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Proteomics of REPLICANT perfusate detects changes in the
metastatic lymph node microenvironment
Julia Stevenson1, Rachel Barrow-McGee1, Lu Yu 2, Angela Paul2, David Mansfield3, Julie Owen4, Natalie Woodman4,
Rachael Natrajan 1, Syed Haider1, Cheryl Gillett4, Andrew Tutt1, Sarah E. Pinder 5, Jyoti Choudary2 and Kalnisha Naidoo 1,6✉

In breast cancer (BC), detecting low volumes of axillary lymph node (ALN) metastasis pre-operatively is difficult and novel
biomarkers are needed. We recently showed that patient-derived ALNs can be sustained ex-vivo using normothermic
perfusion. We now compare reactive (tumour-free; n= 5) and macrometastatic (containing tumour deposits >2 mm; n= 4)
ALNs by combining whole section multiplex immunofluorescence with TMT-labelled LC-MS/MS of the circulating perfusate.
Macrometastases contained significantly fewer B cells and T cells (CD4+/CD8+/regulatory) than reactive nodes (p= 0.02).
Similarly, pathway analysis of the perfusate proteome (119/1453 proteins significantly differentially expressed) showed that
immune function was diminished in macrometastases in favour of ‘extracellular matrix degradation’; only ‘neutrophil
degranulation’ was preserved. Qualitative comparison of the perfusate proteome to that of node-positive pancreatic
and prostatic adenocarcinoma also highlighted ‘neutrophil degranulation’ as a contributing factor to nodal metastasis.
Thus, metastasis-induced changes in the REPLICANT perfusate proteome are detectable, and could facilitate biomarker
discovery.
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INTRODUCTION
Precise histopathological quantification of axillary tumour burden
remains central to the management of patients with early-stage
breast cancer (BC)1. This volumetric assessment of metastatic
nodal disease is determined by counting the total number of
metastatic axillary lymph nodes (ALNs), and measuring the size of
the largest tumour deposit1. Recent efforts to delineate when it is
safe to leave metastatic ALNs in situ, obviating the risks associated
with a surgical ALN dissection (ALND), have proved controversial1–5.
At a biological level, we have yet to determine at which size/
volume a tumour deposit ‘switches off’ the immune response in
an ALN, facilitating tumour growth and spread. In other words,
how tumour biology and intra-tumour heterogeneity (ITH) affect
ALN colonisation is unclear6.
This uncertainty is confounded by the fact that while

preoperative imaging can reliably quantify high volumes of
axillary disease, detecting smaller amounts is difficult, even when
coupled with a needle-biopsy7. Furthermore, no reliable predictive
biomarkers of axillary tumour burden exist at present. This is partly
because every surgically excised ALN has to be formalin-fixed and
paraffin-wax embedded (FFPE) for diagnosis and treatment
planning1,8. As such, obtaining human nodal tissue for biomarker
discovery and validation is difficult.
Although the liquid biopsy overcomes these issues of access

and sample quantity, the complexity of blood has proved
challenging for biomarker discovery9. Exactly how much nodal
disease is required for circulating tumour DNA (ctDNA) to become
detectable has yet to be determined. Interestingly, it has been
shown that ctDNA can be identified pre-operatively in treatment
naïve patients with more than three metastatic ALNs, and that
levels drop following ALN removal10. However, since cell death or

‘shedding’ is required to release ctDNA, it could be argued that
‘non-shedding’ tumours might escape detection by this method
altogether11. For these reasons, monitoring ctDNA in early-stage
cancer is not recommended currently11.
With regard to proteomics, there is little concordance between

the few studies that have tried to identify biomarkers of axillary
disease in human serum/plasma samples12–17. Similarly, human
tissue studies comparing the proteomes of primary BC to matched
ALN metastases have yielded disparate data18–23. On the whole,
ALN metastases have been shown to be similar to the primary BC
at a protein level but minimal overlap was seen between studies.
No studies thus far have compared the protein expression of
reactive to metastatic ALN tissue.
Intriguingly, lymph seems to contain higher concentrations of

circulating biomarkers, particularly in the early stages of metas-
tasis24. Proteomic studies have shown that lymph reflects the
pathophysiology of the tissue from which it derives25–27, and has
recently been shown to be relevant to melanoma biomarker
discovery and stage prediction24. To our knowledge, no such
studies have been performed on lymphatic exudate from BC
patients undergoing an ALND however.
In the ‘REPLICANT’ study, we recently showed that human

ALNs from BC patients can be sustained ex vivo for scientific
investigation using normothermic perfusion8. Herein, we char-
acterise the proteome of the circulating fluid collected from these
perfused ALNs (‘perfusate’) using Tandem Mass Tag (TMT) labelled
mass spectrometry (MS)-based shotgun proteomics, and show
that it can discriminate between reactive (tumour-free) and
macrometastatic ALNs (i.e. containing a tumour deposit >2 mm
in maximal dimension).
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RESULTS
Immune cells decrease significantly as tumour grows within
an ALN
All of the ALNs collected during the study (10 perfused and 10
baseline control) underwent multiplex immunofluorescence (MIF).
Representative images of a reactive (Fig. 1A) and a macrometa-
static ALN (Fig. 1B) are shown (×20 magnification; field of view:
670 µm × 500 µm). The first panels (left to right) show MIF staining,
while second panels show the cell phenotype maps that were
generated algorithmically from the MIF images. In addition to
analysing cell density (i.e. total cells per mm2) over the whole

tissue section, the tissue in metastatic nodes was segmented
(third panel in Fig. 1B) into areas containing mostly cancer cells
(‘tumour’; red), stromal regions (‘stroma’; light grey), and areas
comprising mainly lymphoid cells (‘lymphoid’; green). The node
containing a micrometastasis (i.e. a tumour deposit measuring
0.2–2mm) was excluded from further analysis (including proteo-
mics) since the tumour cells had cut out after sectioning, thus
confounding evaluation. Thus, nine ALNs were analysed in total
(i.e. five reactive and four macrometastatic).
Although some quantitative differences in immune composition

