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Abstract 

Background: The CHHiP trial randomised 3216 men with localised prostate cancer 

(1:1:1) to three radiotherapy fractionation schedules: 74Gy/37 fractions (f) over 7.4 

weeks, 60Gy/20f/4 weeks and 57Gy/19f/3.8 weeks. Literature-based dose constraints 

were applied with arithmetic adjustment for the hypofractionated arms. This study 

aimed to derive anorectal dose constraints using prospectively-collected clinician-

reported outcomes (CRO) and patient-reported outcomes (PRO) and to assess the 

added predictive value of spatial dose metrics. 

Methods: A case-control study design was used, seven CRO and five PRO bowel 

symptoms were evaluated. Cases experienced a moderate or worse symptom 1-5 

years post-radiotherapy, and did not have the symptom pre-radiotherapy. Controls did 

not experience the symptom at baseline, or between 1-5 years post-radiotherapy. The 

anorectum was re-contoured from the anal verge to the recto-sigmoid junction; 

dose/volume parameters were extracted. Univariate logistic regression, atlases of 

complication indices and bootstrapped receiver-operating-characteristic (ROC) 

analysis (1000 replicates, balanced outcomes) were used to derive dose constraints 

for the whole cohort (hypofractionated schedules were converted to 2Gy equivalent 

schedules using α/β=3Gy) and separate hypofractionated/conventional fractionation 

cohorts. Only areas under the curve (AUC) with 95% confidence interval lower limits 

>0.5 were considered statistically significant.  Any constraint derived in <95-99% of 

bootstraps was excluded.  

Results:  Statistically significant dose constraints were derived for CRO, but not PRO. 

Intermediate to high doses were important for rectal bleeding whereas intermediate 

doses were important for increased bowel frequency, faecal incontinence and rectal 
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pain. Spatial dose metrics did not improve prediction of CRO or PRO. A new panel of 

dose constraints for hypofractionated schedules to 60Gy or 57Gy are V20Gy<85%, 

V30Gy<57%, V40Gy<38%, V50Gy<22% and V60Gy<0.01%.  

Conclusions: Dose constraints differed between symptoms, indicating potentially 

different pathogenesis of radiation-induced side effects. Derived dose constraints 

were stricter than those used in CHHiP and may reduce bowel symptoms post-

radiotherapy.  

 

Introduction 

Prostate cancer is the most commonly diagnosed non-cutaneous malignancy in the 

western world, with over 1.3 million cases diagnosed in 2018 (1). For patients with 

localised disease, external beam radiotherapy (EBRT), brachytherapy and radical 

prostatectomy are established radical treatments. The CHHiP (Conventional or 

Hypofractionated High dose intensity-modulated radiotherapy in Prostate cancer) trial 

(ISRCTN97182923, CRUK/06/016) randomly assigned 3216 men to conventional 

fractionation (74Gy in 37 fractions (f) over 7.4 weeks) or one of two hypofractionated 

schedules (60Gy/20f/4 weeks or 57Gy/19f/3.8 weeks). The trial demonstrated that the 

hypofractionated schedule of 60Gy/20f was non-inferior to conventional fractionation 

for the rate of biochemical or clinical recurrence up to five years following radiotherapy 

(2). 

There was a low incidence of late bowel and bladder side effects for all radiotherapy 

schedules in CHHiP. Estimated five year cumulative grade two or worse Radiation 

Therapy Oncology Group (RTOG) bowel side effects occurred in 11.3-13.7% of men 
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(2). In addition, patient-reported outcomes (PRO) in CHHiP showed substantially lower 

rates of bowel bother and distress to those reported in historical trials using equivalent 

radiotherapy schedules (3). This reduction in side effects may be due to improved 

dose conformity using intensity-modulated radiotherapy (IMRT) in CHHiP, and the 

application of dose constraints. The toxicity outcomes of earlier studies using 

conventional fractionation were used to design the CHHiP dose constraints (table S1) 

(4-6); dose constraints were not typically used in earlier studies.  

