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De Novo Truncating Mutations in the Last
and Penultimate Exons of PPM1D Cause
an Intellectual Disability Syndrome
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Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in

~35%–40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 indi-

viduals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase

that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby

contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID

and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behav-

ioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vom-

iting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate

exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of

individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from indi-

viduals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is

unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we

show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional

insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders.
Next-generation sequencing (NGS) techniques have accel-

erated the discovery of genes associated with intellectual

disability (ID).1–7 Mutations in more than 600 autosomal

and X-linked genes have been implicated,8 but many

more are likely to be elucidated. Recently, two separate

meta-analyses used the de novo mutations identified

in >7,000 individuals affected by a neurodevelopmental

disorder to identify mutations that might also cause

ID.9,10 In both meta-analyses, PPM1D (protein phos-

phatase, Mg2þ/Mn2þ-dependent 1D [MIM: 605100]),
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encoding a negative regulator of cellular stress-response

pathways, had significantlymore damaging de novomuta-

tions than expected given the cohort size. However, the

clinical characteristics of these individuals were not pro-

vided in detail, and insights on the pathophysiological

mechanism remained unidentified. Including seven indi-

viduals identified in the meta-analyses, we collected a total

of 14 unrelated individuals with mild to severe ID and/or

developmental delay (DD) through international collabo-

ration with colleagues and data-sharing resources such as
oud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the

cer Now Research Centre, Institute of Cancer Research, London SW3 6JB,

sity of Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands;

nia, San Francisco, 675 Nelson Rising Lane, Suite 405, San Francisco, CA

, University of Michigan Medical School, D5257 Medical Professional Build-

on of Medical Genetics, Department of Pediatrics, UCSF Benioff Children’s

, San Francisco, CA 94143-0793, USA; 7Clinical Genetics, Children’s Univer-

ases, School of Medicine and Medical Sciences, University College Dublin,

NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK; 10Medical

Medicine, University of Edinburgh, Western General Hospital, Crewe Road

ervice (Kennedy Galton Centre), North West London Hospitals, Watford

kes University, Gipsy Lane, Oxford OX3 0BP, UK; 13West Midlands Regional

en’s Hospital NHS Foundation Trust, Birmingham B15 2TG, UK; 14Depart-

, St. Michael’s Hospital, Southwell Street, Bristol BS2 8EG, UK; 15Center on

20, Seattle, WA 98195-7920, USA; 16Department of Clinical Genetics, Karo-

den; 17Department of Medicine and Neurology, Habilitation Organization,

etics, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the

inical Genetics, Maastricht University Medical Centre, Universiteitssingel

2017

mailto:bert.devries@radboudumc.nl
http://dx.doi.org/10.1016/j.ajhg.2017.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2017.02.005&domain=pdf


GeneMatcher.9–12 One individual was previously described

as part of the Simons Simplex Collection cohort.13 Herein,

we report on an ID syndrome caused by de novo germline

mutations in the last and penultimate exons of PPM1D, as

well as the implication of such mutations in the role of

PPM1D in stress responses.

We collected clinical data by inviting individuals back to

the clinic for re-evaluation and deep phenotyping.

Detailed clinical information of the 14 individuals

(2–21 years old) is described in the Supplemental Note

and summarized in Table 1. All but one individual had

mild to severe ID (93%), and 11 individuals (79%) had

behavioral problems, such as anxiety disorders, attention

deficit hyperactivity disorder (ADHD), obsessive behavior,

sensory integration problems, and autism spectrum disor-

der (ASD). The individual with a normal IQ of 96 did, how-

ever, need extra tutoring at school and showed an anxiety

disorder and attention problems. Seven individuals were

hypersensitive for sounds. Hypotonia was a common

feature in the individuals for whom this information was

available (10/14 [71%]), and several individuals had a

broad-based gait (5/10 [50%]). Brain MRI was performed

for nine individuals (64%) without any substantial find-

ings, except for moderate cortical and cerebellar atrophy

and abnormal vascular structures in individual 13, who

was also diagnosed with Potocki-Shaffer syndrome. Eight

individuals (62%) had short stature, but weight and head

circumference were variable. Feeding difficulties were a

common feature (10/14 [71%]), and remarkably, eight in-

dividuals (62%) had periods of illness with fever and/or

vomiting. In addition, nine individuals had a high pain

threshold (90%). One individual had problems emerging

from anesthesia. Vision problems, such as myopia, hyper-

metropia, and strabismus, were seen in nine individuals

(64%). There was no apparent shared or consistent facial

gestalt despite the presence of overlapping facial features,

including a broad forehead, low-set posteriorly rotated

ears, upturned nose, and broad mouth with thin upper

lip (Figure 1A). Ten individuals (91%) had small hands

often with brachydactyly, seven individuals had small

feet, and six individuals had hypoplastic toenails. To

further delineate the clinical spectrum associated with

de novo mutations in PPM1D, we established a website

to collect detailed clinical information of additional indi-

viduals to be identified over the coming year (see Web

Resources).