were seen between control and perfused ALNs, none reached
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statistical significance (reactive nodes (n= 5) are shown in Fig. 1C
and macrometastatic nodes (n= 4) are shown in Fig. 1D). These
data provide further evidence that perfusion does not appear to
alter the tumour-immune microenvironment within ALNs8, and
therefore all subsequent analysis was done on perfused ALNs only.
We calculated the percentage of tumour infiltrating lympho-

cytes in the metastatic tumour (mTILs; Fig. 1E)28, in the whole
section and in the three regions described above. ‘Lymphoid’
areas, unsurprisingly, had the highest concentration of mTILs,
while the lowest concentration was seen within ‘tumour’ foci.
Importantly, the difference in mTILs between the compartments
was statistically significant (p < 0.0001), suggesting that stromal
mTILs might not be a surrogate for whole tumour mTILs in
metastatic nodes. Regulatory T cells (T-regs) are an immunosup-
pressive subset of CD4+ T cells which also express FOXP329. These
cells can dampen the anticancer immune response, promoting
tumour growth and progression; they also express immune-
checkpoint molecules and, as such, are the target of immune
checkpoint inhibitor therapies29. We therefore evaluated their
distribution in macrometastatic ALNs. T-regs distribution followed
the pattern of total mTIL distribution in the various compartments,
but did not reach statistical significance (Fig. 1F).
The ubiquitous co-expression of PD-L1 made cell density

quantification difficult. To overcome this, we calculated the
average signal intensity for each cell type within each macro-
metastatic node (Fig. 1G). As can be seen, 49% (whole tumour)
and 30–54% (regional) of the PD-L1 staining did not co-localise
with any of the other markers that we had stained for; these are
probably macrophages or dendritic cells30. Most of the remaining
signal was present on T-lymphocytes (36% (whole section) and
32–46% (regional)), with cancer cells contributing between 5 and
10%, and B cells <5%, to overall intensity. Furthermore, the signal
distribution was consistent in each area quantified (Representative
images of PD-L1 MIF are shown in Supplementary Fig. 1).
Finally, we compared the immune composition of reactive to

metastatic ALNs (Fig. 1H). The average cell density of B cells (p=
0.02), cytotoxic T cells (p= 0.02); T-helper cells (p= 0.02) and T-
regs (p= 0.02) decreased significantly when macrometastases
were present. This reflects the fact that nodal architecture is
destroyed and replaced by metastatic tumour during ALN
colonisation6.

The perfusate proteome reflects the pathophysiology of
perfused ALNs
Proteomic analysis of the perfusate samples (n= 9) identified
1453 proteins in total (Supplementary Table 1). Of these, 119 (8%)
were significantly differentially expressed (DE) between reactive
and metastatic samples (Table 1; p ≤ 0.05). Hierarchical cluster
analysis of these 119 significantly differentially expressed proteins

(DEP; Fig. 2) showed a clear separation of reactive and metastatic
samples. This suggests that certain biological features within
metastatic nodes are not only distinctive, but shared across
different patients.
The 57 significantly upregulated proteins in reactive ALNs (n= 5)

and the 62 significantly up-regulated proteins in metastatic ALNs
(n= 4) were subjected to pathway analysis in ConsensusPathDB31.
The 10 most enriched pathways for both disease states are shown
in Fig. 3A (reactive) and B (metastatic).
In reactive nodes, as expected, the 10 most common pathways

identified all linked to immunity, both innate and adaptive.
Conversely, in the metastatic perfusate samples, proteins reflect-
ing active immune function were poorly represented, supporting
the picture painted by MIF. Most of the pathways identified in
these nodes relate to extracellular matrix (ECM) degradation. The
ECM is known to regulate cell behaviour and differentiation in
lymph nodes (LNs) in both health and disease, changing
dynamically in response to injury32–36. The fact that ‘keratinisation’
was identified in the metastatic perfusate samples reflects the
presence of tumour cells within the ALNs, since only epithelial
cells contain keratin. These cells are not a normal LN constituent,
and thus served as a good positive control. The only immune
process identified in the metastatic perfusate samples was
‘neutrophil degranulation’.
Since ‘neutrophil degranulation’ had been identified as being

significantly up-regulated in metastatic perfusate samples, we
reviewed the haematoxylin and eosin (H&E) sections of the nine
perfused ALNs8 to see if the absolute number of neutrophils was
increased in metastatic nodes (Fig. 3C). Although there was a
trend towards higher numbers of neutrophils in metastatic nodes,
this did not reach statistical significance (p= 0.19).
Overall, these data suggest that the proteome reflects the

pathophysiology of the perfused ALNs, and that a shift to ‘ECM
degradation’ and ‘neutrophil degranulation’ can be used to infer
when macrometastases are present or not.

Analysing differences between reactive and metastatic
perfusate samples reveals novel patterns of protein
dysregulation
In order to see how the perfusate proteome compared to that of
primary BC tissue samples, we mined TCGA samples which
underwent proteomic analysis in the CPTAC study37–39. Qualita-
tively, 1361 of the 1453 perfusate proteins were present in the
TCGA(CPTAC) dataset (i.e. 94% overlap; data not shown). However,
since an average of 11,632 proteins/tumour were found in that
study, the perfusate probably contains a fraction of the proteins
expressed in primary BC39.
We then stratified the TCGA(CPTAC) samples into those from