An important question is whether further tightening of the CHHiP dose constraints 

would enable further reduction in toxicity. It is possible that existing constraints are 

optimal. The low incidence of toxicity seen in CHHiP may be explained by 

radiogenomic variation (7), pre-existing co-morbidity (8), microbiota (9) or other factors 

unrelated to radiotherapy dose. However, it is also possible that tighter dose 

constraints would reduce toxicity. Data-derived constraints for the hypofractionated 

schedules are particularly important for two reasons. Firstly, the arithmetic conversion 

to obtain dose constraints for hypofractionated schedules in CHHiP was based on the 

difference in total dose - no radiobiological correction for changing the fraction size 

from 2Gy to 3Gy occurred (10). Consequently, the validity of these constraints needs 

to be established. Secondly, as the 60Gy/20f schedule is increasingly used as a new 

standard of care for radical radiotherapy for prostate cancer, optimal dose constraints 

are a clinical priority. 

Most dose-volume studies use the RTOG criteria or other clinician-reported outcomes 

(CRO) to describe toxicity; only more recent studies have evaluated PRO (5, 11). The 

QUANTEC reviews recommend using PRO to assess dose-volume relationships (12), 

because PRO may be more sensitive than CRO (13). This study aims to determine 
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anorectal dosimetric predictors of toxicity using both CRO and PRO in CHHiP, and to 

assess the added predictive value of spatial dose metrics. 

 

Methods 

Study design and patient selection 

A case/control methodology was used for the dosimetric analysis of late-onset 

radiotherapy toxicity because ≥moderate side effects were uncommon in CHHiP. 

“Cases” with ≥moderate late toxicity were defined using PRO and CRO endpoints 1-5 

years post-radiotherapy. Moderate or worse was chosen to represent clinically-

important morbidity. Toxicity data at six months after radiotherapy start were excluded 

as residual acute toxicity may have been present. Specific thresholds for toxicity (table 

S2) were determined for each CRO and PRO endpoint, according to clinical impact. 

Thresholds included a maximum permitted level of each symptom prior to 

radiotherapy, so as to avoid erroneously attributing pre-existing symptoms to radiation 

damage. For the control group, patients experiencing no toxicity for the relevant 

endpoint over the 1-5 years post-radiotherapy were identified. Only patients with ≤2 

from a possible 6 timepoints with missing data were included as controls to minimise 

bias from missing data.  

 

Delineation of anorectum and collation of Dose Volume Histograms (DVH) 

Dose cube data from relevant patients in the CHHiP trial were imported into VODCA 

(Visualisation and Organisation of Data for Cancer Analysis v5.4.1, Medical Software 

Solutions, Switzerland) and the anorectum was checked for outlining consistency. The 
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superior extent of the anorectum was defined as the recto-sigmoid junction, and the 

inferior extent was defined as the anal verge (12, 14) (see appendix). The anorectum 

was then split into the anal canal, (lower 3cm), and the rectum (remaining upper 

portion) (14, 15) to validate dose constraints reported by Buettner et al. (15). 

Dose-volume parameters were extracted from VODCA as a relative cumulative 

volume. For analysis of the whole cohort, hypofractionated dose schedules were 

converted to 2Gy equivalent schedules (EQD2) using the Withers formula and 

α/β=3Gy (10). This conversion included a bin-by-bin correction on the original DVH 

since the relevant normal tissue structure did not receive the full prescribed dose.  

Analysis of DVH data 

Univariate logistic regression: DVH  

Univariate logistic regression assessed the relationship between the anorectal volume 

(as a continuous variable) receiving specific doses (using 1Gy dose bins) and toxicity 

outcomes. Multivariate logistic regression was not performed because of non-

independence of dosimetric variables. Three separate cohorts were evaluated: firstly, 

the full CHHiP cohort (with EQD2 conversion for patients receiving hypofractionated 

radiotherapy); secondly, all patients receiving hypofractionated radiotherapy (60Gy or 

57Gy); and thirdly, all patients receiving conventional radiotherapy (74Gy). For the 

conventional fractionation analysis, univariate logistic regression evaluated the 

change in odds of toxicity given a 1% relative increase in volume receiving 20Gy, 

30Gy, 40Gy, 50Gy, 60Gy, 65Gy and 70Gy, and for the hypofractionation analysis the 

volume receiving 20Gy, 30Gy, 40Gy, 50Gy, 55Gy and 60Gy. Both CRO and PRO 

were evaluated for the anorectum, anal canal and rectum. In view of multiple testing, 
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a modified Bonferroni adjustment, in which p-values of less than 0.005 were 

considered statistically significant, was made. 

