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SUMMARY

In mitosis, cells inactivate DNA double-strand break
(DSB) repair pathways to preserve genome stability.
However, some early signaling events still occur,
such as recruitment of the scaffold protein MDC1 to
phosphorylated histone H2AX at DSBs. Yet, it re-
mains unclear whether these events are important
for maintaining genome stability during mitosis.
Here, we identify a highly conserved protein-interac-
tion surface in MDC1 that is phosphorylated by CK2
and recognized by the DNA-damage response medi-
ator protein TOPBP1. Disruption of MDC1-TOPBP1
binding causes a specific loss of TOPBP1 recruitment
to DSBs in mitotic but not interphase cells, accompa-
nied by mitotic radiosensitivity, increased micronu-
clei, and chromosomal instability. Mechanistically,
we find that TOPBP1 forms filamentous structures
capable of bridging MDC1 foci in mitosis, indicating
that MDC1-TOPBP1 complexes tether DSBs until
repair is reactivated in the following G1 phase. Thus,
we reveal an important, hitherto-unnoticed coopera-
tion between MDC1 and TOPBP1 in maintaining
genome stability during cell division.

INTRODUCTION

DNA double-strand breaks (DSBs) are particularly toxic DNA

lesions that must be repaired accurately in order to avoid

genome instability, cell death, or cancer (Jackson and Bartek,

2009). Interphase cells respond to DSBs by triggering a

signaling cascade to activate cell-cycle checkpoints and DNA

repair. In contrast, in mitotic cells there is no DNA dam-

age checkpoint after prophase (Rieder and Cole, 1998), and

DSBs are transmitted into the following G1 phase for repair
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to avoid chromosomal instability (Lee et al., 2014; Orthwein

et al., 2014).

The cellular response to DSBs is regulated by three related

protein kinases, ataxia-telangiectasia mutated (ATM), ATM and

Rad3-related (ATR), and DNA-dependent protein kinase

(DNA-PK) (Blackford and Jackson, 2017). Upon DNA damage,

one of the earliest substrates of these kinases is the histone

variant H2AX, which is phosphorylated at DSB sites on Ser139

and then referred to as gH2AX (Rogakou et al., 1999). gH2AX

is recognized by MDC1 (Stucki et al., 2005), a scaffold protein

that acts as a platform for recruitment of various DNA damage

response factors to mediate DNA repair. One of these is the

MRE11-RAD50-NBS1 (MRN) complex, which binds to MDC1

via a direct interaction between the NBS1 subunit of MRN and

multiple acidic sequence motifs near the N terminus of MDC1

(Chapman and Jackson, 2008; Hari et al., 2010; Melander

et al., 2008; Spycher et al., 2008; Wu et al., 2008). Another is

RNF8, an E3 ubiquitin ligase with an FHA domain that binds to

a cluster of conserved threonine residues inMDC1 that are phos-

phorylated by ATM in response to DSBs to promote chromatin

ubiquitylation events required for recruitment of DNA damage

response mediator proteins such as 53BP1 and BRCA1 (Huen

et al., 2007; Kolas et al., 2007; Mailand et al., 2007). Recruitment

of these factors to chromatin-flanking DSB sites channels DNA

repair into either the non-homologous end-joining pathway or

homology-directed repair via mechanisms that are still not

completely understood (Hustedt and Durocher, 2016).

gH2AX and MDC1 form foci at DSBs throughout the cell cycle,

but recruitment of downstream factors such as RNF8 and 53BP1

is blocked during mitosis (Giunta et al., 2010; Nakamura et al.,

2010; Nelson et al., 2009; van Vugt et al., 2010; Lee et al., 2014;

Orthwein et al., 2014). However, given that inhibition of ATM and

DNA-PK activity in mitosis causes radiosensitivity, it is possible

that DNA damage signaling as well as recruitment of MDC1 and

potentially some of its downstream factors, play an as-yet uniden-

tified role in dealing with DNA damage in this cell-cycle phase.

Here, we identify two highly conserved motifs in MDC1 and

show that they are phosphorylated by casein kinase 2 (CK2).
, May 2, 2019 ª 2019 The Author(s). Published by Elsevier Inc. 571
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Figure 1. A Conserved Acidic Sequence

Motif near the N Terminus of MDC1 Binds

to TOPBP1

(A) Schematic showing the layout of conserved

domains and motifs in MDC1. Names of the known

MDC1 binding partners, NBS1, RNF8, and H2AX,

are shown below the motifs with which they

interact. The FHA domain promotes MDC1 dimer-

ization; hence, its binding partner is MDC1. Key

phosphorylated residues are highlighted in bold.

(B) Identification of TOPBP1 as a specific interactor

for theMDC1-S196phosphopeptideby LC-MS/MS

and label-free quantification. Scatterplot depicts

log2 fold enrichment of MDC1-S196 versus MDC1-

pS196 peptide-binding proteins from 2 indepen-

dent experiments. See Table S1 for raw MS data.

(C) Peptide pull-downs from HeLa nuclear extracts

using biotinylated peptides corresponding to

residues surrounding MDC1-S196, either native

(S196) or phosphorylated (pS196).

(D) HA immunoprecipitations from 293FT cells

transfected with the indicated HA-tagged MDC1

variants.
We identify the DNA damage responsemediator protein TOPBP1

as the binding partner for these motifs and demonstrate that the

MDC1-TOPBP1 interaction is specifically required for TOPBP1

recruitment to DSBs in mitosis. Loss of MDC1-TOPBP1 binding

leads to radiosensitivity in mitotic cells, as well as increased mi-

cronuclei formation, chromosome/chromatid breaks, and chro-

mosome end-to-end fusions.

RESULTS

A Conserved Acidic Sequence Motif near the N
Terminus of MDC1 Binds to TOPBP1
Previously, we and others identified six conserved acidic

sequence motifs near the N terminus of MDC1 that directly

interact with NBS1 and are required for MRN foci formation at

sites of DSBs (Chapman and Jackson, 2008; Melander et al.,

2008; Spycher et al., 2008; Wu et al., 2008). Thesemotifs contain
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Ser-Asp-Thr residues embedded in an

acidic sequence environment; hence,

they have been named SDT motifs (Fig-

ure 1A). The serine and threonine residues

within the SDT motifs are constitutively

phosphorylated by CK2, and the unique

bivalent N-terminal FHA/BRCT2 phos-

pho-binding module of NBS1 specifically

recognizes and binds to the doubly phos-

phorylated MDC1 SDT motifs (Hari et al.,

2010; Lloyd et al., 2009).

As part of an ongoing screen to iden-

tify and characterize short evolutionarily

conserved linear peptide motifs mediating

protein-protein interactions in the DNA

damage response, we noticed one such

potentially novel sequence in MDC1.

Centered around S196, it is located down-
stream of the FHA domain and just upstream of the first SDT

repeat (Figure 1A). This motif is highly conserved in MDC1 ortho-

logs and is composed of a Val/Ile-Pro-Glu-Ser consensus fol-

lowed by a stretch of acidic amino acids in vertebrate MDC1.

Given that S196 is phosphorylated in human cells (Yi et al.,

2014), we considered the possibility that the S196 motif consti-

tutes a previously uncharacterized interaction surface for a DNA

damage response factor with phosphopeptide-binding activity.

To test this possibility, we designed a synthetic biotinylated

peptide corresponding to human MDC1 residues 180–205,

bearing a phospho-serine at the S196 position. This phospho-

peptide and its native equivalent were conjugated to streptavi-

din-coupled beads and incubated in HeLa nuclear extracts,

and potential interacting partners were identified from two inde-

pendent experiments by liquid chromatography-tandem mass

spectrometry (LC-MS/MS; Table S1). When we examined pro-

teins present only in the phospho-MDC1 peptide pull-downs,
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Figure 2. BRCT Domains 1 and 2 of TOPBP1

Interact with MDC1 via Two Phosphorylated

Residues, Ser168 and Ser196

(A) Schematic showing the layout of conserved

domains and motifs in TOPBP1. Numbered boxes

represent BRCT domains, with phosphopeptide-

binding domains in green and domains lacking

phosphopeptide-binding activity in gray. Names of

known TOPBP1 binding partners are shown below

the domains they interact with. AAD = ATR-acti-

vation domain.

(B) GFP pull-downs from 293FT cells transfected

with the indicatedGFP-taggedTOPBP1constructs.

(C) Sequence alignment showing the conservation

of Ser168, Ser196, and surrounding residues in

MDC1 in vertebrates. Key phospho-serines are

highlighted in bold.

(D) HA-immunoprecipitations from 293FT cells

transfected with the indicated HA-tagged MDC1

variants.

(E) Fluorescence polarization with recombinant

TOPBP1 BRCT domains 0–2 and MDC1-pS168

phosphopeptide. K155E is a mutation in TOPBP1

BRCT domain 1; K250E is a mutation in BRCT

domain 2. ND = not determined. Dotted line in-

dicates threshold for specific protein-protein in-

teractions.

(F) Fluorescence polarization with recombinant

TOPBP1 BRCT domains 0–2 and MDC1-pS196

phosphopeptide.

See also Figure S1.
TOPBP1 was identified as the top hit (Figure 1B), which, given

that it contains multiple BRCT domains that specifically recog-

nize and bind phosphorylated proteins and was previously impli-

cated inMDC1 binding (Blackford et al., 2015; Leung andGlover,

2011; Wang et al., 2011), we decided to pursue further.

Western blotting confirmed that TOPBP1 was specifically

pulled down by the phosphorylated S196 peptide (Figure 1C).

NBS1, on the other hand, previously shown to interact efficiently

with doubly phosphorylated SDT phosphopeptides (Chapman

and Jackson, 2008; Lloyd et al., 2009; Spycher et al., 2008), was

not pulled down by either S196 peptide. These findings reveal a

hitherto unnoticed TOPBP1 interaction site near the N terminus

of MDC1 that is functionally distinct from the SDT repeats.

We next investigated whether S196 is required for MDC1-

TOPBP1 interaction in the context of full-length MDC1. To do

this, we mutated S196 to alanine in constructs expressing
M

hemagglutinin (HA)-tagged wild-type

(WT)MDC1or amutantMDC1 that cannot

bind NBS1 due to alanine substitutions in

all six SDT repeats (12A; Melander et al.,

2008). Immunoprecipitation with HA affin-

ity beads showed that the MDC1-S196A

mutation abolished TOPBP1 binding

whereas interaction with NBS1 remained

intact (Figure 1D). In contrast, the MDC1-

12A mutant was completely defective for

NBS1 binding but could still interact with

TOPBP1, whereas the double MDC1-
S196A+12A mutant could bind to neither. We conclude from

these results that MDC1 binding to TOPBP1 and NBS1 can be

functionally separated, and thatMDC1-TOPBP1 binding ismedi-

ated by the novel MDC1-S196 motif and not by the SDT repeats.

