of a subset of robust features that should be
used in outcome studies. Unfortunately, comparing results across stu-
dies is difficult. In addition to the risks to reliability listed in Table 3,
the software used for feature extraction often uses different nomen-
clature (one of issues the IBSI addresses) and can calculate ostensibly
similar features in different ways and with different parameter settings
so that they are not comparable [122]. Software use varied greatly
across all studies included in this review. Of the patient outcome and
biology studies, 15 % did not specify the software used, 48 % used in-
house developed software and just 37 % used free or commercial op-
tions. These numbers are similar for the methodology studies; 14 % did
not specify the software used, 40 % used in-house developed software
and 47 % used free or commercial options. Four of the patient outcome
and biology studies did not specify the features in the final radiomic
signature at all. The result is that there is no consensus on which par-
ticular features or feature signatures should be used for clinical studies.
However, there are now increasing numbers of studies that employ the

Fig. 3. The assessment of the literature plotted against each other as boxplots. (A) RQS versus TRIPOD, (B) RQS versus the number of methodological limitations
found in this review and (C) TRIPOD versus the number of methodological limitations found in this review.
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techniques used to determine which features are reliable. Table 4 and
Supplementary Tables 2 and 3 list the remaining limitations for each
clinical and biological study - 42 % of the assessed studies applied at
least one of the suggested solutions to methodological limitations to
increase feature robustness. Of these studies, 46 % used a test re-test
dataset, 58 % used multiple segmentations and 4% tested CT model
dependence.

A further important step in the radiomics workflow where com-
munity consensus would increase the comparability of studies is that of
the optimal machine learning techniques that should be used to develop
the resulting statistical models. We found that the top feature reduction
technique used in all studies was univariable analysis (53 %) followed
by LASSO (27 %). The most common modelling technique was logistic
regression (39 %) followed by cox regression (34 %). 16 % of studies
used random forest and 11 % SVM, both of which were highlighted as
high performing by the methodology studies [118,120]. The techniques
used in each study are listed in Supplementary Tables 2 and 3. Four
outcome studies used multiple modelling techniques to determine
which one performed best on their data; a recommended method as
model performance is dataset-dependent [126]. Out of these four stu-
dies, the best performing classifiers were random forest [72] and Naïve
Bayes [38,67]. One study did not reveal the best performing model
[69].

The lack of consensus in how to address limitations to the reliability
of radiomics features, or of a preferred way to conduct the subsequent
statistical modelling, means there is still significant variability in ap-
proach, with each finely tuned to its own particular dataset. Progress
along the imaging biomarker translation roadmap [12] is dependent on
the development of reliable measures that can be used to test clinical
hypotheses. These findings agree with those of previous authors
[121,128] and show there is still an unmet need to move away from the
current heterogeneous landscape to one that is more standardized. The
validation of existing signatures in different datasets [14,15,23] dis-
cussed above is a vital part of this effort.

Lastly, in addition to the assessment of technical quality, radiomic
signatures need to be evaluated for clinical relevance. It is important to
test whether incorporating radiomic features into a clinical model im-
proves performance over known prognostic or predictive factors. This
need is well-recognized with 64 % of the studies in in Table 1 making its
assessment. Future studies will be most impactful if they explicitly
evaluate the clinical utility of a radiomic signature as part of data re-
porting.

In summary, use of the four different assessment tools allows us to
draw three conclusions. Firstly, there is a high prevalence of metho-
dological limitations among CT radiomics studies exploring the poten-
tial of the approach to guide personalized medicine. Secondly, there
remains considerable variability in the approach to addressing these
limitations, and that modelling approaches are likely tuned to specific
datasets. Thirdly, different assessment tools provided complementary
information, which taken together provided the greatest insight into
how study data could be improved.

6. Future directions

Personalized medicine is of great potential benefit to patients, but
this vision is dependent on the identification of stratification and pre-
dictive biomarkers [5]. Imaging biomarkers, derived from routinely
acquired patient images, have enormous translational potential given
the ubiquity of imaging in clinical workflows. Evaluation of the
radiomics literature in NSCLC reveals the exponential rate of publica-
tion of new radiomics studies, which, in their conclusions, present a
very positive view of the potential for radiomics to deliver this goal.

This review puts these findings in context for NSCLC, but the mes-
sages are likely to be generic to all cancer types. All published studies
are at risk of translational hurdles due to technical and methodological
issues. Importantly, some of these limitations are well recognized, well

investigated and have solutions proposed that are beginning to be ap-
plied to clinical studies. In distinction, other limitations are poorly
understood or researched, and so substantial barriers to translation
remain. In addition, wider concerns surrounding over-fitting data and
biological validation persist. Lastly, no single radiomic signature or
methodological approach is used widely, so further work is required to
identify candidates to take forward in larger multicenter studies.

The fact that all the radiomics studies identified in the NSCLC lit-
erature have some limitations should not infer that the published data
and conclusions are incorrect; rather that risk exists in interpreting their
findings at face value. Standardization issues, variability in metho-
dology and a general lack of reporting hinders comparison of results
across studies. Identifying limitations, by employing recognized as-
sessment methodology tools, can help inform and educate design of
future radiomics studies in NSCLC and beyond. This will improve study
quality and expedite the translation of radiomic biomarkers as tools in
personalized medicine.
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