Whole-exome sequencing was performed in all individ-

uals as previously described,9,10 and all were identified to

have a deleterious PPM1D mutation. This study was

approved by the institutional review board Commissie

Mensgebonden Onderzoek Regio Arnhem-Nijmegen

NL36191.091.11 and received UK research ethics commit-

tee (REC) approval (10/H0305/83 granted by the Cam-

bridge South REC and GEN/284/12 granted by the

Republic of Ireland REC). Written informed consent was

obtained from all individuals. Subsequent confirmation

by Sanger sequencing and investigation of parental DNA
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samples of 13 individuals indicated that PPM1Dmutations

had occurred de novo. Interestingly, all 14 ID-associated

PPM1D mutations are located in the last and penultimate

exons (Figure 1B) and are predicted to result in a premature

stop codon in exon 6 or in the last 55 nucleotides of exon 5

(Figure 1C). The truncated mRNA is therefore presumed to

escape nonsense-mediated decay (NMD) and result in a

truncated PPM1D still containing its functional protein

phosphatase Mg2þ/Mn2þ-dependent (PPM)-type phospha-

tase domain but lacking its nuclear localization signal

(NLS). To analyze PPM1D mRNA expression on cDNA

derived from lymphoblastoid cell lines (LCLs) of individ-

uals with a mutation in PPM1D, we obtained LCLs from

human blood by immortalization via Epstein-Barr virus

(EBV) transformation according to standard procedures.

PPM1D mRNA expression analysis using two different

sets of primer pairs showed no significant difference in

mRNA levels between control lines and cDNA derived

from LCLs of individuals 2 and 3, indeed confirming that

the truncatedmRNAwas not subjected toNMD (Figure 2B).

Subsequent Sanger sequencing, performed in four individ-

uals (1–3 and 7) with a primer set targeting the mutated

area (PPM1D_1 and PPM1D_3), confirmed the presence

of truncated PPM1D transcripts. We showed that the

de novo mutations in PPM1D lead to stable transcription

of truncated mRNAwith normal expression levels. Because

the truncated protein lacks its NLS, it might no longer

reach the nucleus to exert its function. Immunohisto-

chemical staining of PPM1D showed cytosolic and nuclear

staining in LCLs in a control line (Figure S1). Similar stain-

ing in EBV-transformed LCLs from an individual with a

heterozygous de novo mutation in PPM1D showed a

similar localization (Figure S1). However, the latter can be

explained by the presence of the wild-type allele, which

still results in a fully functional PPM1D. Notably, given

the specific need of PPM1D in cellular stress, it is possible

that localization of the mutant PPM1D is mostly affected

during this state. Further quantification of PPM1D in

the different cell compartments and under different phys-

iological scenarios could help to improve our understand-

ing of the biological mechanism underlying PPM1D

pathology.

Importantly, de novo mutations in PPM1D have not

been observed in over 2,000 control trios.1,15–18 Interroga-

tion of large databases, such as the Exome Aggregation

Consortium (ExAC) Browser, shows that PPM1D is under

constraint for missense mutations (Z score 3.13). Interest-

ingly, however, PPM1D seems to be tolerant of loss-of-

function mutations (with pLI ¼ 0.00).19 Together, these

scores could indicate that the pathophysiological mecha-

nism underlying ID-associated PPM1D mutations is more

complex and that a mechanism involving a C-terminally

truncated protein is more disruptive than complete loss

of it, similar to what has been identified for DVL1

and DVL3 frameshift mutations causing Robinow syn-

drome.20–22 This highlights the importance of not disre-

garding these genes without consideration, given that
rican Journal of Human Genetics 100, 650–658, April 6, 2017 651