patients who had undergone a sentinel LN biopsy (SLNB) only

Fig. 1 Multiplex immunofluorescence of REPLICANT axillary lymph nodes (ALNs). Reactive (n= 5) and macrometastatic (n= 4) ALNs were
fluorescently stained for CD8, CD4, CD20, FoxP3 and PD-L1; reactive nodes, for CD68 in addition; metastatic nodes, additionally for pan-
cytokeratin (pan-CK). Representative images of a reactive (A) and macrometastatic (B) node are shown (x20 magnification; field of view:
670 µm × 500 µm). From left to right, the first panels show immunofluorescent staining; second panels show cell phenotype maps, which were
generated algorithmically. In metastatic nodes, the tissue also was segmented (third panel in B) into areas containing mostly cancer cells
(‘tumour’; red), stromal regions (‘stroma’; light grey), and areas comprising mainly lymphoid cells (‘lymphoid’; green) for tumour infiltrating
lymphocyte (mTILs) and PD-L1 analysis. No statistically significant differences in immune composition were seen between control (fixed at
baseline) and perfused nodes (reactive nodes are shown in C, metastatic in D; cell density= total cells/mm2; Wilcoxon test). Subsequent
analysis was therefore done on perfused ALNs only. The percentage of mTILs across the whole tissue section of metastatic ALNs (‘whole
tumour’), as well as in ‘tumour’, ‘stroma’, and ‘lymphoid’ areas, is shown in E (n= 4). The differences between these regions was statistically
significant (p < 0.0001; Kruskal-Wallis test). The regional distribution of regulatory T cells (T-regs) did not differ significantly however (F). The
co-localisation of PD-L1 (average signal intensity) with other cell markers is shown in G. 49% (whole tumour) and 30–54% (regional) of the PD-
L1 staining did not co-localise with any of the other markers that we had stained for (‘other immune’). Most of the remaining signal was
present on T-lymphocytes (36% (whole tumour); 32% (tumour); 46% (stroma); and 37% (lymphoid)), with cancer cells contributing between 5
and 10%, and B cells <5%, to overall intensity. H The average cell density of CD20 + B cells (p= 0.02), CD8 + T cells (p= 0.02), CD4 + T cells (p=
0.02) and T-regs (p= 0.02) was significantly decreased in nodes replaced by macrometastases (latter, Kruskal–Wallis; former three,
Mann–Whitney). (Graphs show mean with standard error of the mean (SEM)).
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Table 1. 119 significantly differentially expressed proteins between reactive (n= 5) and metastatic (n= 4) perfusate.

Uniprot ID Description # Unique
peptides

ReactiveAVE MetastaticAVE log2ratio T-test

P02655 Apolipoprotein C-II 5 153.72 32.83 −2.23 0.03

P21980 Protein-glutamine gamma-glutamyltransferase 2 11 144.44 44.45 −1.70 0.02

P00568 Adenylate kinase isoenzyme 1 8 141.80 47.70 −1.57 0.04

P68036 Ubiquitin-conjugating enzyme E2 L3 2 141.16 48.55 −1.54 0.01

A1L0T0 Acetolactate synthase-like protein 2 141.06 48.73 −1.53 0.01

Q9BXN1 Asporin 3 140.36 49.55 −1.50 0.001

Q13404 Ubiquitin-conjugating enzyme E2 variant 1 2 139.68 50.43 −1.47 0.05

P51888 Prolargin 5 139.20 50.98 −1.45 0.005

P02656 Apolipoprotein C-III 2 139.16 51.00 −1.45 0.03

P35611 Alpha-adducin 11 138.52 51.85 −1.42 0.04

P40227 T-complex protein 1 subunit zeta 5 137.98 52.58 −1.39 0.05

O00159 Unconventional myosin-Ic 13 136.70 54.08 −1.34 0.03

Q05469 Hormone-sensitive lipase 12 136.52 54.33 −1.33 0.01

P16671 Platelet glycoprotein 4 6 136.50 54.35 −1.33 0.02

P55084 Trifunctional enzyme subunit beta, mitochondrial 5 136.20 54.70 −1.32 0.02

O75955 Flotillin-1 4 135.58 55.58 −1.29 0.04

P35232 Prohibitin 2 159.43 65.55 −1.28 0.004

P50990 T-complex protein 1 subunit theta 11 134.98 56.30 −1.26 0.03

P52943 Cysteine-rich protein 2 3 134.94 56.38 −1.26 0.03

P48643 T-complex protein 1 subunit epsilon 9 134.48 56.88 −1.24 0.01

Q8WUM4 Programmed cell death 6-interacting protein 9 134.40 56.98 −1.24 0.01

O00151 PDZ and LIM domain protein 1 8 134.34 57.08 −1.23 0.03

P17987 T-complex protein 1 subunit alpha 11 134.24 57.20 −1.23 0.03

O75947 ATP synthase subunit d, mitochondrial 3 133.98 57.53 −1.22 0.04

Q9NQ79 Cartilage acidic protein 1 3 133.82 57.73 −1.21 0.03

Q02750 Dual specificity mitogen-activated protein kinase kinase 1 3 133.34 58.33 −1.19 0.003

P05091 Aldehyde dehydrogenase, mitochondrial 11 133.26 58.40 −1.19 0.02

P38606 V-type proton ATPase catalytic subunit A 3 133.14 58.60 −1.18 0.02

Q13200 26S proteasome non-ATPase regulatory subunit 2 6 132.62 59.20 −1.16 0.05

Q9NVD7 Alpha-parvin 6 131.72 60.35 −1.13 0.05

P61088 Ubiquitin-conjugating enzyme E2 N 5 131.66 60.43 −1.12 0.05

Q9NZN4 EH domain-containing protein 2 19 131.20 60.98 −1.11 0.04

P35998 26S proteasome regulatory subunit 7 4 130.98 61.25 −1.10 0.02

O75915 PRA1 family protein 3 4 130.18 62.33 −1.06 0.04

O95747 Serine/threonine-protein kinase OSR1 5 130.04 62.43 −1.06 0.04

P28289 Tropomodulin-1 10 130.02 62.48 −1.06 0.03

Q969G5 Caveolae-associated protein 3 5 129.74 62.83 −1.05 0.05

P16152 Carbonyl reductase [NADPH] 1 5 129.52 63.08 −1.04 0.05

Q9UNH7 Sorting nexin-6 2 129.18 63.53 −1.02 0.04

P11171 Protein 4.1 19 129.16 63.53 −1.02 0.05

P30626 Sorcin 7 128.06 64.95 −0.98 0.04

P26447 Protein S100-A4 3 127.96 65.05 −0.98 0.03

P04083 Annexin A1 15 127.46 65.68 −0.96 0.04

P48059 LIM and senescent cell antigen-like-containing domain protein 1 3 127.00 66.25 −0.94 0.02