Atlases of complication indices (ACI): DVH 

ACI are an established method of visualising the whole DVH for a cohort of patients 

and relating it to toxicity outcomes (16). The overall spread of colour across the atlas 

gives a good visual impression of how dose and irradiated volume relate to toxicity, 

hence, ACI are complementary to formal statistical modelling. Construction of the ACI 

is explained in the supplementary appendix (page 2).  

Receiver Operating Characteristic (ROC) analysis 

Area under the ROC curve (AUC) was used to derive dose-volume constraints. As 

above, three separate cohorts were evaluated, and toxicity outcomes were 

dichotomised (1=toxicity present, 0=toxicity absent). The test variable was the volume 

receiving a specific dose, e.g. V20Gy, and 1Gy dose intervals were tested. A ROC 

curve plotting 1-specificity against sensitivity was constructed for each 1Gy interval.  

AUC with a 95% confidence interval lower limit >0.5 were considered statistically 

significant. 

Both the Youden index (17) and the Closest Top Left (CtL) index (18)  determined the 

volume constraint that best discriminated between volumes predicting for toxicity. As 

these gave very similar outcomes (table 1 and figure S3), the mean of the two indices 

was used as the final dose constraint. To increase the rigour of derived dose 

constraints, bootstrapping with replacement was used, with 1000 replicates. 

Outcomes were balanced for the bootstraps, i.e. 50% cases and 50% controls were 

selected to improve machine learning performance. A pragmatically-selected 
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threshold for the bootstraps was chosen: if the AUC 95% confidence interval lower 

limit was <0.5 in >1% of the replicates, the constraint was excluded. For the separate 

analyses of the smaller hypofractionated and 74Gy cohorts, this 1% threshold was 

relaxed to 5% due to reduced statistical power.  

Analysis of Dose Surface Maps (DSM) 

DSM were obtained for the anorectum for all patients with DVH. Methods used to 

construct DSM are described in the appendix (pages 1-2) and match those used in the 

analysis of RT01 (15, 19). Metrics extracted from each DSM included the Dose 

Surface Histogram (DSH), the longitudinal and lateral extent of dose, and eccentricity. 

As above, univariate logistic regression was used to analyse the relationship between 

each CRO and PRO and the four DSM metrics using the dose thresholds and EQD2 

conversion described earlier.  

 

Results 

Patients and dosimetric data 

The cumulative DVH for the anorectum obtained for the 1150 patients (from 40 

centres) qualifying as a case or control across each CRO and PRO evaluated are 

shown in figures S1 and S2 (the latter according to treatment arm with CHHiP dose 

constraints). A wide variation in DVH shape is seen and some DVH exceed the 

relevant CHHiP dose constraints, especially at intermediate doses of 30-50Gy.  
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The numbers of patients who qualified as either “cases” or “controls” for each CRO or 

PRO is shown in figures 1A and B. Numbers vary considerably because of the different 

incidence of radiation-induced side effects.  