BRCT Domains 1 and 2 of TOPBP1 Interact with MDC1
TOPBP1 contains 9 BRCT domains, some of which occur in tan-

dem, whereas others appear to function as single domains (Fig-

ure 2A). Of the BRCT domains in TOPBP1, only 1, 2, 5, and 7

contain the necessary lysine residues required for phosphopep-

tide binding (Leung and Glover, 2011). In line with this, BRCT0–2

interact with phosphorylated RAD9 or Treslin (Delacroix et al.,

2007; Kumagai et al., 2010; Lee et al., 2007), BRCT4+5 bind to

phosphorylated 53BP1 or BLM (Blackford et al., 2015; Cescutti

et al., 2010), and BRCT7+8 interact with phosphorylated FANCJ

(Gong et al., 2010).
olecular Cell 74, 571–583, May 2, 2019 573



Previously, we found that TOPBP1 interacts with MDC1 in a

manner dependent on BRCT1 but not BRCT5 or BRCT7 (Black-

ford et al., 2015). However, the requirement for BRCT2 was not

tested. Therefore, we mutated K250 in BRCT2 to alanine in

GFP-tagged full-length TOPBP1 and compared it in co-immuno-

precipitation experiments to the BRCT1 mutant we generated

previously. As a control in these assays, we also included a

mutant BRCT5 construct, because this domain interacts with

BLM but not MDC1 (Blackford et al., 2015). As demonstrated

previously, mutation of TOPBP1 BRCT1 abolished interaction

with MDC1 and RAD9 but not BLM, whereas mutation of

BRCT5 had no effect on MDC1 but BLM binding was lost (Fig-

ure 2B). Surprisingly, mutation of BRCT2 also abolished MDC1

binding, while leaving BLM and RAD9 unaffected. This sug-

gested the existence of an additional TOPBP1 binding site in

MDC1. Indeed, a conserved motif consisting of a serine residue

(S168 in human MDC1) embedded in an acidic sequence envi-

ronment is located just upstream of S196 (Figure 2C). Like

S196, S168 was previously shown to be phosphorylated (Beau-

soleil et al., 2004). As this sequence motif strikingly resembles

the TOPBP1-BRCT1 interaction site in RAD9 (Delacroix et al.,

2007; Lee et al., 2007) (Figure S1A), we tested whether it func-

tions as an additional TOPBP1 binding site in MDC1. Indeed,

MDC1-S168A mutants were completely defective for TOPBP1

interaction and no further decrease in binding was observed

for a S168A/S196A double mutant (Figure 2D). This suggested

that the two phospho-binding sites in BRCT1 and BRCT2 of

TOPBP1 directly contact phosphorylated S168 and S196 in

MDC1. However, it remained unclear which BRCT domain of

TOPBP1 contacts which phospho-epitope in MDC1. To fine-

map the TOPBP1 interaction sites in MDC1, we assessed the

binding affinity of S168 and S196 phosphopeptides for purified

TOPBP1 BRCT0–2 by fluorescence polarization. This quantita-

tive biophysical analysis revealed that purified TOPBP1

BRCT0–2 strongly binds to S168 and S196 phospho-

peptides with an apparent dissociation constant (Kd) of less

than 1 mM (Figure 2E). Interestingly, a K155E (BRCT1) mutant

did not bind to the S168 phosphopeptide, indicating that

BRCT1 mainly contacts the phosphorylated S168 motif. In

contrast, both K155E and K250E (BRCT2) mutants were partially

defective for binding to the phosphorylated S196 peptide, sug-

gesting reduced specificity for TOPBP1 binding to this motif (Fig-

ure 2F). In contrast, MDC1-SDT phosphopeptides did not bind

with significant affinity to either purified BRCT0–2 or BRCT4+5

(Figure S1B). These data support a model in which TOPBP1

BRCT1 interacts with phosphorylated S168 of MDC1, whereas

BRCT2 most likely docks with phosphorylated S196.

MDC1 Phosphorylation and TOPBP1 Binding Are
Mediated by CK2
Next, we wished to determine the kinase responsible for phos-

phorylation of MDC1 on S168 and S196. Both motifs are highly

acidic and conform to the preferred Ser/Thr-x-x-Asp/Glu

consensus sequence for CK2 (Meggio and Pinna, 2003).

Therefore, we generated antibodies that specifically recognize

phosphorylated MDC1-pS168 or MDC1-pS196 (Figure 3A) and

then used them to examine the effect on MDC1 phosphoryla-

tion of treating cells with the selective CK2 inhibitor CX-4945
574 Molecular Cell 74, 571–583, May 2, 2019
(Siddiqui-Jain et al., 2010). Results from this experiment indi-

cated that S168 and S196 phosphorylation are CK2 depen-

dent, because phosphorylation of both sites was abolished

upon CX-4945 treatment (Figure 3B) but still occurred in cells

treated with inhibitors of ATM, ATR, DNA-PK, or PLK1 (Figures

S2A–S2D). Furthermore, CX-4945 did not affect DNA damage

signaling events mediated by these kinases (Figure S2E). In

addition, the interaction between MDC1 and TOPBP1 was un-

detectable in cells treated with the CK2 inhibitor (Figure 3C). To

confirm the CK2-dependent interaction in vitro, we established

that recombinant CK2 could directly phosphorylate a GST-

tagged MDC1 fragment purified from E. coli, specifically on

S168 and S196 (Figure 3D). Next, GST-pull-down experiments

were carried out with this fragment and its mutant derivatives.

The WT MDC1 fragment (containing the S168 and S196 motifs

as well as two SDT repeats) pulled down significant quantities

of TOPBP1 and NBS1 from HeLa nuclear extract only when

pre-incubated with recombinant CK2 and ATP. In line with

our data above, incorporation of the S196A mutation into the

GST-MDC1 fragment abolished interaction with TOPBP1 (Fig-

ure 3E). Furthermore, mutation of the SDT repeats (SDT > ADA)

abolished NBS1 but not TOPBP1 binding. Taken together, we

conclude that CK2 phosphorylation of MDC1 on both S168 and

S196 is required for direct binding to TOPBP1.

Direct Interaction with MDC1 Is Essential for TOPBP1
Recruitment to DSBs in Mitotic Cells
Next, we sought to investigate the biological role of the MDC1-

TOPBP1 interaction. To this end, we knocked out endoge-

nous MDC1 in the human osteosarcoma cell line U2OS using

CRISPR-Cas9 (henceforth termed DMDC1; Figures 4A and

4B). DMDC1 cells do not display a general ATM or ATR signaling

defect in response to ionizing radiation (IR) but are, as expected,

unable to recruit NBS1 and 53BP1 to IR-induced foci (Figures 4B

and 4C). In addition, gH2AX foci intensity is reduced in DMDC1

cells (Figure 4D), consistent with previous reports (Lou et al.,

2006; Stewart et al., 2003; Stucki et al., 2005). We also found

that western blot signals from our phospho-specific MDC1-

pS168 and -pS196 antibodies were absent in DMDC1 cells, as

expected (Figure 4E).

Using WT U2OS, DMDC1, and D53BP1 cells (Orthwein et al.,

2015),we found that the TOPBP1 foci pattern inducedby IR varies

during the cell cycle (Figure 4F), with large foci that colocalize with

gH2AX forming in G1 phase cells, and smaller foci that colocalize

with the single-stranded DNA (ssDNA)-binding protein complex

RPA forming in S/G2 phase cells. Moreover, the large TOPBP1

foci in G1 phase cells, but not the small S/G2 phase foci, were

dependent on both MDC1 and 53BP1 (Figures 4F and S3A;

Cescutti et al., 2010). Next, we addressed the question of whether

MDC1 can recruit TOPBP1 in the absence of 53BP1 in G1 phase

cells. While all IR-induced TOPBP1 foci were absent fromMDC1-

deficient G1 phase cells, TOPBP1 foci that colocalize with MDC1

could still be observed in D53BP1 cells, although they are much

smaller than those observed in WT cells (Figure 4G).

To assess the contribution of the MDC1-TOPBP1 interaction

to TOPBP1 foci formation, we stably transfected DMDC1 cells

with GFP-tagged WT MDC1, three TOPBP1 interaction mutants

(S168A, S196A, and a S168A/S196A double mutant), and the
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B Figure 3. MDC1 Phosphorylation and

TOPBP1 Binding Are Mediated by CK2

(A) HA-immunoprecipitations from 293FT cells

transfected with the indicated constructs.

(B) 293FT cells treated with 10 mM CK2 inhibitor

CX-4945 were harvested for western blotting with

the indicated antibodies. AKT-pS129 is a positive

control as AKT is a knownCK2 substrate (Siddiqui-

Jain et al., 2010).

(C) GFP pull-downs from 293FT cells transfected

with the indicated GFP-tagged TOPBP1 con-

structs and treated with 10 mM CK2 inhibitor CX-

4945 or DMSO vehicle control.

(D) Western blots of an in vitro kinase assay with

recombinant CK2 as the kinase, and GST-tagged

MDC1 fragment (encompassing residues 109–

330) or GST alone as substrates.

(E) GST pull-downs from HeLa nuclear extracts

withWTandmutant versions ofGST-taggedMDC1

fragment (encompassing residues 109–330), pre-

incubated or not with recombinant CK2 and ATP.

See also Figure S2.
RNF8 interaction mutant TQXF > AQXF that cannot promote

53BP1 recruitment (Huen et al., 2007; Kolas et al., 2007; Mailand

et al., 2007; Figure S3B). Visual inspection of these cells revealed

IR-dependent accumulation of MDC1 and TOPBP1 in foci but

did not show any apparent difference between cells expressing

WTMDC1 and cells expressing the TOPBP1 binding mutants. In

contrast, cells expressing the MDC1 TQXF > AQXF mutant were

defective in forming TOPBP1 foci in G1 phase cells (Figure 5A).