Q04446 1,4-alpha-glucan-branching enzyme 3 125.16 68.53 −0.87 0.05

P36969 Phospholipid hydroperoxide glutathione peroxidase 2 124.38 69.50 −0.84 0.05

P35241 Radixin 9 123.96 70.05 −0.82 0.02

P05546 Heparin cofactor 2 10 123.84 70.20 −0.82 0.05

Q8TAT6 Nuclear protein localisation protein 4 homologue 2 123.80 70.28 −0.82 0.05

Q9H4A3 Serine/threonine-protein kinase WNK1 5 122.78 71.55 −0.78 0.03

P60660 Myosin light polypeptide 6 7 122.56 71.83 −0.77 0.04

P08697 Alpha-2-antiplasmin 6 122.54 71.88 −0.77 0.05
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Table 1 continued

Uniprot ID Description # Unique
peptides

ReactiveAVE MetastaticAVE log2ratio T-test

Q13011 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial 3 122.16 72.33 −0.76 0.03

O00233 26S proteasome non-ATPase regulatory subunit 9 5 121.20 73.50 −0.72 0.03

P13671 Complement component C6 17 119.66 75.40 −0.67 0.04

P00734 Prothrombin 23 117.14 78.60 −0.58 0.04

O94903 Pyridoxal phosphate homoeostasis protein 2 115.56 80.53 −0.52 0.004

P63244 Receptor of activated protein C kinase 1 8 83.76 120.30 0.52 0.01

P43034 Platelet-activating factor acetylhydrolase IB subunit alpha 11 83.36 120.80 0.54 0.05

P48147 Prolyl endopeptidase 7 80.98 123.78 0.61 0.05

Q99715 Collagen alpha-1(XII) chain 2 78.12 127.43 0.71 0.05

A1L4H1 Soluble scavenger receptor cysteine-rich domain-containing
protein SSC5D

6 77.54 128.10 0.72 0.04

Q03154 Aminoacylase-1 5 77.18 128.53 0.74 0.05

P62906 60S ribosomal protein L10a 5 75.50 130.63 0.79 0.02

P02794 Ferritin heavy chain 7 72.98 133.78 0.87 0.02

Q15424 Scaffold attachment factor B1 5 72.98 133.80 0.87 0.05

P34096 Ribonuclease 4 2 72.52 134.35 0.89 0.04

P10155 60 kDa SS-A/Ro ribonucleoprotein 11 72.36 134.55 0.89 0.04

P60900 Proteasome subunit alpha type-6 12 71.68 135.45 0.92 0.05

Q9P258 Protein RCC2 2 70.92 136.35 0.94 0.04

P01833 Polymeric immunoglobulin receptor 4 70.64 136.73 0.95 0.006

Q9BRA2 Thioredoxin domain-containing protein 17 3 70.62 136.70 0.95 0.05

P55786 Puromycin-sensitive aminopeptidase 25 69.06 138.65 1.01 0.05

Q9Y646 Carboxypeptidase Q 3 68.80 139.00 1.01 0.02

Q12765 Secernin-1 6 68.36 139.53 1.03 0.03

Q08380 Galectin-3-binding protein 10 66.60 141.70 1.09 0.002

Q96KP4 Cytosolic non-specific dipeptidase 19 65.62 142.98 1.12 0.05

Q9BTY2 Plasma alpha-L-fucosidase 3 65.56 143.08 1.13 0.05

Q9BY67 Cell adhesion molecule 1 2 65.24 143.45 1.14 0.03

Q9Y279 V-set and immunoglobulin domain-containing protein 4 2 64.62 144.28 1.16 0.03

P02792 Ferritin light chain 8 64.00 145.00 1.18 0.03

P02790 Hemopexin 29 63.04 146.23 1.21 0.05

O94760 N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 6 62.68 146.63 1.23 0.04

Q15848 Adiponectin 2 62.36 147.03 1.24 0.04

P16083 Ribosyldihydronicotinamide dehydrogenase [quinone] 6 61.62 147.98 1.26 0.04

P29401 Transketolase 28 61.58 148.03 1.27 0.03

Q14126 Desmoglein-2 6 61.34 148.35 1.27 0.0006

O75368 SH3 domain-binding glutamic acid-rich-like protein 9 60.98 148.78 1.29 0.04

Q92820 Gamma-glutamyl hydrolase 6 60.32 149.55 1.31 0.04

Q8NCW5 NAD(P)H-hydrate epimerase 5 59.88 150.18 1.33 0.04

P06748 Nucleophosmin 3 59.52 150.63 1.34 0.02

P40394 Alcohol dehydrogenase class 4 mu/sigma chain 2 57.40 153.28 1.42 0.05

Q86VB7 Scavenger receptor cysteine-rich type 1 protein M130 17 56.38 154.55 1.45 0.007

P35527 Keratin, type I cytoskeletal 9 21 54.94 156.30 1.51 0.04

P07686 Beta-hexosaminidase subunit beta 7 54.56 156.78 1.52 0.01

P34059 N-acetylgalactosamine-6-sulfatase 3 54.30 157.13 1.53 0.04

P28838 Cytosol aminopeptidase 20 52.70 159.15 1.59 0.03

P06865 Beta-hexosaminidase subunit alpha 5 52.08 159.88 1.62 0.02

P06454 Prothymosin alpha 2 50.02 162.48 1.70 0.005

P00738 Haptoglobin 14 49.14 163.58 1.73 0.05

P04264 Keratin, type II cytoskeletal 1 30 48.58 164.30 1.76 0.02

P08637 Low affinity immunoglobulin gamma Fc region receptor III-A 4 48.32 164.60 1.77 0.03