Univariate logistic regression for DVH 

Figure 1A summarises the results of univariate logistic regression to assess the 

relationship between the anorectum, rectum and anal canal DVH and each CRO or 

PRO for all available patients (with an EQD2 correction using α/β=3Gy). For CRO, 

several statistically significant dose parameters were derived. There was a significant 

association between the anorectal volumes receiving intermediate and high doses and 

rectal bleeding. Odds ratios per 1% relative increase in volume increased steadily from 

1.03 (95%CI:1.00-1.03, p<0.001) at 30Gy to 1.09 (95%CI:1.03-1.15, p<0.001) at 

70Gy. In addition, there was a significant association between the anorectal volume 

receiving intermediate doses and increased bowel frequency, faecal incontinence and 

rectal ulceration (table S3). Here, the volume receiving 30Gy was the strongest 

predictor of outcome. Overall, dose-volume relationships were weaker for PRO with 

only rectal urgency showing a significant association with the anorectal volume 

receiving 30Gy (OR 1.02 (95% CI:1.01-1.03, p=0.003) (table S4). 

When the anorectum was split into the rectum and anal canal, results for the rectum 

were very similar to the whole anorectum (figure 1A), which is unsurprising as the 

dose-volume parameters are comparable. For the anal canal, similar significant dose-

volume associations with rectal bleeding and increased bowel frequency were seen to 

those for the anorectum and rectum. However, for other endpoints, including faecal 

incontinence, relationships between dose-volume and toxicity were weaker (table S5). 
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Figure 1B shows the results of univariate logistic regression modelling with the original 

cohort split into patients receiving 3Gy or 2Gy per fraction. The smaller cohorts means 

statistical power is reduced. For the 3Gy cohort, significant relationships between 

intermediate to high doses and rectal bleeding are seen, as well as between 

intermediate doses and increased bowel frequency and faecal incontinence. The 2Gy 

per fraction cohort is the smallest cohort assessed. Here, the only significant 

relationship is between high doses and rectal bleeding. As above, no significant 

relationships are seen between dose and PRO.  

Atlases of complication indices for DVH 

A summary of ACI for the anorectum are shown in figure 2. Collectively, the ACI 

corroborate findings from univariate logistic regression that higher volumes at 

intermediate to high doses predict side effects for rectal bleeding and higher volumes 

at intermediate doses predict side effects for faecal incontinence (figures 2A, 2B). 

CRO-based increased bowel frequency shows a much stronger association with dose-

volume metrics than PRO-based loose stools where little association is seen (figure 

2C, 2D).  

Derivation of dose constraints for DVH 

ROC analysis was used to derive anorectal dose constraints for the three cohorts 

evaluated. Table 1 shows all derived dose constraints including AUC with 95% 

confidence intervals. The odds ratios and associated p-values for Youden and CtL 

represent the increased odds of toxicity if the relevant constraint is not met. Figures 

S3-S4 demonstrate the separate anorectal constraints for Youden and CtL after ROC 

analysis with 1000 bootstraps for four CRO in the complete cohort following EQD2 

conversion. The values for Youden and CtL are similar which was consistently seen 
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throughout the analysis. As above, the ROC analysis indicates that intermediate and 

high doses are important for rectal bleeding, whereas the intermediate dose range is 

more relevant for increased bowel frequency, faecal incontinence and rectal pain. No 

dose constraints were derived for PRO. 

Figure 3 shows anorectal dose constraints for all symptoms evaluated in relation to 

the CHHiP dose constraints. The derived dose constraints are considerably tighter 

than those used in CHHiP. Figures 4 and S5 demonstrate application of the newly-

derived dose constraints to the anorectal DVH of patients in CHHiP, where a 

substantial proportion of patients fail these new dose constraints. 

Analysis of DSM 

Results of the univariate logistic regression to assess the relationship between toxicity 

and the four DSM parameters are shown in figure 5. The clearest DSM-based 

predictors are for rectal bleeding where both the lateral extent of dose and the DSH 

are associated with toxicity at intermediate to high doses. For all other symptoms, 

there are very few significant relationships, except for mucosal loss where lateral 

extent of dose is important at intermediate doses. As few predictive relationships 

emerged from the univariate logistic regression, ROC analysis was not performed for 

DSM.  