This indicated that TOPBP1 binding to MDC1 is not required

for its efficient recruitment to sites of DSBs in interphase and

suggested that TOPBP1 is predominately recruited by the

RNF8-RNF168-53BP1 pathway. However, a more quantitative

assessment of TOPBP1 foci formation by computer-aided seg-

mentation and quantification of subcellular shapes (SQUASSH;

Rizk et al., 2014) revealed a mild but significant reduction in

MDC1-TOPBP1 colocalization in cells expressing the TOPBP1
M

binding mutants (Figures 5B, S3C, and

S3D). These data suggest that while inter-

action with MDC1 mildly contributes to

TOPBP1 accumulation in G1 phase cells,

the RNF8-RNF168-53BP1 axis plays a

much more dominant role. In addition,

these data also suggest that despite its

ability to form a stable complex with

TOPBP1 in vitro, MDC1 is not able to

substitute fully for 53BP1 as a TOPBP1

adaptor in G1 phase cells.

Next, because 53BP1 foci do not

form during mitosis (Giunta et al., 2010;

Nakamura et al., 2010; Nelson et al.,

2009; van Vugt et al., 2010), we explored

TOPBP1 recruitment to DSB sites in

mitotic cells. After IR, TOPBP1 readily ac-

cumulates in foci that colocalize with

gH2AX and MDC1 on mitotic chromo-

somes, both in U2OS cells and in the
non-transformed human retinal pigmented epithelial cell line

RPE-1 (Figures 5C and S3E). Significantly, while TOPBP1 foci

formation on mitotic chromosomes was still dependent on

gH2AX and MDC1, it occurred independently of 53BP1 (Figures

5D, 5E, and S3E). These observations suggested that, in contrast

to G1 phase cells, MDC1 may recruit TOPBP1 to sites of DSBs

directly in mitosis, through phosphorylation-dependent interac-

tions with the S168 and S196 motifs. Indeed, foci containing

the MDC1 mutant versions that are defective for TOPBP1 inter-

action were devoid of TOPBP1 on mitotic chromosomes, while

expression of WT MDC1 in DMDC1 cells fully restored TOPBP1

foci (Figures 5F and 5G). Consistent with our observation that

TOPBP1 foci on mitotic chromosomes form independently of

53BP1, the TQXF > AQXF RNF8 binding mutant also rescued

TOPBP1 foci in mitosis (Figures 5F and 5G). Finally, in line

with our interpretation that MDC1 recruits TOPBP1 by direct
olecular Cell 74, 571–583, May 2, 2019 575
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Figure 4. MDC1 Is Required for TOPBP1

Recruitment to Sites of DSBs in G1 Phase

Cells

(A) Schematic representation of the human MDC1

gene locus, illustrating the hybridization site of the

gRNA selected for the generation of DMDC1 cell

line used in this study (gRNA sequence in the Key

Resources Table).

(B) Western blots of total cell extract of irradiated

WT U2OS cells and DMDC1 cells showing that

the ATM and ATR pathways are normally acti-

vated in the knock-out cell line in response to

IR (3 Gy).

(C) Immunofluorescence experiment of irradiated

WT U2OS cells and DMDC1 cells stained with

NBS1 and 53BP1 antibodies. Cells were co-

stained with MDC1 antibodies to show lack of

MDC1 expression in the knock-out cell line.

(D) Quantitative assessment of gH2AX foci in irra-

diated WT U2OS cells and DMDC1 cells (box and

whiskers represent minimum to maximum and in-

dividual data points are also shown; t test, a = 0.05,

at least 130 cells per condition).

(E) Western blot showing no signal with the MDC1-

pS168 and -pS196 phospho-specific antibodies in

DMDC1 cells. NBS1 is a loading control.

(F) Immunofluorescence experiment of WT U2OS

cells, DMDC1 cells, and D53BP1 cells stained with

TOPBP1 antibodies 3 h after IR (3 Gy). Cells were

co-stained with Cyclin A antibodies to distinguish

G1 phase from S/G2 phase cells.

(G) Immunofluorescence experiment of irradiated

WT U2OS cells and D53BP1 G1 cells stained

with MDC1 and TOPBP1 antibodies 3 h after IR

(3 Gy).

All scale bars represent 10 mm. See also Figure S3.
interaction predominantly in mitosis, mutation of BRCT1 or

BRCT2, but not BRCT5 or BRCT7, in GFP-tagged full-length

TOPBP1 led to defective foci formation in mitosis (Figure S3F).

In summary, these data reveal an unexpected complexity in

the TOPBP1 recruitment mechanism to sites of DSBs: MDC1

controls TOPBP1 foci both in G1 phase and in mitosis, but

only in mitosis does it primarily mediate TOPBP1 recruitment

through direct interaction, as in G1 phase cells MDC1 predomi-

nantly controls TOPBP1 accumulation indirectly via the RNF8-

RNF168-53BP1 axis.

MDC1-TOPBP1 Interaction Is Required for Maintenance
of Chromosomal Stability during Mitosis
Next, we addressed the physiological consequences for cells

lacking MDC1-TOPBP1 binding. First, given its specific role in

the recruitment of TOPBP1 to sites of DSBs in mitosis, we sought
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to test whether protecting cells from the

killing effects of DSBs acquired during

mitosis may be a major physiological

role of the MDC1-TOPBP1 interaction.

Therefore, we synchronized parental

U2OS, DMDC1 cells, and DMDC1 cells

stably expressing GFP-tagged WT MDC1

or TOPBP1 binding mutants in mitosis
and treated them with IR. DMDC1 and MDC1-S168A/S196A-

expressing mitotic cells, but not interphase cells, displayed

marked radiosensitivity compared to WT MDC1-expressing cells

(Figures 6A and S4A). To explore whether disruption of the

MDC1-TOPBP1 interaction negatively affects DSB repair in the

subsequent interphase after irradiation in mitosis, we synchro-

nized parental U2OS, DMDC1 cells, and DMDC1 cells stably ex-

pressingWTMDC1 or TOPBP1 bindingmutants inmitosis before

irradiating them. As a marker for unrepaired DSBs, gH2AX

foci were quantified 20 min, 6 h, and 24 h post-irradiation.

There was a significant increase in residual gH2AX foci in cells

expressing no MDC1 or the TOPBP1 binding mutants 24 h

post-irradiation compared to cells expressing WT MDC1, indi-

cating that in the absence of TOPBP1 recruitment in mitosis, a

substantial number of DSBs are not repaired within this time

period (Figure 6B).
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During mitosis, untethered DNA breaks lead to the formation

of acentric chromatin fragments that fail to segregate because

they cannot interact with the mitotic spindle. These acentric

fragments are randomly segregated to the cytoplasm of one

of the daughter cells and are converted into micronuclei after

nuclear envelope reformation (Bizard and Hickson, 2018). To

test whether MDC1 and TOPBP1 act to prevent this, cells

were first arrested in pro-metaphase and DSBs were induced

by IR, followed by release from the mitotic block. Populations

of parental U2OS and DMDC1 cells expressing WT MDC1 con-

tained few cells with micronuclei 4 h after release (Figure 6C). In

contrast, DMDC1 cells and DMDC1 cells expressing TOPBP1

binding mutants showed significantly elevated numbers of cells

with micronuclei, with more than 10% of cells in the population

being accompanied by one or several micronuclei. This sug-

gests that MDC1-mediated TOPBP1 recruitment to broken

mitotic chromosomes may serve to stabilize clastogen-induced

DSBs during mitosis for repair in the subsequent interphase.

Next, given that a small number of gH2AX foci can be detected

in almost every metaphase even in the absence of exogenous

sources of genotoxic stress (Lukas et al., 2011), we addressed

the consequences of loss of MDC1 and disruption of the

MDC1-TOPBP1 interaction in unperturbed cells. DMDC1 cell

populations showed a significantly increased fraction of cells

with micronuclei as compared to parental U2OS cells (Fig-

ure 6D). The majority of these micronuclei contained acentric

chromatin fragments as they stained negative for the centro-

meric protein CENPA. Stable expression of WT MDC1, but

not the TOPBP1-binding mutants, reduced the number of

micronuclei to the level observed in parental U2OS cells, indi-

cating that MDC1-TOPBP1 complex formation is important to

stabilize spontaneous chromosome breaks during mitosis,

possibly by bridging and tethering DNA ends (Figure 6D). The

increase in spontaneous micronuclei formation upon disruption

of the gH2AX-MDC1 cascade was even more pronounced in

non-transformed RPE-1 cells, which generally feature much

lower numbers of spontaneous micronuclei than cancer cells

(Figure S4B). In line with this, we observed that a significantly

increased number of chromosomes in metaphase spreads of

DMDC1 cells and S196A-expressing cells displayed abnormal

structures, including, but not limited to, chromatid breaks,

chromosome breaks, and dicentric chromosomes (Figures

7A, 7B, S5A, and S5B).
Figure 5. Direct Interaction with MDC1 Is Essential for TOPBP1 Recru

(A) Confocal microscopy of U2OS cells expressing GFP-tagged MDC1 WT and m

(B) Quantitative analysis of GFP-MDC1 and TOPBP1 colocalization by SQUASSH.

that overlapR50%). Lower graph: object size colocalization (area of object overla

represent themean. One-way ANOVA andDunnett’smultiple comparison test wer

significantly different from WT (p % 0.0006).

(C) Confocal microscopy of U2OS cells arrested in mitosis by nocodazole (100 n

(D) Confocal microscopy of U2OS DMDC1 and D53BP1 cells arrested in mitosis

(E) Quantitative analysis of TOPBP1-gH2AX colocalization in DMDC1 and D53BP1

the mean.

(F) Confocal microscopy of U2OS cells expressing GFP-tagged MDC1 WT and m

0.5 Gy IR.

(G) Quantitative analysis of GFP-MDC1 and TOPBP1 colocalization by SQUA

colocalization. Each data point represents one cell (n = 10); bars represent the m

All scale bars represent 10 mm. See also Figure S3.
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To obtain evidence for a DNA-end bridging role for MDC1 and

TOPBP1, we performed Airyscan high-resolution confocal imag-

ing of MDC1 and GFP-TOPBP1 foci in mitotic U2OS cells. Strik-

ingly, using this technique, many IR-induced TOPBP1 structures

in mitosis no longer resembled diffraction-limited spots but

instead resembled filamentous assemblies (Figures 7C and

7D). In contrast, most MDC1 foci did not appear to form such

structures but instead resembled cloud-like diffraction-limited

spots. We also observed in all irradiated cells incidences of a

TOPBP1 filament bridging two MDC1 foci, either within (intra)

or occasionally between (inter) chromosomes (Figure 7C). In

contrast, we observed few TOPBP1 foci colocalizing with or

bridging MDC1 foci in unirradiated mitotic cells (Figure S6A).