P25311 Zinc-alpha-2-glycoprotein 19 46.80 166.50 1.83 0.05

P20908 Collagen alpha-1(V) chain 3 46.76 166.50 1.83 0.02
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(i.e. no/low axillary tumour burden); those who had also had a
completion clearance (CC) (i.e. presumed higher axillary tumour
burden than the SLNB group); and those who had had an upfront
ALND (i.e. presumed high axillary tumour burden at diagnosis).
The rationale for this was that the SLNB group would be similar to
the reactive perfusate samples, whilst the CC/ALND groups would
be comparable to the metastatic perfusate samples to varying
degrees. We tested this hypothesis using the 10 most abundant
proteins found in the reactive (namely APOC2, TGM2, AK1,
UBE2L3, ILVBL, ASPN, UBE2V1, PRELP, APOC3 and ADD1) and
metastatic (namely GALM, KRT10, FLG2, LRG1, PSMB10, ADA2,
FBP1, MDK, ALCAM and CDH1) perfusate, respectively.
Eight reactive perfusate proteins were identified in the TCGA

(CPTAC) samples, and the DE of three of the proteins between the
clinical groups was as expected (Fig. 4A, B). ADD1 was significantly
more abundant in patients in the SLNB group (p= 0.01). Since
phosphoproteomics had been performed in that study, we could
also identify which phospho-isoforms of ADD1 were significantly
DE between the clinical groups (Fig. 4A); however, the implications
of this are currently unknown. ASPN (p= 0.02) and PRELP (p=
0.023) were also significantly more abundant in patients in the
SLNB group (Fig. 4B). The trends in expression for the other five
reactive proteins are shown in Supplementary Fig. 2A (post-hoc
analysis using Tukey’s honestly significantly difference (HSD) test
is shown in Supplementary Table 2).
Eight metastatic proteins were identified in the TCGA(CPTAC)

samples, but none were significantly DE between the clinical
groups (Supplementary Fig. 2B; post-hoc analysis using Tukey’s
HSD test is shown in Supplementary Table 2). CDH1 expression did
increase as axillary tumour burden increased, but this did not
reach significance (p= 0.081).
Closer inspection of the TCGA(CPTAC) data explained this

disparity to a certain extent. Our assumption regarding the 13
patients in this study who had undergone an SLNB alone was
correct—none had histopathological evidence of axillary disease
following surgery. However, approximately 40% of the patients in
the CC and ALND groups were staged as N0 following surgery40

i.e. all of the retrieved LNs were reactive, and showed no evidence
of metastatic tumour on H&E staining. Thus, these two groups did
not consist entirely of patients with a higher burden of axillary
disease, and were not therefore entirely comparable with the
metastatic perfusate samples.
The total proteome data for only one study comparing matched

primary BC and ALN metastases was available/accessible for

comparison19. Since this had used a gel-based method of protein
separation, fewer proteins (135 in total) were identified; 86 of
these were present in the perfusate proteome (64%; Supplemen-
tary Table 3). Quantitative analysis was not feasible for this study.
Comparisons were feasible for two of the above-mentioned BC

plasma proteome studies; little overlap was seen between plasma
and the perfusate proteome (Fig. 4C). SERPIND1, which was
significantly up-regulated in the reactive perfusate samples, was
also upregulated in node-negative Her2-positive BC patients17.
KRT9 was significantly up-regulated in the metastatic perfusate
samples; this was found to be up-regulated in node-positive Her2-
positive patients previously17. Lobo et al. found APOC3 to be up-
regulated in patients with stage I/II BC (i.e. patients with a low
axillary tumour burden)16; this was significantly up-regulated in
the reactive perfusate samples.
Thus, most proteins identified in the perfusate samples have

been identified in primary BC tissue, but not in BC plasma, samples
previously. Interestingly, the comparison of reactive to metastatic
ALN perfusate samples generated different data to that which
could be obtained by stratifying primary BC tissue samples
according to nodal status.

Neutrophil degranulation is repeatedly highlighted in LN
metastasis, across cancers
To see if certain proteins are conserved during LN metastasis
across different carcinomas, we qualitatively compared the
perfusate proteome to proteomic studies analysing metastatic
LNs from other cancers/sites.
We previously compared primary pancreatic ductal adenocarci-

noma (PDAC) and matched LN metastases using laser capture
microdissection coupled to multidimensional protein identifica-
tion technology41. Interestingly, 515 of the 854 proteins (60%)
identified in that study were also present in the perfusate
proteome (Supplementary Table 4). The top 10 enriched pathways
for these overlapping proteins are shown in Fig. 5A. Once again,
‘neutrophil degranulation’ was identified as the most enriched
pathway between the two datasets.
Muller et al. compared prostate carcinoma tissue from patients

with or without LN metastasis using label-free LC/MS/MS42.
Qualitative comparison of that proteome to the perfusate protein
revealed 854 commonly expressed proteins (48% of the 1750 total
proteins identified; Supplementary Table 5). The top 10 enriched
pathways for these overlapping proteins are shown in Fig. 5B; they

Table 1 continued

Uniprot ID Description # Unique
peptides

ReactiveAVE MetastaticAVE log2ratio T-test

P27695 DNA-(apurinic or apyrimidinic site) lyase 10 44.50 169.33 1.93 0.05

P35908 Keratin, type II cytoskeletal 2 epidermal 22 44.34 169.58 1.94 0.02

Q99729 Heterogeneous nuclear ribonucleoprotein A/B 2 44.24 169.70 1.94 0.05

P28065 Proteasome subunit beta type-9 3 43.40 170.70 1.98 0.01

Q8N1N4 Keratin, type II cytoskeletal 78 2 42.74 171.58 2.01 0.03

Q96C23 Aldose 1-epimerase 7 42.46 171.93 2.02 0.02

P13645 Keratin, type I cytoskeletal 10 24 41.14 173.58 2.08 0.01

Q5D862 Filaggrin-2 3 41.00 173.75 2.08 0.0004

P02750 Leucine-rich alpha-2-glycoprotein 6 40.84 173.95 2.09 0.02

P40306 Proteasome subunit beta type-10 3 39.42 175.73 2.16 0.02

Q9NZK5 Adenosine deaminase 2 5 36.10 179.85 2.32 0.03

P09467 Fructose-1,6-bisphosphatase 1 9 35.96 180.05 2.32 0.03

P21741 Midkine 2 35.18 181.03 2.36 0.04

Q13740 CD166 antigen 8 34.90 181.40 2.38 0.005

P12830 Cadherin-1 8 19.48 200.65 3.36 0.01
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are remarkably similar to those seen in Fig. 5A, with ‘neutrophil
degranulation’ also being the most enriched pathway in this
comparison.
Across the three datasets, 438 common proteins were identified