 

Discussion 

This case/control analysis of DVH and DSM according to the presence or absence of 

moderate or worse side effects has identified new dose constraints for several toxicity 

endpoints. To our knowledge, this is the first study to derive dose constraints for 
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moderately hypofractionated radiotherapy. In the United Kingdom, 60Gy/20f/4 weeks 

is a new standard of care, with 57Gy/19f/3.8 weeks showing comparative efficacy in 

patients older than 75 years (20). Modest hypofractionation is recommended in recent 

UK and North American guidelines (21, 22) indicating that the dose constraints derived 

in this study (figure 4) are clinically relevant and widely applicable to contemporary 

practice. Modern image-guided radiotherapy strategies permit tighter margins than 

those used for the majority of patients in CHHiP, as has recently been reported in the 

experimental arms of the CHHiP-IGRT study (23). These tighter margins mean that 

meeting the target constraints we present is feasible and the proposed new anorectal 

constraints have recently been introduced as target (i.e. non-mandatory) constraints 

in both PACE-C and PIVOTALboost trials.  

The specific dose levels for which constraints were derived for different symptoms are 

broadly consistent with the published literature. Dose constraints for rectal bleeding 

have been particularly well-studied and indicate that the maximum dose is the most 

important factor contributing to bleeding (11, 24-26). However, as shown in our study, 

considerably lower doses have been shown to be important for other symptoms 

including bowel frequency, faecal incontinence and rectal urgency (11, 24, 27). 

Historically, the dose range of 20-40Gy has been considered less important than 

higher doses and one of the dosimetric trade-offs of IMRT is an increased low dose 

bath. Our findings indicate that meeting all dose constraints between 20Gy to 70Gy is 

clinically important. It is also possible that some dose constraints are conditionally 

relevant i.e. a dose constraint at V20 may matter less if the volume receiving high dose 

falls low enough.  

The different dose ranges thought to be important for different side effects points to 

differing pathophysiology underlying side effects. Further insight is provided by the 
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analysis of surface dose metrics. The analysis of DSM did not produce as many 

significant dosimetric predictors of toxicity as DVH. The most significant association 

was between the lateral extent of dose and rectal bleeding, which externally validates 

findings from the RT01 trial (19).  It has been postulated that migration of healthy cells 

(stem cells) from nearby regions may aid repair. This concept is reiterated with the 

inverse relation between eccentricity and outcome where a more eccentric shape is 

inversely related to toxicity. A more eccentric shape would mean a shorter distance to 

healthy cells in one axis. Other DSM-based correlations from RT01, including the 

longitudinal extent of dose and loose stools, were not observed in our study. Possible 

reasons include the reduced toxicity in CHHiP versus RT01 (3), and the improved 

conformality of radiotherapy in CHHiP causing different spatial dose patterns.     

This study does not support separation of the anorectum into the anal canal and 

rectum in clinical practice. We found that the dose to the entire anorectum or rectum 

was a stronger predictor of faecal incontinence than the dose to the anal canal. The 

published literature with respect to the pathogenesis of radiation-induced faecal 

incontinence has not reached a consensus; the dose to sub-structures including the 

external anal sphincter and puborectalis have been suggested as important factors for 

incontinence (28). Manometry studies identified both rectal and anal wall pressures as 

relevant (28). Elsewhere, anal surface dose and lateral extent of anal canal dose have 

correlated with subjective sphincter control (15). Finally, a recent study identified mean 

rectal dose and prior abdominal surgery as leading factors contributing to incontinence 

(29). Overall, these data suggest that anal canal dose should not be considered in 

isolation as a predictor of faecal incontinence.  

We found that CRO consistently identified more dosimetric predictive factors than 

PRO. This finding was unexpected as PRO have been shown to detect more side 
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effects than CRO (13, 27) but may be due to the increased subjectivity of PRO. 

Additionally, PRO of overall bowel bother or distress encompass a range of clinical 

syndromes. The EPIC questionnaire was only used by a minority of patients - this 

captures more radiotherapy-related bowel symptoms than the UCLA-PCI instrument 

used by more patients. In addition, the time period assessed in PRO questions i.e. 

“during the last four weeks” is typically much shorter than in CRO. 