Table 1. Main Clinical Features of Affected Individuals

Individual

Total1 2 3 4 5 6 7 8 9 10 11 12 13 14

General Information

Age 14 y 5 y 5 y 2 y 5 y 10 y 9 y, 9 m 21 y 16 y 6 y 18 y 15 y 7 y 7 y 2–21 y

Gender F M F M M M M M F F M F F F 7 M, 6 F

Mutation c.1221T>A
(p.Cys407*)

c.1216del
(p.Thr406
Profs*3)

c.1260þ
1dup
(p.Ser421
Thrfs*12)

c.1210C>T
(p.Gln404*)

c.1269_
1270dup
(p.Glu424
Glyfs*8)

c.1339G>T
(p.Glu447*)

c.1188_
1191del
(p.Asp397
Alafs*11)

c.1250dup
(p.Pro418
Thrfs*16)

c.1270dup
(p.Glu424
Glyfs*10)

c.1270dup
(p.Glu424
Glyfs*10)

c.1281G>A
(p.Trp427*)

c.1281G>A
(p.Trp427*)

c.1654C>T
(p.Arg552*)

c.1404_
1411del
(p.Lys469
Argfs*4)

NA

Inheritance de novo de novo de novo de novo de novo de novo de novo de novo de novo de novo de novo de novo NKa de novo NA

Growth

Birthweight (g) 2,780 4,000 2,655 3,742 3,527 3,180 2,200 2,211 3,061 2,730 3,200 3,429 NK 3,140 NA

Height (SD) �2.7 �1.5 �2.8 0 NK �3 <�3 <�2.5 �2.3 �2.5 �2.7 þ0.41 �2.6 �2 NA

Weight (SD) þ2.3 þ0.5 �1.9 0 NK þ2 þ0.5 <�2.5 �2.2 �2 �1.8 >þ2.5 �4.9 0 NA

Head
circumference
(SD)

þ0.7 �0.5 �1.5 �0.5 �0.5 �1 �1.8 <�2.5 �3.1 �2.5 �2.5 þ3.49 NK �1.5 NA

Neurological

ID (severity) þ (mild to
moderate)

þ (mild to
moderate)

þ (mild) þ þ �b þ (mild to
moderate)

þ (mild to
moderate)

þ (severe) þ (moderate) þ (moderate) þ (severe) þ (severe) þ (mild) 13/14 (93%)

Hypotonia þ þ þ þ þ � � þ þ þ þ � þ � 10/14 (71%)

Broad-based gait þ NK þ þ þ � � � þ NK NK � NK � 5/10 (50%)

Sensitivity to
sounds

NK NK þ þ NK NK þ þ þ þ NK NK NK þ 7/7 (100%)

Behavioral
features

ADHD,
ODD,
anxiety
disorder

sensory
integration
problems

short
attention,
panic
attacks

sensory
integration
problems,
hyperarousal,
short
attention

� anxiety
disorder,
attention
difficulties,
biting

sensory
integration
problems,
anxiety,
short
attention

anxiety ASD � � ASD,
attention
problems,
oppositional,
aggression

ASD ASD 11/14 (79%)

Facial

Broad forehead þ þ � � NK � � þ þ þ þ NK þ þ 8/12 (67%)

Low-set,
posteriorly
rotated ears

þ þ þ þ (right) NK NK � � þ þ þ NK NK þ (only
posteriorly
rotated)

8/10 (80%)

Upturned
nose

þ � þ � NK � � � � þ þ NK þ � 5/12 (42%)

Thin upper lip � þ þ þ NK þ � þ þ þ þ NK þ þ 10/12 83%

Broad mouth þ þ þ � NK þ � � þ � þ NK � � 6/12 50%

(Continued on next page)
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Table 1. Continued

Individual

Total1 2 3 4 5 6 7 8 9 10 11 12 13 14

Gastrointestinal

Feeding
difficulty

þ (neonatal) þ (neonatal) þ (neonatal) þ þ � þ þ � � þ � þ þ (neonatal) 10/14 (71%)

GER and/or
vomiting

þ þ þ þ NK þ þ þ (infancy) þ þ � � þ � 10/13 (77%)

Constipation � þ � þ þ � þ þ (infancy) þ � NK � þ þ 8/13 (55%)

Skeletal

Small hands NK þ þ � NK þ þ þ þ þ þ NK þ þ 10/11 (91%)

Small feet NK NK þ � NK NK þ þ þ NK þ NK þ þ 7/8 (88%)

Hyperlordosis þ � � � þ NK þ þ þ NK þ NK NK þ 7/10 (70%)

Other

Periodic
illnessc

þ þ � � þ þ þ þ þ þ � � NK � 8/13 (62%)