(Supplementary Table 6). Once again, the top 10 enriched

pathways (Fig. 6A) were similar to the previous comparisons
(Fig. 5A, B). Interestingly, all seven of the 14-3-3 family of proteins;
two of the IQGAP family of proteins (IQGAP1 and IQGAP2); four of
the 36 human SERPIN proteins (SERPINA1; SERPINA3; SERPINB1
and SERPINH1); four of the S100 proteins (S100A8; S100A9;
S100A10 and S100A11); six of the 12 Annexin proteins (ANXA1-6);
two of the ezrin/radixin/moesin (ERM) family of proteins (EZN and
MSN); three of the 12 aldehyde dehydrogenase protein family
(ALDH1A1; ALDH2 and ALDH9A1); and four of the 11 human
cathepsins (CSTB, CSTD; CSTG and CSTZ) were conserved across
the three cancers. In addition, a number of ECM proteins were
conserved across the datasets: 10 collagen subunits; fibronectin,
laminin B, periostin, tenascin and vitronectin. Pathway analysis of
these 48 conserved proteins is shown in Fig. 6B.
Thus, ‘neutrophil degranulation’ is recurrently highlighted as the

most significant immune pathway in LN metastasis, irrespective of
where the primary tumour originates.

DISCUSSION
We have shown previously that human ALNs can be sustained ex-
vivo for scientific investigation using normothermic perfusion8.
Using shotgun proteomics, we now show that the protein
repertoire of the circulating fluid collected during these experi-
ments (‘perfusate proteome’) reflects ALN pathophysiology and
thus, may be suitable for biomarker discovery.
As expected, MIF analysis of reactive and macrometastatic ALNs

confirmed that the total number of B cells, CD4+ T cells, CD8+

T cells and T-regs decreases significantly as cancer colonises a
node6. Interestingly, within macrometastastic nodes, mTIL dis-
tribution was significantly higher across the whole ALN section
than in areas containing stroma. This result needs to be
investigated further in a larger cohort of ALNs. Although TILs are
an established biomarker in primary Her-2 positive and triple-
negative BC, uncertainty exists at present as to precisely how to
quantify mTILs in LNs largely for two reasons: first, not all
metastases contain stroma; and second, LNs contain a large
lymphoid population which confounds assessment28. Further-
more, how mTIL infiltration and PD-L1 expression relate to each
other in LNs is unclear43,44. The ubiquitous co-expression of PD-L1
in our ALNs made cell density quantification difficult. However, by
using average staining intensity for each cell type, we were able to
show that approximately 30% of PD-L1 expression localised to
T-lymphocytes. Unlike TIL distribution, PD-L1 expression appeared
to be uniform in each of the compartments analysed. This may be
related to the PD-L1 antibody that we used however45,46.
Although this clone has been used previously to assess PD-L1
expression in primary and metastatic BC47, it is not used routinely
for diagnosis. Only the SP142 clone has been approved for
diagnostic use48, and only in triple-negative BC (not predominant
in our cohort). Intriguingly, a positive PD-L1 result using this clone
is defined by any staining intensity in immune cells in >1% of the
tumour. It will be interesting to evaluate this clone in MIF sections
of ALNs containing the various subtypes of BC in future
experiments, especially in response to immune checkpoint
inhibitor (ICI) therapies8.
Pathway analysis of the significantly upregulated proteins in

reactive and/or metastatic nodes reflected the change in cell
composition highlighted by MIF. Reactive nodes showed a
maintenance of immune function, whereas macrometastatic
nodes showed a loss in immune function (except for ‘neutrophil
degranulation’), and a shift to ECM degradation and keratinisation.
The latter is consistent with the presence of epithelial cells within
the ALN. Alterations in the ECM are known to affect fluid flow;
lymphangiogenesis; angiogenesis; cancer cell adhesion, migration
and invasion; cytokine signalling; and immune modulation49–51, all
of which contribute to metastasis and colonisation6. Unlike the
lung, liver or bone however, changes in the ECM at a protein level
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Fig. 2 Hierarchical cluster analysis of the 119 significantly
differentially expressed proteins separates reactive from meta-
static nodes. A heat map showing hierarchical clustering of the nine
perfusate samples (taken from nine different patients). A clear
separation of reactive and metastatic nodes is seen.
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in metastatic LNs is not currently well understood. Interestingly,
these data could not be obtained by stratifying TCGA(CPTAC)
primary BC proteome according to ALN status, which highlights
the novelty and importance of perfusate sample collection/
analysis in trying to understand metastasis.