Dose cube data used to derive DVH from this analysis were derived from the planning 

radiotherapy scan – accumulated dose was not measured.  The anorectum moves 

during and between radiotherapy fractions (30); the planning scan DVH may be a 

better surrogate of the true anorectal DVH during treatment than the planning scan 

DSH or DSM. Measurement of accumulated dose using deformable image registration 

of images taken during treatment should enable more precise evaluation of predictive 

metrics from DSM than just using the planning scan DSM (31).  

A statistically significant dose constraint does not inevitably mean it is clinically 

significant. Youden and CtL indices weight specificity and sensitivity equally (32), yet 

the sensitivity may be more important provided Clinical Target Volume coverage is not 

compromised. Other limitations include use of the same α/β ratio of 3Gy across 

symptoms. This may be overly simplistic - other studies have used α/β=5Gy for faecal 

incontinence (29). Presently we do not know how α/β ratios differ between anorectal 

symptoms. The uncertainty in α/β ratio might also account for the differences in 

constraints derived between the 2Gy cohort and the entire EQD2-corrected cohort.  

For rectal pain and rectal ulceration, the number of cases (symptom events) was 

particularly low, which means derived constraints for rectal pain may be less robust 

than for other symptoms. We carefully incorporated baseline symptoms into the 
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modelling process and our missing data analysis did not identify differences in 

baseline characteristics between patients included versus not included (table S7). 

However, our dosimetric modelling  did not include radiogenomic variation (33), bowel 

microbiota patterns (9, 34) or co-morbidities such as diabetes, hypertension, previous 

pelvic surgery, and inflammatory bowel disease. Finally, we acknowledge that we have 

not included the impact of endorectal balloons or hydrogel spacers on bowel 

symptoms, which provide an opportunity for further dosimetric improvements (35).   

Conclusions  

Despite the low incidence of radiation-induced side effects in CHHiP, we have 

identified new tighter dose constraints for conventional fractionation and 

hypofractionated schedules than those currently in clinical use. The new constraints 

differ widely per symptom and extend from 20Gy to 70Gy, indicating that low to 

intermediate doses are important in the aetiology of radiation-induced damage. 

Application of these new dose constraints may enable further reduction in gastro-

intestinal side effects from EBRT for prostate cancer. 
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Legends for figures 

Figure 1A Results of univariate logistic regression for dose bins from 20-70Gy using Dose 

Volume Histogram data for the whole cohort, including a correction to 2Gy per fraction 

equivalent schedules using α/β=3. Odds ratios are for a relative increase in rectal volume of 

1%. 

 

Figure 1B: Results of univariate logistic regression for dose bins from 20Gy to 60-70Gy 

using Dose Volume Histogram data for separate 2Gy (left) or 3Gy (right) per fraction cohorts, 

without a correction to 2Gy per fraction equivalent schedules. 

Figure 2: Atlas of Complication Indices to visualise dose/volume relationships for rectal 

bleeding (A), faecal incontinence (B), increased bowel frequency (C) and increased loose 

stools (D). Atlases are adjusted for symptom incidence. 

Figure 3. A: Anorectal dose constraints with a correction to 2Gy per fraction equivalent 

schedules for all patients, in relation to the dose constraints used in CHHiP. B: Anorectal 

dose constraints for patients receiving hypofractionated radiotherapy, in relation to the 

absolute dose constraints used in CHHiP. C: Anorectal dose constraints for patients 

receiving standard fractionation, in relation to the absolute dose constraints used in CHHiP. 

 

Figure 4: A: Recommended anorectal dose constraints for hypofractionated radiotherapy to 

60Gy or 57Gy, B: Application of new dose constraints to Dose Volume Histograms of 

patients treated with hypofractionated schedules within CHHiP. 

 

Figure 5: Results of univariate logistic regression for dose bins 20-70Gy for Dose Surface 

Map data for the anorectum following a correction to 2Gy per fraction equivalent schedules. 
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Table 1: Anorectal dose constraints including Area under the Curve (AUC) with 95% confidence intervals (CI). Odds ratios (OR) and 
associated p values for Youden (Y) and Closest to Left (CtL) represent the increased odds of toxicity if the constraint is not met. 