Nonetheless, we did occasionally observe TOPBP1 filaments

in mitotic cells in the absence of exogenous DNA damage, but

these did not colocalize with condensed chromatin (Figure S6A)

and may represent structures that give rise to ultra-fine DNA

bridges in anaphase, as observed previously (Broderick et al.,

2015; Pedersen et al., 2015). TOPBP1 filaments were not

observed in interphase cells, regardless of DNA damage.

In summary, our data show that the MDC1-TOPBP1 interac-

tion is required for the maintenance of chromosomal stability

and suggest that it does so by tethering broken chromosomes

during mitosis.

DISCUSSION

The findings reported here reveal a previously unrecognized but

highly conserved bi-partite protein interaction surface near the N

terminus of MDC1 that is phosphorylated by CK2. An unbiased

search for factors that interact with this region uncovered

TOPBP1 as the primary phosphorylation-dependent interaction

partner of this region of MDC1 and BRCT0–BRCT2 of TOPBP1

as the interacting domains.

Binding affinity of the phosphorylated S168 peptide to TOPBP1

BRCT0–BRCT2 is similar to the phosphorylated RAD9-S387

association with TOPBP1, with a Kd ranging between �0.5 mM

(MDC1; this study) and 2.0 mM (RAD9; Rappas et al., 2011), which

is in the same order of magnitude of typical affinities between

BRCT tandemdomains and their phosphorylated interaction part-

ners (see e.g., Lloyd et al., 2009; Stucki et al., 2005; Sun et al.,

2017). A direct physical and phosphorylation-dependent asso-

ciation between the MDC1 SDT region and TOPBP1 BRCT4+5
itment to DSBs in Mitotic Cells

utants 3 h after treatment with 3 Gy IR.

Upper graph: object number colocalization (fraction of objects in each channel

p divided by total object area). Each data point represents one cell (n = 10); bars

e performed to test for difference ofWT versusmutants. All mutant cell lines are

g/mL) and treated with 0.5 Gy IR.

by nocodazole (100 ng/mL) and treated with 0.5 Gy IR.

cells by SQUASSH. Each data point represents one cell (n = 8); bars represent

utants, arrested in mitosis by nocodazole (100 ng/mL) 1 h after treatment with

SSH. Upper graph: object number colocalization. Lower graph: object size

ean.
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A Figure 6. The MDC1-TOPBP1 Interaction

Promotes Genome Stability during Mitosis

(A) Clonogenic survival assay of mitotic and inter-

phase U2OS, DMDC1, and DMDC1 cells stably

transfected with MDC1 WT and TOPBP1 binding

mutants (mean of 3 independent experiments;

error bars: ±SD).

(B) Quantification of background gH2AX (�IR) and

residual gH2AX foci 20 min, 6 h, and 24 h after

irradiation of mitotic cells and subsequent release

from mitotic arrest (red bars represent the mean;

n = 3). One-way ANOVA and Dunnett’s multiple

comparison test were performed for the 24 h time

point to test for difference of the mean of DMDC1

versus complemented cell lines.

(C) Quantification of micronuclei formation 4 h after

irradiation of mitotic cells and subsequent release

from mitotic arrest (bars represent mean ± SD,

n = 3, unpaired t test, a = 0.05, at least 1,000 cells

per condition).

(D) Quantification of micronuclei formation in

untreated U2OS cell lines after staining of micro-

nuclei for CENPA (stacked bars represent means

of two independent experiments of at least 700

cells assessed per condition).

All scale bars represent 10 mm. See also Figure S4.
was previously reported and implicated in the replication check-

point (Wang et al., 2011). However, in our hands and in another

recent study (Choi and Yoo, 2016), mutation of TOPBP1-BRCT5

had no effect on MDC1-TOPBP1 binding, and we could not

detect any measurable association between the phosphorylated

MDC1-SDT region and TOPBP1 in our in vitro binding assays

and co-immunoprecipitation experiments. Based on these find-

ings, we propose that the NBS1 and TOPBP1 binding sites on

MDC1 are structurally and functionally distinct and that the

weak association between the MDC1 SDT region and TOPBP1

BRCT4+5 previously reported (Kd 94 ± 15 mM; Leung et al.,

2013), is not physiologically relevant (as recently suggested by

the authors of the original studies; Sun et al., 2017).

Our data demonstrate that the direct recruitment of TOPBP1

to DSBs via MDC1 is specifically important during mitosis. Inter-
M

estingly, MDC1 phosphorylation on S168

and S196 did not detectably change in

mitotic cells and was not induced by

DNA damage (Figure S6B). These data

are consistent with CK2 being constitu-

tively active throughout the cell cycle. In

line with this, the MDC1-TOPBP1 interac-

tion also did not appear to change in

response to these events (Figure S6C),

and CK2 inhibition does not inhibit mitotic

entry (Figure S6D). Thus, while MDC1-

TOPBP1 complexes are present

throughout the cell cycle, their physiolog-

ically relevant role seems to be confined

to mitosis. Since MDC1 cannot substitute

for 53BP1 in the accumulation of TOPBP1

in G1 foci, it is also unlikely that the mere
exclusion of 53BP1 from mitotic chromatin could explain the

switch in the TOPBP1 recruitment mechanism during mitosis.

In this context, it is interesting to note that TOPBP1 also changes

its foci pattern and recruitment mechanism at the G1/S transi-

tion. A possible mechanistic explanation for this switch in foci

pattern came from recruitment studies carried out with full-

length TOPBP1 and isolated TOPBP1 BRCT modules (Cescutti

et al., 2010). Recruitment of TOPBP1 to foci in interphase cells

consistently depends on two pairs of BRCT domains: G1 foci

are dependent on BRCT0–2 and BRCT4+5 and colocalize with

gH2AX, while S/G2 phase foci are dependent on BRCT0–2 and

BRCT7+8 and colocalize with RPA-coated ssDNA. Here, we

show that only one set of BRCT domains (BRCT0–2) is required

for efficient accumulation of TOPBP1 on damaged mitotic chro-

mosomes (Figure S3F). This suggests a switch in the recruitment
olecular Cell 74, 571–583, May 2, 2019 579
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B Figure 7. TOPBP1 Can Bridge MDC1-Bound

DSBs Acquired during Mitosis

(A) Examples of chromosomal aberrations in

metaphase spreads derived from U2OS DMDC1

cells and DMDC1 cells stably transfected with

TOPBP1 binding mutants, hybridized with a telo-

mere Cy3-labeled PNA probe. Scale bar repre-

sents 10 mm.

(B) Quantification of chromosomal aberrations:

chromosome breaks, chromatid breaks, frag-

ments, and chromosome fusions were scored

(bars represent mean ± SD; n = 18, unpaired t test,

a = 0.05).

(C) Airyscan high-resolution confocal single slice

images of GFP-TOPBP1 and MDC1 foci in mitosis

1 h after 0.5 Gy IR. ‘‘Intra’’ indicates an intra-

chromosomal TOPBP1 filament; ‘‘inter’’ indicates

an interchromosomal TOPBP1 filament.

(D) Quantification of TOPBP1 foci structures

induced by IR inmitotic cells (100 foci scored). Foci

structures were determined manually by inspect-

ing images slice by slice in ZEN. Filaments were

defined by >1 diffraction-limited spot connected

within a TOPBP1 focus.

See also Figures S5 and S6.
mode of TOPBP1 in mitosis that may also be associated with a

switch in its physiological function.

Thus, we propose that distinct modes of recruitment to sites of

DSBs may have evolved to enable TOPBP1 to engage in diverse

cellular response processes, depending on the cell-cycle stage.

In G1, TOPBP1 has been implicated in G1/S checkpoint activa-

tion in response to irradiation via 53BP1 (Cescutti et al., 2010). In

S/G2, TOPBP1 functions in multiple processes, including check-

point signaling (via ATR), DNA replication initiation (via Treslin),

and regulation of homologous recombination (via BLM). Mitotic

cells are distinct from interphase cells in their ability to progress

through M phase without activating a DNA damage checkpoint

response (Rieder and Cole, 1998). Thus, it is unlikely that

TOPBP1 fulfils the same roles at sites of mitotic DSBs as it

does in G1 and in S/G2 phase. Furthermore, there is ample

evidence that either DSBs are not repaired or that DSB repair

pathways are extensively rewired in mitosis (reviewed in Heijink

et al., 2013). Yet, DSBs do not go unnoticed in mitosis. ATM is

activated, H2AX is efficiently phosphorylated, and MDC1 recog-

nizes and is recruited to gH2AX-marked chromatin in mitosis.
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Therefore, it was suggested that gH2AX

and MDC1 participate in a mechanism

to mark and stabilize DSBs during mitosis

for efficient repair in the subsequent cell

cycle (Giunta and Jackson, 2011). Based

on the observations reported here, we

propose that MDC1 performs this task

predominantly by recruiting TOPBP1 to

damaged chromosomes in mitosis, and

we present direct evidence that these

two proteins act together to form intra-

and inter-chromosomal bridging struc-

tures that may help to tether and stabilize
broken chromosomes until they can be repaired in the following

G1 phase. Consistent with this idea, we found that loss of

MDC1 or disruption of the MDC1-TOPBP1 interaction leads

to increased radiosensitivity specifically in mitotic cells and

increased formation of micronuclei that contain mostly acentric

chromatin fragments. This suggests that DSBs are not properly

stabilized in the absence of MDC1 and TOPBP1 recruitment,

and acentric fragments are not segregated into the daughter

cells along with the chromosome from which they have broken

off. Additionally, we observed that, upon disruption of the

MDC1-TOPBP1 complex, a subset of DSBs remain unrepaired

24 h after DNA damage induction, suggesting that these persis-

tent lesions would have benefited frommarking and/or end-teth-

ering during mitosis. A similar role was recently proposed for the

MRN complex based on the observation that its NBS1 subunit

forms small foci on mitotic chromosomes in response to IR

(Giunta et al., 2010). We reproduced these data and found

that, similar to the situation in interphase cells, the mitotic

NBS1 foci are also dependent on the SDT repeat region in

MDC1 (Figure S7A). However, mutation of the SDT repeats did



not render cells hypersensitive to IR in mitosis, nor did it nega-

tively affect the stabilization of mitotic DSBs (Figures 6B, 6D,

and S7B). Therefore, we conclude that the MDC1-MRN interac-

tion is not critically implicated in the maintenance of genome

stability during mitosis.