Qualitative comparison of the perfusate proteome with the
tissue proteomes of LN-positive pancreatic ductal and prostatic
adenocarcinoma showed that 438 proteins were commonly
expressed. This could be technical to some extent, since it has
been shown that increasing the number of sample replicates in
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Fig. 3 The perfusate proteome reflects the pathophysiology of the axillary lymph node (ALN) from which it derives. The 57 significantly
up-regulated proteins in reactive ALNs (A; n= 5) and the 62 significantly up-regulated proteins in macrometastatic ALNs (B; n= 4) were
subjected to pathway analysis in ConsensusPathDB. Reactive ALNs maintained immune function whilst this was lost in macrometastatic
nodes, with the notable exception on ‘neutrophil degranulation’. The identification of ‘keratinisation’ in macrometastatic nodes reflects the
presence of cancer cells within the node. The other pathways identified in these nodes related to extracellular matrix (ECM) degradation.
Histological neutrophil counts (haematoxylin and eosin stained ALN tissue sections) are shown in (C; graph shows mean with standard error
of the mean (SEM)).
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a proteomics experiment can correct for biological diver-
sity9,52,53. Still, if one considers that sample type and collection
methods differed between the studies, and that different
proteomic technologies were used, this degree of overlap
suggests that recurrent biological phenomena are being
detected between cancers types. The fact that 48 ‘core proteins’
are conserved across these datasets is even more thought-
provoking. When these were subjected to pathway analysis, the
PI3K-Akt signalling pathway was the most significant one
identified. This pathway is frequently dysregulated in BC, PDAC
and prostate cancer, and is currently being targeted therapeu-
tically in clinical trials54–59. Similarly, the role of various β1
integrins in carcinogenesis is well established, particularly in
terms of their interactions with collagen and the ECM60.
Interestingly, the integrins α4β1 and α9β1 are known to induce
lymphangiogenesis and LN metastasis; for α4β1, this is
mediated by PI3Kalpha61–64. Key questions for future experi-
ments will be to ascertain if these ‘core proteins’ are
reproducibly expressed in perfusate samples harvested from
other node-positive adenocarcinomas; if they can delineate
nodal tumour burden; and if combinations of these proteins can
be used as biomarkers of nodal spread.
Finally, ‘neutrophil degranulation’ was highlighted recurrently by

pathway analysis as being important to LN metastasis. The role of

neutrophil degranulation in cancer metastasis is gaining interest,
particularly in terms of how it affects the adaptive T cell response65.
Like macrophages, neutrophils can either promote or suppress
immunity via cell-to-cell contact, degranulation of intracellular
contents, the release/production of neutrophil extracellular traps
(NETs) and/or cytokine release65. Recent evidence suggests that
clusters of circulating tumour cells and neutrophils accelerate
haematogenous metastasis in BC66, and that neutrophils are
required for IL11-induced and FIGF-induced polyclonal BC metas-
tasis67. Precisely how neutrophils contribute to nodal metastasis in
BC has yet to be elucidated. We did not see statistically significant
differences in absolute neutrophil numbers between reactive and
metastatic perfused nodes. It will be interesting to investigate the
relationship between neutrophil tissue infiltration and neutrophil
degranulation in future experiments, ideally in a larger cohort of
samples taken from BC patients, as well as from patients with other
epithelial malignancies.
We have shown for the first time that proteomic analysis of

REPLICANT perfusate8 is feasible, and reflects colonisation-
induced changes in the ALN microenvironment6. Our data also
suggests that these findings could be relevant to other
epithelial malignancies. Future work will include validating
these findings in a larger series of perfused ALNs, including
micrometastatic disease.
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B C

-4 -2 0 2 4 6 8

SERPIND1

KRT9

APOC3

Fold-change

REPLICANT
Chen et al
Lobo et al

Fig. 4 Comparison of the perfusate proteome to primary breast cancer (BC) and plasma proteomes yields novel data. We stratified the
TCGA(CPTAC) primary BC proteomics data into three groups according to axillary tumour burden (ATB): those who had a sentinel lymph node
biopsy only (SLNB; no/low ATB); those who had a completion clearance (CC; higher burden of ATB than the SLNB group); and those who had
an axillary lymph node dissection, and high ATB, at diagnosis (ALND). Of the 10 most abundant reactive proteins, ADD1 (p= 0.01; A) and
specific ADD1 phospho-isoforms; ASPN (p= 0.02; B) and PRELP (p= 0.023; B) were significantly up-regulated in the SLNB group, matching our
data. No metastatic proteins were found to be significantly differentially expressed. Comparison of the perfusate proteome with BC plasma
proteomic studies (C) showed minimal overlap, with APOC3 and KRT9 identified as up-regulated in metastatic nodes/perfusate, and SERPIND1
as up-regulated in reactive nodes/perfusate. (Graphs show median with interquartile range).
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METHODS
Patient cohort and ALN harvest
ALNs were harvested from 10 BC patients and perfused ex vivo at 37 oC as
described previously (King’s Health Partners (KHP) Cancer Biobank
Research Ethics Committee No: 18/EE/0025)8. Informed consent was
obtained from all patients prior to surgery. Four of the perfused ALNs
contained macrometastases; one contained a micrometastasis; and five
were reactive. A matched autologous ‘baseline control’ ALN, which
mirrored the perfused ALN in terms of disease state, was harvested at
time-point 0 from each patient. The clinico-pathological characteristics of
the cohort, including representative H&E sections, have been described
previously8. Of note, none of the perfused ALNs showed any histological
evidence of necrosis8.

Perfusate collection
Perfusate samples (n= 10) were collected from the perfusion circuit via
three-way taps at the end-point of each experiment. Samples were stored
at −80 oC prior to proteomic analysis.

Multiplex Immunofluorescence (MIF)
4μm FFPE sections from each perfused (n= 10) and baseline control
ALN (n= 10) were sequentially stained using an Opal 7-colour reagent
kit (Akoya Bioscience) according to the manufacturer’s instructions. The
following antibodies were used: CD4 (Abcam 133616; Opal 520), CD8
(Dako, M710301; Opal 570), CD20 (Dako, M075529; Opal 540), PD-L1
(Cell Signalling, 13684; Opal 620), FoxP3 (Abcam, 20034; Opal 650), Pan-
cytokeratin (Dako, M351501; Opal 690; on metastatic ALNs only), and
CD68 (Dako, M087629; Opal 690 on reactive ALNs only). Control tissue
samples were stained for each marker in parallel. Slides were imaged
using the Vectra 3.0 pathology imaging system (Akoya Bioscience). Cell
phenotyping and density (total number of cells/mm2) was quantified
over the entire tissue section (i.e. 50–600 fields per sample depending
on the size of the ALN), using a custom algorithm developed in the
inForm software package. Briefly, the algorithm was initially trained by
machine learning on manually annotated examples. Samples were then
batch processed to segment the tissue by tissue type, then to identify/
phenotype cells, and finally to quantify cell numbers or signal
intensity68.