High pain
threshold

NK þ þ þ NK þ þ þ þ þ þ NK NK � 9/10 (90%)

Congenital
abnormalities

bicuspid
aortic valve

retractile
testes,
small
genital

small VSD
and small
ODA

� bilateral
cryptor-
chidism

� � � � laryngo-
malacia

� � bilateral
parietal
foramina,
exostoses,
diaphragmatic
hernia,
volvulus
intestined

� 6/14 (43%)

Vision
problems

myopia,
nystagmus,
amblyopia

hyper-
metropia,
cilinder,
strabismus

hyper-
metropia

myopia,
strabismus,
astigmatism,
CVI

� � hyper-
metropia,
strabismus,
astigmatism,
nystagmus

myopia,
strabismus

� hyper-
metropia,
strabismus

hyper-
metropia,
strabismus

� strabismus,
nystagmus,
iridocyclitis,
retinal
detachment

� 9/14 (64%)

Hypoplastic
nails

þ (toenails) þ (toenails) þ (toenails) � þ (toenails) � � þ (fifth
toenails)

� � þ NK NK � 6/12 (50%)

Recurrent
infections

� � NK � NK NK þ NK þ NK þ þ þ � 5/9 (56%)

Abbreviations are as follows: þ, present; �, absent; y, years; m, months; M, male; F, female; NK, not known; ID, intellectual disability; ADHD, attention deficit hyperactivity disorder; ODD, oppositional defiant disorder; ASD,
autism spectrum disorder; GER, gastro esophageal reflux; VSD, ventricle septum defect; ODA, open ductus arteriosus; and CVI, cerebral visual impairment.
aParental DNA not available.
bIndividual did have learning difficulties.
cIncluding cyclic vomiting.
dIndividual 13 also had a confirmed diagnosis of Potocki-Shaffer syndrome.
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Figure 1. Photographs of Nine Individuals with a Truncating Mutation in PPM1D, De Novo Mutations in PPM1D, and Predicted
Consequences at the Protein Level
(A) Shared facial features including a broad forehead, upturned nose, broad mouth with thin upper lip, and low-set posteriorly rotated
ears. Extremities show small hands and feet with brachydactyly and hypoplastic toenails. Individual 13 also had a confirmed diagnosis of
Potocki-Shaffer syndrome. Parents provided informed consent for the publication of these photographs.
(B) Schematic representation of the coding sequence of PPM1D (GenBank: NM_003620.3), including zoomed-in exons 5 and 6. All de
novo PPM1Dmutations identified are depicted according to their location in the coding sequence. Protein domain structures encoded by
exons 5 and 6 are highlighted in color: red for the PPM-type phosphatase domain (in exon 5) and green for the nuclear localization signal
(in exon 6).
(C) Predicted protein sequences in individuals 1–14. The last part of the translated sequence of exon 5 is in blue, and the amino acids
encoded by the first part of exon 6 are in orange. For individuals 1–14, the predicted mutant amino acids are depicted in red. Abbrevi-
ations are as follows: WT, wild-type; and aa, amino acid.
the disease-causing mutations could have other patho-

physiological mechanisms not directly inferable from

such metrics in the ExAC Browser.
654 The American Journal of Human Genetics 100, 650–658, April 6,
PPM1D has previously been shown to be expressed in