More than three decades ago, an IR-dependent, female-spe-

cific mutator (mu2a) on chromosome 3 in Drosophila was

described that specifically increases the recovery of terminal

deficiencies (i.e., chromosomes that have lost a natural telomere;

Mason et al., 1984). MU2 was later shown to be the Drosophila

ortholog of vertebrate MDC1 (Dronamraju and Mason, 2009).

The prevalence of female-specific terminal deficiencies would

be consistent with post-irradiation deposition of single-ended

broken chromosomes into the zygote after the meiotic cell divi-

sions, because acentric fragments would not move to the pole

at anaphase in the absence of MU2 (MDC1) and would be lost.

Based on this and on our own findings reported here, we propose

that tethering of broken chromosomes during mitosis and

meiosis may be an ancient and highly conserved function of

MDC1. In this context, it is interesting to note that Mdb1, the

S. pombe MDC1 ortholog, was recently shown to interact with

the TOPBP1 ortholog Rad4 (Day et al., 2018). Whether the

Mdb1-Rad4 complex performs functions similar to the MDC1-

TOPBP1 complex in mammals remains to be determined.

Finally, it has been reported that TOPBP1 is capable of

oligomerizing to form higher-order protein assemblies, although

previous work has implicated multiple TOPBP1 motifs in this

process (Bang et al., 2013; Liu et al., 2006). Nonetheless, an

attractive hypothesis is that the TOPBP1 filamentous assemblies

we observe bridging MDC1 foci represent large homo-oligomers

containing many molecules of TOPBP1. Further work will be

needed in the future to determine the mechanistic basis of

higher-order TOPBP1 complex formation, what other proteins

are present in such assemblies (if any), and what role they play

in the response to mitotic DNA damage.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-53BP1 (IF) Santa Cruz sc-22760; RRID: AB_2256326

Rabbit polyclonal anti-AKT (WB) Cell Signaling Technology 9272; RRID: AB_329827

Rabbit monoclonal anti-AKT-pS129 (WB) Abcam ab133458; RRID: AB_10895993

Rabbit monoclonal anti-ATM-pS1981 (WB) Epitomics 2152-1; RRID: AB_991678

Rabbit polyclonal anti-Biotin (WB) Abcam ab53494; RRID: AB_867860

Goat polyclonal anti-BLM (WB) Abcam ab5446; RRID: AB_304894

Mouse monoclonal anti-Cyclin A (IF) BD Biosciences 611269; RRID: AB_398797

Mouse monoclonal anti-CENPA (IF) Abcam ab13939; RRID: AB_300766

Mouse monoclonal anti-CHK1 (WB) Santa Cruz sc-8408; RRID: AB_627257

Rabbit polyclonal anti-CHK1-pS317 (WB) Cell Signaling Technology 2344; RRID: AB_331488

Rabbit monoclonal anti-CHK1-pS345 (WB) Cell Signaling Technology 2348; RRID: AB_331212

Rabbit polyclonal anti-CHK2 (WB) Cell Signaling Technology 2662; RRID: AB_2080793

Rabbit polyclonal anti-CHK2-pT68 (WB) Cell Signaling Technology 2661; RRID: AB_331479

Mouse monoclonal anti-CENPA (IF) Abcam ab13939; RRID: AB_300766

Mouse polyclonal anti-GFP (WB) Roche 11814460001; RRID: AB_390913

Mouse monoclonal anti-GST (WB) Santa Cruz sc-138; RRID: AB_627677

Rabbit polyclonal anti-H2A (WB) Merck 07-146; RRID: AB_11212920

Rabbit polyclonal anti-H2AX (WB) Novus Biologicals NB100-383; RRID: AB_10002060

Mouse monoclonal anti-gH2AX (IF/WB) Merck 05-636; RRID: AB_309864

Rabbit polyclonal anti-H3 (WB) Abcam ab1791; RRID: AB_302613

Mouse monoclonal anti-H3-pS10 (FACS/WB) Abcam ab14955; RRID: AB_443110

Mouse monoclonal anti-HA (WB) Santa Cruz sc-57592; RRID: AB_629568

Rabbit polyclonal anti-KAP1 (WB) Abcam ab10483; RRID: AB_297222

Rabbit polyclonal anti-KAP1-pS824 (WB) Bethyl Laboratories IHC-00073; RRID: AB_577234

Mouse monoclonal anti-MDC1 (IF) Abcam ab50003; RRID: AB_881103

Rabbit polyclonal anti-MDC1 (WB) Abcam ab11171; RRID: AB_297810

Rabbit polyclonal anti-MDC1-pS168 (WB) AMS Biotechnology N/A

Rabbit polyclonal anti-MDC1-pS196 (WB) 21st Century Biochemicals N/A

Rabbit polyclonal anti-NBS1 (IF) Novus Biologicals NB100-143; RRID: AB_10078050

Rabbit monoclonal anti-NBS1 (WB) Abcam ab32074; RRID: AB_777007

Mouse monoclonal anti-PLK1 (WB) Merck 05-844; RRID AB_310836

Rabbit polyclonal anti-RAD9 (WB) Abcam ab70810; RRID: AB_1270159

Mouse monoclonal anti-RPA2 (WB) Abcam ab2175; RRID: AB_302873

Rabbit monoclonal anti-RPA2-pS4/pS8 (WB) Bethyl Laboratories A700-009; RRID: AB_2765278

Rabbit polyclonal anti-SMC1 (WB) Abcam ab9262; RRID: AB_307121

Rabbit polyclonal anti-SMC1-pS966 (WB) Abcam ab1276; RRID: AB_299409

Rabbit polyclonal anti-TOPBP1 (IF) Bethyl Laboratories A300-111A; RRID: AB_2272050

Rabbit polyclonal anti-TOPBP1 (WB) Abcam ab2402; RRID: AB_303044

Alexa Fluor 488 goat anti-rabbit IgG H&L (IF) Abcam ab150077; RRID: AB_2630356

Alexa Fluor 568 goat anti-rabbit IgG H&L (IF) Abcam ab175471; RRID: AB_2576207

Alexa Fluor 647 goat anti-mouse IgG H&L (IF) Abcam ab150115; RRID: AB_2687948

Alexa Fluor 647 goat anti-mouse IgG1 (FACS) Thermo Fisher Scientific A-21240; RRID: AB_2535809

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

HeLa nuclear extract Ipracell CC-01-20-25

Chemicals, Peptides, and Recombinant Proteins

Alexa Fluor 488-labeled PNA CENPB probe PNA Bio F3004

Aphidicolin Merck 178273

ATM inhibitor AZD0156 Selleck Chemicals S8375

ATR inhibitor AZD6738 Cayman Chemical 21035

Camptothecin Cayman Chemical 11694

CDK inhibitor RO-3306 Merck 217699

CK2 inhibitor CX-4945 Selleck Chemicals S2248

cOmplete EDTA-free Protease Inhibitor Cocktail Merck 5056489001

DAPI solution BD Biosciences 564907

DNA-PK inhibitor NU7741 Cayman Chemical 14881

EZview Red Anti-HA Affinity Gel Merck E6779

GFP-Trap_MA Chromotek gtma-100

Glutathione Sepharose 4B GE Healthcare 17075601

Karyomax Colcemid Solution In PBS Thermo Fisher Scientific 15212012

Lipofectamine 2000 Thermo Fisher Scientific 11668019

MDC1-S196 peptide (Biotin-GGSGSRTTSSSVIVPESDEEGHSPV-NH2) Genosphere Biotechnologies N/A

MDC1-pS196 peptide (Biotin-GGSGSRTTSSSVIVPE[pS]

DEEGHSPV-NH2)

Genosphere Biotechnologies N/A

MDC1-pS168 peptide (Flu-GYGRLLLAED[pS]EEEVDFL) Peptide Protein Research N/A

MDC1-pS196 peptide (Flu-GYGGSVIVPE[pS]DEEGHSP) Peptide Protein Research N/A

MDC1 SDT motif 1 peptide (Flu-GYGFAFNLN[pS]D[pT]DVEEGQ) Peptide Protein Research N/A

MDC1 SDT motif 2 peptide (Flu-GYGQPPGED[pS]D[pT]DVDDDS) Peptide Protein Research N/A

MDC1 SDT motif 3 peptide (Flu-GYGPFGFID[pS]D[pT]DAEEER) Peptide Protein Research N/A

MDC1 SDT motif 4 peptide (Flu-GYGQESQAG[pS]D[pT]DVEEGK) Peptide Protein Research N/A

MDC1 SDT motif 5 peptide (Flu-GYGASMVIN[pS]D[pT]DDEEEV) Peptide Protein Research N/A

MDC1 SDT motif 6 peptide (Flu-GYGTTTERD[pS]D[pT]DVEEEE) Peptide Protein Research N/A

Nocodazole Merck M1404

PLK1 inhibitor BI 2536 Cayman Chemical 17385

SuperSignal West Femto Maximum Sensitivity Substrate Thermo Fisher Scientific 34095

VECTASHIELD Antifade Mounting Media with DAPI Vector Laboratories H-1200

Critical Commercial Assays

Bolt 4%–12% Bis-Tris Plus Gels Thermo Fisher Scientific NW04120BOX

Fixation/Permeabilization Solution Kit BD Biosciences 554714

GenElute HP Endotoxin-Free Plasmid Maxiprep Kit Merck NA0410

Mini-PROTEAN 4%–15% TGX Stain-Free Protein Gels Bio-Rad 4568086

Novex 10%–20% Tricine Protein Gels Thermo Fisher Scientific EC6625BOX

QuickLyse Miniprep Kit QIAGEN 27405

QuikChange II Site-Directed Mutagenesis Kit Agilent Technologies 200524

Telomere PNA FISH Kit/Cy3 Agilent Technologies K5326

Deposited Data

Mass spectrometry This paper and PRIDE PXD011850

Raw image files This study, Mendeley Data https://data.mendeley.com/

datasets/26pch2jvzh.1

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

293FT human embryonic kidney cell line Thermo Fisher Scientific R70007

U-2 OS (U2OS) human bone osteosarcoma cell line ATCC HTB-96

U2OS D53BP1 Daniel Durocher lab Orthwein et al., 2015

U2OS DMDC1 This paper N/A

U2OS DMDC1 +GFP-MDC1 This paper N/A

U2OS DMDC1 +GFP-MDC1-S168A This paper N/A

U2OS DMDC1 +GFP-MDC1-S196A This paper N/A

U2OS DMDC1 +GFP-MDC1-S168A/S196A This paper N/A

U2OS DMDC1 +GFP-MDC1-AQXF This paper N/A

U2OS DMDC1 +GFP-MDC1-12A This paper N/A

RPE-1 human retinal pigmented epithelium cell line Stephen Jackson lab Chiang et al., 2016