Fig. 5 Neutrophil degranulation is recurrently highlighted when the REPLICANT proteome is compared to either pancreatic or prostatic
cancer. Pathway analysis of the commonly expressed proteins obtained from an exclusive comparison of the perfusate proteome to node-
positive pancreatic ductal adenocarcinoma (A; 515 commonly expressed proteins) or node-positive prostatic adenocarcinoma (B; 854
commonly expressed proteins) is shown. ‘Neutrophil degranulation’ was consistently identified as being important to lymph node metastasis.
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Proteomic Analysis
Perfusate samples were heated to 95 °C, reduced with Dithiothreitol
(50mM) and alkylated by Iodoacetamide (100mM). Following probe
sonication, samples underwent Filter Aided Sample Preparation (FASP) in
the Amicon Ultra-4 (10KDa cut-off, Millipore)69. Triethylammonium
bicarbonate (TEAB; 100mM) was used in the buffer exchange. Peptides
were recovered from the filter after an 18-h trypsin digestion (Pierce, MS
grade) at 37 °C with additional two washes of TEAB (100mM then 1M).
Following quantification (Nanodrop), 20 µg of each sample was TMT

labelled. The mixture was fractionated on a BEH XBridge C18 column
(2.1 mm i.d. × 150mm) with a 35-min gradient from 5–35% CH3CN/NH4OH
then concatenated to 8 fractions for LC-MS/MS analysis on an Orbitrap
Fusion Lumos coupled with an Ultimate 3000 RSLCnano System. Samples
were loaded on a nanotrap (100 µm id × 2 cm) (PepMap C18, 5 µ) then
separated on an analytical column (75 µm id × 50 cm) (PepMap C18, 2 µ)
over a 90-min gradient of 4–30.4% CH3CN/0.1% formic acid/120min cycle
time per fraction. The Orbitrap Fusion Lumos was operated in the Top
Speed mode at 3 s per cycle and data was acquired via the MS3-SPS5
method. Raw files were processed in Proteome Discoverer 2.2 (Thermo
Fisher) using the Sequest HT search engine. Spectra were searched against
a reviewed Uniprot Homo sapiens database (March 2019). Peptides were
validated by Percolator with q-value set at 0.01 (strict) and 0.05 (relaxed).
The TMT reporter ion quantification used unique peptides only. The co-
isolation threshold was set at 100%. Peptides with an average reported
signal: noise >3 were used for protein quantification. Only master proteins
were reported. Protein abundance was normalised by equalising the total

abundance between different runs/channels, and then scaled to an
average of 100 across all samples70.

Neutrophil quantification
The average number of neutrophils per high power field (HPF; 20 fields in
total) was quantified in representative H&E sections (4 µm) from each
anonymised ALN sample by a histopathologist (KN).

The Cancer Genome Atlas (TCGA) BC proteomics analysis
TCGA BC proteomics dataset (Clinical Proteomic Tumour Analysis
Consortium (CPTAC) study)37–39 was downloaded from cBioportal (Feb-
ruary 2019)71. The 74 patient primary BC samples in this dataset were
stratified into three groups according to the provided clinical data: those
who had undergone only a sentinel lymph node biopsy (‘SLNB’; n= 13),
and therefore had no/low burden of axillary disease; those who had gone
on after a SLNB to have a completion clearance (‘CC’; n= 22), and therefore
had a higher axillary tumour burden than the SLNB group; and those who
had an ALND upfront (‘ALND’, n= 22), and therefore had a high axillary
tumour burden at diagnosis. Statistical comparison of protein abundance
between these three groups was performed using one-way ANOVA. Tukey
HSD test was applied for post-hoc analysis. Visualisations and analysis were
performed in R statistical programming environment v3.5.0.

Fig. 6 Neutrophil degranulation and 48 ‘core proteins’ are conserved in lymph node (LN) metastasis, across cancers. Concurrent
comparison of the REPLICANT proteome to node-positive pancreatic and node-positive prostate adenocarcinoma identified 438 commonly
expressed proteins. Pathway analysis of these 438 proteins is shown in A. ‘Neutrophil degranulation’ once again was identified as being
important to LN metastasis. Certain protein families were also seen to recur across the three datasets (48 ‘core proteins’). Pathway analysis of
these ‘core proteins’ is shown in B.
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Statistical analysis
To assess differences in the immune composition of ALNs, a Wilcoxon
test was used to compare control to perfused nodes; a Kruskal-Wallis test
was used to assess regulatory T cell (T-regs) and lymphocyte distribution
within metastatic nodes, and to compare T-reg numbers between
reactive and metastatic nodes; and a two-tailed Mann–Whitney was used
to quantify differences between reactive and metastatic nodes. For the
proteomics analysis, the data was initially filtered to include only those
proteins with a scaled normalised protein abundance ≥2. A Student’s
t-test was then performed to determine differential expression between
reactive and metastatic perfusate samples. A p-value ≤ 0.05 was
considered significant. Pathway enrichment analysis was performed with
ConsensusPathDB31.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.

DATA AVAILABILITY
The mass-spectrometry based proteomics data generated during the study, are
publicly available in the PRIDE repository: https://identifiers.org/pride.project:
PXD02272270. The multiplex immunofluorescence data generated during this study,
are available in the figshare repository: https://doi.org/10.6084/m9.figshare.1352244268.
The TCGA data analysed during the study, are available in the cBioPortal for Cancer
Genomics: https://identifiers.org/cbioportal:brca_tcga71. All other data supporting the
findings of this study, are available as part of the supplementary files that accompany
the article.
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