both mouse and human brain,23,24 but a second hint

toward a role for PPM1D in the occurrence of ID would
2017
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Figure 2. Functional Effects of PPM1D Mutations at the RNA and Protein Levels and Downstream Effects on p53 Activation and Cell
Growth
(A) Semiquantitative PCR using primers PPM1D_3 (forward: 50-AACCTGACTGACAGCCCTTC-30; reverse: 50-ACCAGGGCAGGTA
TATGGTC-30) on tissue-specific cDNA libraries shows PPM1D expression in fetal and adult brain. EBV-LCL cDNA is the positive control
(þ), and ddH2O is the negative control (�).
(B) Expression levels of PPM1Dwere quantified by qPCR using cDNA obtained from EBV-LCLs derived from individuals with a mutation
in PPM1D (individuals 2 and 3). Experiments were performed in triplicate with two sets of primer pairs: PPM1D_1 (forward: 50-TGC
TTGTGAATCGAGCATTG-30; reverse: 50-CCCTGATTGTCCACTTCTGG-30) and PPM1D_2 (forward: 50-AAGTCGAAGTAGTGGTGCT
CAG-30; reverse: 50-TCTTCTGGCCCCTAAGTCTG-30). Analysis was performed with SDS software according to standard procedures,
and GUSB expression was used as a calibrator (forward: 50-AGAGTGGTGCTGAGGATTGG-30; reverse: 50-CCCTCATGCTCTAGC
GTGTC-30).14 There was no significant change in PPM1D mRNA expression between affected individuals and control lines. Abbrevia-
tions are as follows: n.s., not significant; Ind, individual; Con, control individual; and Avg, average. Results are presented as the
average 5 SD.
(C) Radiation-induced activation of p53 was investigated in fibroblasts derived from individual 1, EBV-LCLs derived from individuals 2
and 3, healthy control cells, and the cancer cell line with active PPM1D (MCF7 as the positive control). Cells were exposed to gamma
irradiation (5 Gy) from an X-ray source. Whole-cell lysates were generated from cells 30–60 min and 4 hr after irradiation and subjected
to protein electrophoresis. Immunoblotting of electrophoresed lysates was performed with antibodies specific to p53 (9282S), phospho-
Histone gH2AX (ser139) (9718S), and actin (I-19), or b-tubulin (D-10). Anti-rabbit, anti-mouse, and anti-rabbit secondary antibodies
were incubated with the blot (1:5,000) for 1 hr at room temperature, and then exposure using enhanced chemiluminescent detection
followed. Western blot analysis showed no difference between case and control cell lines but did show increased p53 activation in the
PPM1D mutant breast cancer cell line MCF7.
(D) Growth behavior of EBV-LCLs derived from individuals with a mutation in PPM1D (individuals 2 and 3) was compared with that of
age- and sex-matched control EBV-LCLs. Cells were irradiated (UV light: 60 J/m2) and cultured in a concentration of 3 3 105 cells/mL.
Cell numbers were counted in triplicate after 48 hr, and the experiment was repeated three times. 48 hr after irradiation, the number of
EBV-LCLs derived from individuals with a mutation in PPM1D (n ¼ 2) was significantly lower than that of control cells (n ¼ 2), whereas
the growth of untreated cells was unaffected. Abbreviations are as follows: *, p< 0.05; n.s., no significance; Ind, individual; Con, control
individual; and Avg, average. Results are presented as the average 5 SD.
be its expression in the developing brain. We therefore

investigated PPM1D expression in cDNA libraries obtained

from fetal and adult brain by using semiquantitative PCR.

Human cDNA libraries from different human tissues were

purchased from Stratagene. Expression of PPM1D in em-

bryonic and adult brain and EBV-LCLs (positive control)

was investigated with PPM1D-transcript-specific semi-

quantitative PCR using the primer set PPM1D_3. We de-
The Ame
tected PPM1D expression in both fetal and adult brain

(Figure 2A). In addition, our analysis showed wider fetal

(developmental), whereby PPM1D expression was detected

in fetal liver and skeletal muscle, but not in their adult

counterparts (data not shown). The expression of PPM1D

in the fetal brain suggests a role during fetal brain develop-

ment and thus potentially in developing normal cogni-

tion. Although we were not able to further narrow down
rican Journal of Human Genetics 100, 650–658, April 6, 2017 655



the expression to detailed brain regions, the highest Ppm1d

expression in mice has been reported in the cerebellum,23

which is the center for coordination. Several of our affected

individuals had a broad-based gait, a possible sign of cere-

bellar disturbance, which might therefore be associated

with the mutation in PPM1D. However, the individuals

did not display other symptoms of coordination defects,

and in the individuals who had received brain MRI,

no structural abnormalities of the cerebellum could be

identified.

PPM1D has also been reported to be an important regu-

lator of global heterochromatin silencing and thus critical

in maintaining genome integrity.25 The latter was exam-

ined in germ cells of Ppm1d-deficient mice, which showed

enlarged heterochromatin centers with enriched immuno-

fluorescent staining for H3K9me3 and HP1g, both markers

for transcriptional repression.25 When PPM1D dysfunc-

tion indeed alters gene expression, this might have an

effect on fetal (brain) development. Moreover, Ppm1d-defi-

cient mice show an increase in anxiety and depression-like

behavior,26 suggesting a potential protective function of

PPM1D in mood stabilization.26 Interestingly, four of the

individuals with a PPM1D mutation showed anxiety.