RPE-1 H2AXS139A/S139A Stephen Jackson lab Chiang et al., 2016

RPE-1 DMDC1 Stephen Jackson lab Chiang et al., 2016

Oligonucleotides

Mutagenesis primer MDC1-S168A forward:

CTGTTGGCTGAGGACGCGGAGGAGGAAGTAG

Microsynth N/A

Mutagenesis primer MDC1-S168A reverse:

CTACTTCCTCCTCCGCGTCCTCAGCCAACAG

Microsynth N/A

Mutagenesis primer MDC1-S196A forward:

CTCTGTGATAGTTCCAGAGGCTGATGAAGAGGGGCATTCC

Microsynth N/A

Mutagenesis primer MDC1-S196A reverse:

GGAATGCCCCTCTTCATCAGCCTCTGGAACTATCACAGAG

Microsynth N/A

Mutagenesis primer TOPBP1-BRCT2 (K250A) forward:

GCAAGAACCAAAAGGTCAGGCGTATGAGTGTGCCAAGAGA

Eurofins Genomics N/A

Mutagenesis primer TOPBP1-BRCT2 (K250A) reverse:

TCTCTTGGCACACTCATACGCCTGACCTTTTGGTTCTTGC

Eurofins Genomics N/A

sgRNA primer forward:

CACCCACCTCGGGAAGAATGTGGT

Microsynth N/A

sgRNA primer reverse:

AAACACCACATTCTTCCCGAGGTG

Microsynth N/A

Recombinant DNA

pcDNA3-MDC1-HA-12A Jiri Lukas lab Melander et al., 2008

pcDNA3.1-GFP-MDC1-WT Stephen Jackson lab Kolas et al., 2007

pcDNA3.1-GFP-MDC1-12A This paper N/A

pcDNA3.1-GFP-MDC1-AQXF Stephen Jackson lab Kolas et al., 2007

pcDNA3.1-GFP-MDC1-S168A This paper N/A

pcDNA3.1-GFP-MDC1-S196A This paper N/A

pcDNA3.1-GFP-MDC1-S168A/S196A This paper N/A

pcDNA3.1-HA-MDC1-WT Stephen Jackson lab Kolas et al., 2007

pcDNA5/FRT/TO Thermo Fisher Scientific V6520-20

pcDNA5/FRT/TO-MDC1-HA-WT This paper N/A

pcDNA5/FRT/TO-MDC1-HA-12A This paper N/A

pcDNA5/FRT/TO-MDC1-HA-S196A-12A This paper N/A

pcDNA5/FRT/TO-MDC1-HA-S196A This paper N/A

pcDNA5/FRT/TO-MDC1-HA-S168A This paper N/A

pcDNA5/FRT/TO-MDC1-HA-S168/S196A This paper N/A

pGEX-4T-3-MDC1109-330 Manuel Stucki lab Spycher et al., 2008

pGEX-4T-3-MDC1109-330 S196A This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pGEX-4T-3-MDC1109-330 ADA This paper N/A

pGEX-4T-3-MDC1109-330 ADA+S196A This paper N/A

pIRESneo2-TOPBP1 Thanos Halazonetis lab Cescutti et al., 2010

pIRESneo2-TOPBP1-K154A/K155A (BRCT1) Wojciech Niedzwiedz lab Blackford et al., 2015

pIRESneo2-TOPBP1-K250A (BRCT2) This paper N/A

pIRESneo2-TOPBP1-K704A (BRCT5) Wojciech Niedzwiedz lab Blackford et al., 2015

pX330-U6-Chimeric_BB-CBh-hSpCas9 Feng Zhang lab Addgene plasmid #42230;

Cong et al., 2013

Software and Algorithms

Boxshade ExPASy Bioinformatics

Resource Portal

https://embnet.vital-it.ch/

software/BOX_form.html

CellProfiler Carpenter et al., 2006 http://cellprofiler.org

Fiji Schindelin et al., 2012 https://imagej.net/Fiji

GraphPad Prism v7.00 GraphPad Prism version 7.00

GraphPad Software, La Jolla

California USA

http://graphpad.com

R R Development Core Team http://r-project.org

SQUASSH segmentation algorithm Rizk et al., 2014 https://imagej.net/Squassh

T-Coffee multiple sequence alignment tool Notredame et al., 2000 http://tcoffee.crg.cat

ZEN Black v2.1 ZEISS https://www.zeiss.com
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to the Lead Contact, Manuel Stucki (manuel.stucki@uzh.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and cell culture conditions
Source of all the cell lines used in this study is provided in the key resource table. 293FT, U2OS and RPE-1 cells were cultured in

Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine and penicillin-

streptomycin antibiotics under standard cell culture conditions in a CO2 incubator (37
�C; 5%CO2). Stably transfected U2OS cell lines

were cultured in the presence of 400 mg/mL Geneticin. Cells were regularly tested for mycoplasma contamination.

METHOD DETAILS

Cloning and Mutagenesis
pcDNA5/FRT/TO-MDC1-HA-WT was generated by subcloning MDC1-HA-WT from pcDNA3.1-MDC1-HA-WT (gift from Steve

Jackson; (Kolas et al., 2007)) into a modified pcDNA5/FRT/TO vector (Invitrogen). pcDNA5/FRT/TO-MDC1-HA-12A was generated

by excision of a SmaI/AvrII restriction fragment containing the SDT region from pcDNA3-MDC1-HA-12A (gift from Jiri Lukas;

(Melander et al., 2008)) and ligating it into pcDNA5/FRT/TO-MDC1-HA-WT that was previously digested with SmaI and AvrII.

pcDNA5/FRT/TO-MDC1-HA-S168A, -S196A and -S168/S196A and pcDNA5/FRT/TO-MDC1-HA-S196A-12A were generated

by site directed mutagenesis of pcDNA5/FRT/TO- MDC1-HA-WT and pcDNA5/FRT/TO-MDC1-HA-12A, respectively, using Quik-

Change II Site-DirectedMutagenesis kit (Agilent Technologies). Sequences of the mutagenesis primers are in the key resource table.

pGEX4T3-MDC1109-330 fragment (‘‘M2’’) was described elsewhere (Spycher et al., 2008). pGEX-4T-3-MDC1-M2-S196A, pGEX-4T-

3-MDC1-M2-ADA-S196A and pGEX-4T-3-MDC1-M2-ADA were generated by PCR amplification of the M2 fragment using the

pcDNA5/FRT/TO-MDC1-HA-12A and pcDNA5/FRT/TO-MDC1-HA-S196A-12A plasmids as templates, respectively. Fragments

were then ligated into the pGEX-4T-3 vector. pcDNA3.1-GFP-MDC1-WT and pcDNA3.1-GFP-MDC1-AQXF plasmids were a gift

from Steve Jackson and are described elsewhere (Kolas et al., 2007). S168A, S196A and S168A/S196A mutations were introduced

in pcDNA3.1-GFP-MDC1-WT as described above for pcDNA5/FRT/TO-MDC1-HA plasmids. pcDNA3.1-GFP-MDC1-12A was

generated by replacing an ApaI restriction fragment within the MDC1 coding sequence that contains all the six SDT repeats with

a custom synthesized DNA fragment (BioCat GmbH), designed to have all six SDT motifs changed to ADA.
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Peptide pull-downs
Biotinylated peptides (Genosphere Biotechnologies) were bound to streptavidin-coupled Dynabeads M-280 (Life Technologies).

HeLa nuclear extracts (Ipracell) were diluted 1:1 with 2X dilution buffer (100 mM NaCl, 10 mM NaF, 0.2 mM EDTA, 0.4%

Igepal CA-630, 20 mM HEPES-KOH, pH 7.4) supplemented with cOmplete protease inhibitor cocktail (Roche), and cleared by

centrifugation. Dynabead-conjugated peptides were incubated with clarified extracts with end-to-end mixing at 4�C for 2 hr. Beads

were washed with peptide pull-down buffer (50 mMNaCl, 50 mMKCl, 5 mMNaF, 0.1 mMEDTA, 0.2% Igepal CA-630, 10% glycerol,

20 mM HEPES-KOH, pH 7.4) supplemented with cOmplete protease inhibitor cocktail (Roche), before elution in 2X SDS sample

buffer for mass spectrometry or SDS-PAGE. Peptide sequences were as follows: Biotin-GGSGSRTTSSSVIVPESDEEGHSPV-NH2

(MDC1-S196) and Biotin-GGSGSRTTSSSVIVPE[pS]DEEGHSPV-NH2 (MDC1-pS196).

Mass spectrometry
Precipitated material in SDS sample buffer was subjected to two rounds of chloroform-methanol precipitation followed by in-solution

trypsin digestion as described previously (Fischer and Kessler, 2015). Digested and desalted samples were resuspended in 20 mL 2%

acetonitrile and 0.1% formic acid and analyzed by nano-flow liquid chromatography tandem mass spectrometry (LC-MS/MS) as

described previously (Davis et al., 2017). Samples were analyzed on an Orbitrap Fusion Lumos instrument, coupled to an Ultimate

3000 nUPLC with an EASY-Spray column (50 cm). MS1 scans were acquired at a resolution of 120000 in the Orbitrap and MS2 scan

were acquired in the ion trap in rapid mode. Selected precursors were excluded for 60 s. MS data was processed with MaxQuant

(Version 1.6.2.3) and searched against the UniProt/Swissprot database (human, retrieved 18/07/2017). We used the FastLFQ algo-

rithm for quantitation and the match between runs feature for identification transfer. Proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE (Vizcaı́no et al., 2016) partner repository (PRIDE: PXD011850).