 

*Percent dose constraint is the mean of CtL and Youden constraints (CtL and Youden constraints are also shown in the table and figure S3) 
Note AUC, 95% CI values, OR CtL, p-value CtL, OR Youden and p-value Youden are the mean values across 1000 bootstraps, pts: patients. 
$: V26Gy is included as dose constraints for faecal incontinence (faecal incont) ranged from V26 to V30 across different cohorts 

Symptom Dose level Percent* AUC 95% CI AUC Percent CtL OR CtL p-value CtL Percent Y OR Y p-value Y

Rectal bleeding V30Gy 49.5 0.60 0.55-0.65 50.5 2.42 0.0004 48.5 2.63 <0.0001

V40Gy 39.3 0.63 0.58-0.67 39.9 2.87 <0.0001 38.7 3.02 <0.0001

V50Gy 31.5 0.65 0.60-0.70 31.4 3.50 <0.0001 31.7 3.58 <0.0001

V60Gy 17.5 0.64 0.59-0.68 15.9 2.66 <0.0001 19.0 3.37 <0.0001

V70Gy 2.3 0.60 0.55-0.65 1.9 2.19 0.0007 2.7 2.55 <0.0001

↑ Bowel frequency V26Gy
$ 65.4 0.63 0.58-0.68 63.2 2.76 <0.0001 67.5 3.34 <0.0001

V30Gy 56.5 0.63 0.58-0.68 54.2 2.58 0.0003 58.8 3.13 <0.0001

V40Gy 38.6 0.61 0.56-0.66 39.4 2.38 0.0008 37.7 2.70 <0.0001

Faecal incontinence V26Gy
$ 58.5 0.60 0.56-0.64 60.3 2.09 0.0007 56.7 2.52 <0.0001

Rectal pain V26Gy
$ 66.9 0.66 0.62-0.70 67.5 3.92 <0.0001 66.2 4.36 <0.0001

V30Gy 57.7 0.65 0.61-0.70 59.0 3.66 <0.0001 56.4 4.34 <0.0001

Rectal bleeding V40Gy 37.7 0.61 0.55-0.67 38.1 2.98 <0.0001 37.2 3.15 <0.0001

V50Gy 22.2 0.63 0.58-0.69 20.5 2.76 0.0005 23.5 3.47 <0.0001

V60Gy 0.01 0.59 0.54-0.63 0.0 2.70 0.0018 0.02 3.08 0.0008

↑ Bowel frequency V30Gy 61.0 0.62 0.56-0.68 58.8 2.52 0.0022 63.3 3.20 0.0003

Faecal incontinence V30Gy 56.7 0.61 0.55-0.66 56.3 2.33 0.0011 57.2 2.74 <0.0001

Rectal pain V20Gy 85.2 0.67 0.61-0.72 86.1 4.56 <0.0001 84.4 6.18 <0.0001

V26Gy
$ 68.2 0.63 0.57-0.68 68.6 2.90 0.0002 67.9 4.95 <0.0001

V50Gy 24.9 0.62 0.57-0.68 23.0 3.12 <0.0001 26.8 4.20 <0.0001

Rectal bleeding V50Gy 39.1 0.66 0.58-0.74 38.3 4.52 0.0003 39.4 4.75 0.0002

V55Gy 33.5 0.67 0.58-0.75 33.5 5.09 0.0001 33.5 5.17 <0.0001

V60Gy 27.3 0.67 0.59-0.75 27.1 4.43 0.0004 27.4 4.66 0.0002

V65Gy 17.2 0.66 0.57-0.74 16.8 3.65 0.0016 17.6 3.65 0.0005

All patients with EQD2 conversion of hypofractionated patients using α/β=3

Patients receiving 3Gy per fraction to total dose of 57Gy or 60Gy

No EQD2 conversion

Patients receiving 2Gy per fraction to total dose of 74Gy

No EQD2 conversion
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