PPM1D (also known as Wip1) is, like other genes encod-

ing PPM and PP2C phosphatases, a regulator of stress

response.27 In particular, PPM1D regulates the DNA dam-

age response (DDR) pathway by inhibiting p53 and other

tumor suppressors (p38, ATM, Chk1, and Chk2) through

dephosphorylation of these proteins.27 Previously substan-

tial amounts of work have gone into the role of PPM1D in

tumorigenesis, given that acquired PPM1Dmutations have

been identified in individuals with breast, ovarian, colon,

and lung cancer and are postulated to exert their effect

through gain of function.27–31 However, these mosaic

mutations in lymphocytes were shown to occur only in

individuals who had undergone chemotherapy and were

shown to be absent in DNA isolated from the germline

prior to chemotherapy.27–31 The gain-of-function effect

was shown by overexpression of cancer-associated

PPM1D mutations in tumor cells, which suppressed

ionizing radiation (IR)-induced molecular responses.28 In

normal conditions, exposure to IR causes upregulation of

p53 levels and phosphorylation of the histone H2AX

(gH2AX), events that are normally prevented by PPM1D

activity. In tumor cells with overexpression of cancer-asso-

ciated PPM1D mutations, p53 and gH2AX upregulation

after IR exposure is impaired, suggesting that in tumor

cells, truncating PPM1D mutations are hyperactive.28 We

tested the upregulation of p53 and gH2AX in MCF7 cells,

a breast cancer cell line serving as a positive control, which

showed the expected upregulation of p53 and gH2AX, sug-

gesting that the IR exposure was successful (Figure 2C).

Compared with healthy control cells, fibroblasts from indi-

vidual 1 and EBV-LCLs derived from individuals 2 and 3

showed normal p53 and gH2AX responses (Figure 2C). In

conclusion, these data indicate that ID-associated PPM1D

mutations do not cause p53 depletion, which suggests a
656 The American Journal of Human Genetics 100, 650–658, April 6,
pathophysiological mechanism different from the ac-

quired PPM1D cancer-associated mutations.

As a regulator of the DDR, PPM1D plays an important

role in cell-cycle control by positively upregulating G1-

to-S phase progression.32 We hypothesized that the ID-

associated mutations in PPM1D would lose this positive

upregulation and thereby cause cells to stall in the

G1-to-S phase, leading to reduced cell proliferation. We

therefore next tested whether EBV-LCLs derived from indi-

viduals 2 and 3 showed growth abnormalities in compari-

son with age- and sex-matched control EBV-LCLs. For this,

cells were exposed to IR and analyzed for growth character-

istics (Figure 2D). Indeed, cells derived from individuals

showed 50% less growth than control lines, whereas the

growth of untreated cells was unaffected (Figure 2D),

showing that heterozygous PPM1D truncation leads to

growth disadvantage after radiation. Hence, if the effect

of the truncating mutations in our cases is a gain of func-

tion, this does not seem to affect the role of PPM1D on

p53. However, a cell-growth disadvantage was observed

after IR, suggesting that another function related to

PPM1D cell-cycle checkpoints might be compromised.

Several genes are known to have somatic mutations that

lead to cancer but germline mutations that cause an ID

phenotype. Examples include genes encoding compo-

nents of the RAS-MAPK pathway, SETBP1 (SET binding

protein 1 [MIM: 611060]), and CTNNB1 (catenin beta 1

[MIM: 116806]).33–36 Also, some of these germline muta-

tions give rise to a higher cancer risk, whereas others do

not.33–36 Germline PPM1D mutations in individuals with

cancer have to our knowledge not yet been reported.

Although it is known that germline mutations in

some genes, for instance NF1 (neurofibromin 1 [MIM:

613113]), cause ID and a higher risk of (benign)

tumors,37 none of the individuals studied here (2–21 years

old) have developed cancer. Thus, we cannot exclude nor

confirm the possibility that the PPM1D mutations in the

individuals with ID predispose to cancer.

In conclusion, de novo truncating germline mutations

in the last and penultimate exons of PPM1D lead to an

ID syndrome with behavioral problems, hypotonia,

broad-based gait, periods of fever and vomiting, high

pain threshold, short stature, small hands and feet, and

overlapping facial dysmorphisms. Exposure of affected

cells to IR resulted in normal p53 activation, suggesting

that p53 signaling is not affected by the truncated protein.

Nonetheless, a cell-growth disadvantage after IR was

observed. The significant enrichment of de novo muta-

tions in individuals with ID, the expression in the devel-

oping and mature brain, and this clinical ID syndrome

underscore the role of PPM1D in neurodevelopment.
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