SDS-PAGE and western blotting
SDS-PAGE and western blotting were performed using 7% Tris-Bicine gels with the SE400 and TE42 systems from Hoefer, or Bolt

4%–12% Bis-Tris Plus gels from Thermo Fisher Scientific. Biotinylated peptides were resolved using Novex 10%–20% Tricine gels

from Thermo Fisher Scientific. Additional SDS-PAGE and western blotting were performed using BioRad 4%–15% Mini-PROTEAN

TGXTM Precast Gels. The following antibodies were used at the indicated dilutions: AKT (9272, Cell Signaling, 1/1000), AKT-pS129

(ab133458, Abcam, 1/3000), ATM-pS1981 (2152-1, Epitomics, 1/5000), Biotin (ab53494, Abcam, 1/100), BLM (ab5446, Abcam, 1/

500), CHK1 (sc-8408, Santa Cruz Biotechnology, 1/1000), CHK1-pS317 (2344, Cell Signaling, 1/500), CHK1-pS345 (2348, Cell

Signaling, 1/10,000), CHK2 (2662, Cell Signaling, 1/1000), CHK2-pT68 (2661, Cell Signaling, 1/1000), GFP (11814460001, Roche,

1/5000), GST (sc-138, Santa Cruz Biotechnology, 1/500), H2A (01-146, Merck, 1/2500), H2AX (NB100-383, Novus Biologicals, 1/

5000), gH2AX (05-636, Merck, 1/1000), H3 (ab1791, Abcam, 1/30,000), H3-pS10 (ab14955, Abcam, 1/5000), HA (sc-57592, Santa

Cruz Biotechnology, 1/1000), KAP1 (ab10483, Abcam, 1/5000), KAP1-pS824 (IHC-00073, Bethyl Laboratories, 1/500), MDC1

(ab11171, Abcam, 1/5000), MDC1-pS168 (1/500), MDC1-pS196 (1/2000), NBS1 (ab32074, Abcam, 1/2000), RAD9 (ab70810, Ab-

cam, 1/3000), RPA2 (ab2175, Abcam, 1/10,000), RPA2-pS4/pS8 (A700-009, Bethyl Laboratories, 1/1000), SMC1 (ab9262, Abcam,

1/5000), SMC1-pS966 (ab1267, Abcam, 1/2500), TOPBP1 (ab2402, Abcam, 1/1500). To generate the MDC1-pS168 affinity purified

rabbit polyclonal antibody, the synthetic peptide sequence RLLLAED[pS]EEEVDFL, was conjugated to keyhole limpet hemocyanin

(KLH) via a non-native N-terminal cysteine residue and used for immunization (AMS Biotechnology). MDC1 pS196 affinity purified

polyclonal antibody was custom made by 21st Century Biochemicals (Marlboro), using the synthetic peptide sequence SVIVPE

[pS]DEEGHSP for immunization.

Immunoprecipitations
For preparation of lysates for immunoprecipitations (IPs), cells werewashed twice in phosphate-buffered saline (PBS), and lysed in IP

buffer (100 mM NaCl, 0.2% Igepal CA-630, 1 mM MgCl2, 10% glycerol, 5 mM NaF, 50 mM Tris-HCl, pH 7.5), supplemented with

cOmplete EDTA-free protease inhibitor cocktail and 25 U/mL Benzonase (Novagen). After nuclease digestion, NaCl and EDTA

concentrations were adjusted to 200 mM and 2 mM, respectively, and lysates were cleared by centrifugation. Lysates were then

incubated with 15 mL of either GFP-Trap magnetic agarose beads (ChromoTek) or EZview Red Anti-HA Affinity Gel (Sigma-Aldrich)

for 2 h with end-to-end mixing at 4�C. Immunoglobulin- antigen complexes were washed five times with IP buffer before elution in

2X SDS sample buffer.

Fluorescence polarization
For source and sequence information of fluorescein-labeled (Flu) peptides see key resource table. Recombinant human TOPBP1

BRCT0-2 and BRCT4+5 were expressed and purified as follows: GST-tagged BRCT0-2 or His-SUMO-tagged BRCT4+5 were

transformed into Escherichia coli expression strain Rosetta 2 (DE3)pLysS (Merck). Single transformed colonies were used to inocu-

late a 250 mL flask containing 100 mL of Luria–Bertani broth (LB) supplemented with carbenicillin (100 mg/mL) and chloramphenicol

(34 mg/mL). Inoculated cultures were grown overnight at 37�C, at 220 rpm in an orbital shaking incubator. The following day, 20mL of

overnight culture was used to inoculate a 2-l flask containing 1 l of LB, supplemented with antibiotics as above. Cultures were grown

at 37�C, 220 rpm, until the optical density at 600 nm reached 0.6–0.8. They were then removed from the incubator, and rapidly cooled

on ice for 30 min. Recombinant protein expression was induced by the addition of 0.4 mM isopropyl b-D-1-thiogalactopyranoside
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(IPTG), and the cultures incubated for a further 16 h at 220 rpm at 16�C. Cells were then harvested by centrifugation, and the resulting

pellet was stored at �80�C until required. The cell pellet arising from 6 l of culture was resuspended in 100 mL of 25 mM HEPES

(pH 7.5), 1 M NaCl, 5% glycerol, 0.1% Tween-20, supplemented with protease inhibitors (Roche), then lysed on ice by sonication

delivered by a Jencons Ultrasonic Processor (183 5 s bursts at 50% amplitude). Cell debris and precipitated material were removed

by high-speed centrifugation at 48,834 x g for 60 min. For GST-tagged BRCT0-2, the supernatant was applied to a 5 mL HiTrap GST

column (GE Healthcare), then washed with buffer containing 50 mM HEPES pH 7.5, 1 M NaCl, 250 mM TCEP. Retained protein was

eluted by application of the lysis buffer supplemented with 20 mM glutathione. For His- SUMO-tagged BRCT4+5, the supernatant

was applied to a 5 mL HiTrap TALON crude column (GE Healthcare), washed first with buffer containing 50 mM HEPES pH 7.5,

1 M NaCl, 250 mM TCEP, and then again with buffer containing 50 mM HEPES pH 7.5, 200 mM NaCl, 250 mM TCEP and 10 mM

imidazole. Retained protein was eluted by application of the same buffer supplemented with 250 mM imidazole. Rhinovirus 3C

PreScission protease (GE Healthcare) was added to the eluate and incubated overnight at 4�C to cleave the affinity tag. Both eluted

TOPBP1 proteins were concentrated to a final volume of 5mL (Vivaspin 20, 10 kDaMWCO, Sartorius Stedim Biotech) then applied to

a HiLoad Superdex 200 16/60 size exclusion chromatography column (GE Healthcare) pre-equilibrated in 25 mM HEPES pH 7.5,

200 mM NaCl, 1 mM EDTA, 250 mM TCEP, 0.02% Tween-20. Flu-labeled peptides at a concentration of 100 nM were incubated

at room temperature with increasing concentrations of TOPBP1 BRCT0-2 or BRCT4+5 in 25 mM HEPES (pH 7.5), 200 mM NaCl,

1 mM EDTA, 0.5 mM TCEP, 0.02% Tween-20. Fluorescence polarization was measured using a CLARIOstar multimode microplate

reader (BMG Labtech). Data were analyzed using GraphPad Prism by non-linear fitting with a one-site total binding model. Any non-

specific binding component was subtracted from the data for presentation purposes only. All data represent the mean of four

separate experiments, and error bars represent one standard deviation.

In vitro kinase assays and GST-pull-downs
GST fusion proteins were expressed in the competent Escherichia coli expression strain BL21(DE3)pLysS (Promega) followed by

protein purification with glutathione–Sepharose beads. GST fusion proteins were mock treated or treated with 120 U recombinant

CK2 (New England Biolabs) with 10 mM ATP in NEB PK buffer (New England Biolabs) and incubated at 30�C for 45 min. For

GST-pull-downs, 5 mg of the GST-MDC1 fusion proteins were then mixed with 250 mg HeLa nuclear extract and incubated for 1 h

at 4�C. Glutathione–Sepharose beads (GE Healthcare) were added and the suspension was incubated at 4�C for 2 h on a rotating

wheel. The beads were washed three times with wash buffer (50 mM Tris, pH 7.5, 120 mM NaCl, 1 mM DTT, and 0.3% NP-40)

and bound proteins were eluted by addition of 2X SDS sample buffer.

Generation of CRISPR/Cas9 MDC1 knock-out cell lines
The U2OS DMDC1 cell line was generated as follows, according to a protocol published previously (Ran et al., 2013). Sources and

sequences of the reagents used are provided in the key resource table. The sgRNA target sequence was cloned into the pX330-U6-

Chimeric_BB-CBh-hSpCas9 vector (a gift from Feng Zhang; Addgene plasmid #42230; http://n2t.net/addgene/42230; RRID:Addg-

ene 42230) and verified by sequencing. Transfection of U2OS cells was done by electroporation of 106 cells with 5 mg of plasmid DNA

on aNEON transfection system (Invitrogen), using the following electroporation parameters: pulse voltage 1230 V; pulse width 10ms;

pulse number 4. Clonal cell lines were isolated by dilution in 96-well plates. Total extract of single clones was prepared and analyzed

by western blotting, using rabbit polyclonal anti-MDC1 antibody (Abcam). Total deletion of the MDC1 gene was verified in one of

the clonal cell lines by Sanger sequencing of a PCR-amplified genomic fragment that was cloned in the pCR II Blunt TOPO plasmid

(sequences available upon request).

Generation of stably transfected DMDC1 cell lines
For generation of the GFP-MDC1 expressing stable cell lines, U2OSDMDC1 cells were transfected with the indicated plasmids using

Lipofectamine 2000, following the standard protocol provided by the supplier. The media was changed 10 h post-transfection. Two

days post-transfection, cell colonies were grown in the presence of 400 mg/mLGeneticin G418 for 10 dayswith amedia change every

3 days. Single colonies were picked using cloning rings and expanded. Clones were analyzed for GFP-MDC1 expression by western

blotting and immunofluorescence, respectively. To improve homogeneous GFP-MDC1 expression, positive clones were sorted

using a BD FACSAria III 4L cell sorter.

Immunofluorescence
Cells were grown on glass coverslips and fixed with either ice-cold methanol for 10 min (for staining with TOPBP1 antibody), or with

4%buffered formaldehyde (for staining with all other antibodies) for 15min at room temperature, and subsequently permeabilized for

5min in PBS containing 0.2% Triton X-100. Following 1 h of blocking in blocking buffer (10% FBS, 3%BSA in PBS), primary antibody

incubations were performed at room temperature for 2 h. Coverslips were washed three times with PBS and secondary antibody

incubations were performed for 1 h at room temperature in the dark. After washing with PBS three times, coverslips were mounted

on glass microscopy slides with VECTASHIELD mounting medium containing 0.5 mg/mL 4’,6-diamidino-2-phenylindole dihydro-

chloride (DAPI). The following antibodies were used at the indicated dilutions: 53BP1 (sc-22760, Santa Cruz, 1/500), CENPA

(ab13939, Abcam, 1/200), Cyclin A (611269, BD Biosciences, 1/100), gH2AX (05-636, Millipore, 1/500), MDC1 (ab50003, Abcam,

1/300), NBS1 (NB100-143, Novus, 1/200), RPA2 (ab2175, Abcam, 1:250), TOPBP1 (A300-111A, Bethyl, 1/500).
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Widefield microscopy
Widefield image acquisition was done on a ZEISS AxioObserver Z1 widefield microscope, equipped with a Lumencor SpectraX

illumination system and a Hamamatsu Orca Flash 4.0 V2, sCMOS, cooled fluorescence camera (16-bit, 2048 3 2048 pixel

(4MP), pixel size 6.5 mm). A 63x, 1.4-NA, i-plan apochromat oil-immersion objective was used. For three-emission wavelength detec-

tion we combined DAPI with EGFP or Alexa Fluor 488 and Alexa Fluor 568. For optimal representation in figures, images were

adjusted for brightness and exported as RGB TIF files using Fiji (Schindelin et al., 2012). Images in Figure S2G were deconvoluted

with Huygens software (Scientific Volume Imaging) using a computed theoretical PSF based on known microscopic parameters.

Confocal microscopy
Confocal images were acquired with a Leica SP8 inverse confocal laser scanning microscope with a 63x, 1.4-NA Plan-Apochromat

oil-immersion objective. For four-emission wavelength detection we combined DAPI with EGFP, Alexa Fluor 568 and Alexa Fluor 647.

For three- emission wavelength detection we combined DAPI with EGFP and Alexa Fluor 568. The sequential scanning mode was

used and the number of overexposed pixels was kept at a minimum. At least 10 single cells were recorded per condition with

10-15 z sections and a resolution of 512 3 512 pixels (voxel size 100 3 100 3 298 nm), 8-bit depth. For optimal representation in

figures, maximum intensity projections were calculated and images were adjusted for brightness and exported as RGB TIF files using

Fiji. For quantitative assessment of protein colocalization, the SQUASSH plugin (part of theMosaicSuite) for ImageJ and Fiji was used

(Rizk et al., 2014). SQUASSH combines the image-segmentation task with biological reality through prior knowledge about the

imaged objects (in this case DNA damage foci), the image-formation process and the noise present in the image. Maximum intensity

projections of two channel confocal micrographs of single cells (EGFP and Alexa Fluor 568) were used for the SQUASSH analysis.

Segmentation parameters were as follows: regularization ch1: 0.05, regularization ch2: 0.05, minimum object intensity ch1: 0.55,

minimum object intensity ch2: 0.55, include subpixel segmentation: yes, exclude z edge: yes. Noise model: Poisson, standard

deviation xy: 0.8 pixels, standard deviation z: 0.8 pixels. A script for the free open-source statistical software R is automatically gener-

ated by the SQUASSH plugin, which calculates object number colocalization (number of objects that overlapR 50% divided by total

number of objects) and object size colocalization (area of object colocalization divided by total object area). Due to slight heteroge-

neity of the GFP signal in the stably transfected cells we excluded signal co-localization from the analysis.

Quantification of gH2AX foci
For quantification of gH2AX foci in Figure 5B, cells were grown on coverslips, synchronized using RO-3306 and released for 40min to

allow cells to enter mitosis. Mitotic cells were irradiated at 0.5 Gy and subsequently released in freshmedium and left to grow for 24 h

in the cell culture incubator. Cells were then fixed and stained with mouse monoclonal anti-gH2AX antibody as described above.

Quantification was done manually. For quantification of gH2AX foci in Figure S3D, unsynchronized cells were irradiated with 3 Gy,

followed by incubation at 37�C for 1 h. Cells were then fixed and stained with mouse monoclonal anti-gH2AX antibody as described

above. Image acquisition was done using widefield microscopy. Quantification was done using CellProfiler (Carpenter et al., 2006)

and R (CellProfiler analysis pipeline and R script available upon request).

Quantification of micronuclei
For quantification of micronuclei formation after irradiation of mitotic cells, cells where either untreated or irradiated with 0.5 Gy in

prometaphase after a nocodazole arrest and subsequently released from the cell cycle arrest by washing twice with PBS and adding

fresh medium for 4 h to allow cells to enter G1 phase. Cell were then fixed and stained with DAPI as described above. For quantifi-

cation of spontaneous micronuclei formation, asynchronous and untreated cell populations were grown on coverslips, fixed and

stained with DAPI as described above. Images were captured by widefield microscopy. Micronuclei were counted manually and

nuclei were counted using the CellProfiler software. To assess the presence of centromeres in the micronuclei, fixed cells were

stained with CENPA antibodies (see above). To probe for the presence of telomeric repeats in the micronuclei, fluorescence in

situ hybridization (FISH) was done using Telomere PNA FISH Kit/Cy3 (Agilent Technologies) according to the protocol provided

by the supplier.

Clonogenic survival assay
For clonogenic survival assay of interphase cells, 5 3 105 cells were counted and plated, followed by irradiation with the indicated

doses and replating in 6-well plates. For mitotic cells, 2.5 3 106 cells were counted, plated and arrested in prometaphase using

100 ng/mL nocodazole for 16 h, followed by irradiation with the indicated doses. Following a mitotic shake off, cells were counted

and re-plated in 6-well plates. For both interphase and mitotic assays, cells were grown with medium change every 3 days for

12 days. Plates were washed twice with PBS and incubated for 1 h in methylene blue fixation/staining solution (80%EtOH, 1%meth-

ylene blue powder) at room temperature. After rigorous washing with warm tap water, plates where left to dry overnight and colonies

were counted manually using an eCountTM colony counter pen.

Metaphase analysis
Cells were grown to 90% confluency on a 10-cm plate and were treated with 0.1 mg/mL KaryoMax Colcemid (Thermo Fisher

Scientific) for 2 h. Cells were trypsinized and transferred to a 15 mL Falcon tube, centrifuged at 1000 rpm for 5 min and carefully
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resuspended in 5mL hypotonic buffer (15%FBS, 75mMKCl) and incubated for 15min at 37�C. Cells were again pelleted at 1000 rpm

for 5 min, the supernatant was discarded and the cell pellet was resuspended in 200 mL of hypotonic buffer. Cells were fixed by add-

ing drop-wise 7 mL of EtOH:acetic acid 3:1 while slowly vortexing followed by incubation for 20 min. After centrifugation at 1000 rpm

for 5 min, supernatant was discarded and cells were re-suspended in remaining 200 mL of the fixation buffer. 20-25 mL of the cell

suspension was then dropped in a 45� angle onto a wet glass slide and air-dried for 10 min. Metaphases were stained with DAPI

(VECTASHIELD with DAPI), covered with a glass coverslip and sealed with nail varnish. Telomere FISH was conducted using the

Telomere PNA FISH Kit/Cy3 (Agilent Technologies) according to the protocol provided by the supplier. For telomere/centromere

co-FISH, the same protocol as above was applied with the following adjustments: fixation of metaphase spreads was done with

3:1 MeOH:acetic acid for 20 min on ice. The CENPB probe (Alexa 488-labeled PNA CENPB probe from PNA Bio) was dissolved

in formamide and combined with the telomere PNA probe to a final concentration of 5 mM. The hybridization time and temperature

were adjusted to 8 min at 70�C.

Airyscan high-resolution confocal microscopy
Cells were grown in 35-mm #1.5H glass bottom dishes (IB-81158, Thistle Scientific). Cells were washed once in PBS before fixing for

10 min in 4% paraformaldehyde (PFA; Santa Cruz Biotechnology sc-281692) at room temperature. PBS was added simultaneously

during PFA removal to prevent samples fromdrying due to PFA evaporation. Cells werewashed once in PBS, before permeabilization

in 0.2% Triton X-100 (Thermo Fisher Scientific) in PBS for 5 min. Samples were washed once in PBS before incubation with primary

antibodies diluted in antibody buffer (DMEM supplemented with 10% FCS and 0.05% sodium azide; filtered) for 1 h. Cells were

washed three times in 0.2% Tween 20 (Sigma-Aldrich) in PBS, before incubation with secondary antibodies diluted in antibody buffer

containing 0.5 mg/mLDAPI in the dark for 30min. Sampleswerewashed three times in 0.2%Tween 20 in PBS and once in PBS before

imaging in glass bottom dishes. Airyscan confocal imaging was carried out using an LSM 880 Airyscan inverted microscope (ZEISS)

equipped with a 63x/1.4 numerical aperture (NA) Plan Apochromat objective and an Airyscan 32-pinhole detector unit. DAPI was

detected using a 405-nm diode laser and 420-480 nmplus 495-550 nm band pass emission filters, Alexa 488 andGFPwere detected

with the 488-nm line of an argon laser and 420-480 nmplus 495-550 nmband pass emission filters, and Alexa 568was detected using

a 561-nm diode-pumped solid-state laser and 495-550 nm band pass plus 570 nm long pass emission filters. Z stacks of entire cells

were acquired using 0.16 mm step size. Raw data were processed using Airyscan processing with Wiener Filter strength 6 using ZEN

Black software version 2.1, yielding 16-bit images with approximately 180 nm lateral resolution. Display of images was adjusted for

intensity for optimal display of structures of interest. 3D data were visualized and analyzed using Imaris 9.1.2 (Bitplane, Oxford

Instruments) in-built animation tool. Intensities were adjusted for optimal display purposes.

Flow cytometry analysis of mitotic cells
Cells were treated with 10 mMCX-4945 or DMSO vehicle control for 16 h before harvesting by trypsinisation. Cells were washed with

1 mg/mL BSA in PBS, before fixation and permeabilization using Fixation/Permeabilization Solution Kit (BD Biosciences) according

to themanufacturer’s instructions. Cells were stainedwith H3-pS10 primary antibody (ab14955, Abcam, 1/100) for 1 h at RT, followed

by Alexa Fluor 647 goat anti-mouse IgG1 (A-21240, Thermo Fisher Scientific, 1/200) for 1 h at RT. Cells were resuspended in 250 mg/

mL RNase A, 2 mg/mL DAPI and 0.02% sodium azide in PBS, incubated at 37�C in the dark for 30min before being analyzed using an

Attune NxT flow cytometer (Thermo Fisher Scientific).

QUANTIFICATION AND STATISTICAL ANALYSIS

Each experiment was repeated at least twice, and representative experiments are depicted. Statistical calculations were done using

GraphPad Prism 7 (GraphPad Software Inc.). Unpaired t tests were used to compare two populations. One-way ANOVA was used to

comparemore than two populations. Linear regression was used to compare clonogenic survival data. Sample sizes and a levels are

indicated in the Figure Legends. In all cases: ns indicates p > 0.05.
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