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Simple Summary: Medical images are data. They contain more information than is routinely
identified by radiologists reading scans. Many scientists are investigating if extracting shape and
grey-scale features from images can predict which oncology patients will respond to therapy. This
approach, termed ‘radiomics’, must be validated before being ready for clinical use. One step is to
determine measurement repeatability to ensure that radiomic features are robust, and that changes
in features reflect genuine changes in tumours. In this study patients had two repeated sets of
magnetic resonance imaging scans. We found that radiomic feature repeatability varied depending
on scan acquisition parameters and the use of an administered contrast agent. We also compared
how different repeatability assessment methods can best reveal these findings. We conclude that
measuring radiomic feature repeatability is essential, but is also complex and prone to pitfalls.
Overall, our study provides several insights into how radiomic feature repeatability is best assessed.

Abstract: Imaging biomarkers require technical, biological, and clinical validation to be translated
into robust tools in research or clinical settings. This study contributes to the technical validation of
radiomic features from magnetic resonance imaging (MRI) by evaluating the repeatability of features
from four MR sequences: pre-contrast T1- and Tp-weighted images, pre-contrast quantitative T; maps
(qTy), and contrast-enhanced T;-weighted images. Fifty-one patients with colorectal cancer liver
metastases were scanned twice, up to 7 days apart. Repeatability was quantified using the intraclass
correlation coefficient (ICC) and repeatability coefficient (RC), and the impact of non-Gaussian feature
distributions and image normalisation was evaluated. Most radiomic features had non-Gaussian
distributions, but Box—Cox transformations enabled ICCs and RCs to be calculated appropriately
for an average of 97% of features across sequences. ICCs ranged from 0.30 to 0.99, with volume and
other shape features tending to be most repeatable; volume ICC > 0.98 for all sequences. 19% of
features from non-normalised images exhibited significantly different ICCs in pair-wise sequence
comparisons. Normalisation tended to increase ICCs for pre-contrast T1- and Tr-weighted images,
and decrease ICCs for qT; maps. RCs tended to vary more between sequences than ICCs, showing
that evaluations of feature performance depend on the chosen metric. This work suggests that
feature-specific repeatability, from specific combinations of MR sequence and pre-processing steps,
should be evaluated to select robust radiomic features as biomarkers in specific studies. In addition,
as different repeatability metrics can provide different insights into a specific feature, consideration
of the appropriate metric should be taken in a study-specific context.
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1. Introduction

Imaging underpins much of the current management of patients with cancer, through
diagnosis, staging and monitoring response to therapy. There is considerable current
interest in evaluating if high throughput analysis of medical images—in an approach
termed ‘radiomics’—can further extend the role of imaging by producing signatures that
are prognostic or are predictive of clinical outcome [1-3].

For radiomics to yield robust imaging biomarkers, technical, biological, and clinical
validation are required [4,5]. Such validation is a multi-step process, in which various
aspects of a proposed biomarker’s performance are evaluated. Technical validation re-
quires the evaluation of biomarker accuracy, repeatability, reproducibility, and availability,
while biological and clinical validation require an understanding of how features relate
to underlying biology, and how they relate to outcome, respectively. There has been a
substantial amount of research into how radiomic features relate to tumour biology and
outcome. Many studies have focused on finding a statistical association between either one
radiomic feature, or several features combined into a ‘signature’, and an underlying biolog-
ical feature or clinical outcome [6,7]. For example, computed tomography (CT) radiomic
features from the Gray-Level Run Length Matrix in the tumour and peripheral ring, along
with the minimum value in the tumour, have been associated with CD8 cell infiltration
across a range of tumour types [8], and CT features related to tumour heterogeneity and
compactness/sphericity have shown an association with survival in lung and head and
neck cancer [2].

In terms of technical validation, measuring repeatability in single centres and repro-
ducibility across multiple centres is crucial, and provides an important step in developing
metrology standards for quantitative imaging biomarkers in general [9], including radiomic
features [10]. While a number of studies have assessed the repeatability and/or repro-
ducibility of CT-derived cancer radiomic features [11], there are fewer studies investigating
the repeatability of MR-derived radiomic features [12-21]. These studies are limited by
small patient numbers (<17, with the exception of Kickingereder et al., [13] and Merisaari
et al. [20], with 55 and 112 patients, respectively), and the use of only one or two MR se-
quences (except in [13] where three were used). Furthermore, given the difficulty in directly
comparing MR signal intensities from different scans, the effect of image normalisation
on repeatability needs to be considered for different MR sequences, as does the validity
of assumptions underlying the statistical analysis of repeatability. Finally, the impact of
gadolinium-based contrast agents on the repeatability of features from T;-weighted images,
and the repeatability of features from Ty maps, is yet to be evaluated in tumours.

This study aimed to address these knowledge gaps. To achieve this we sought to
provide a comprehensive evaluation of the repeatability of MRI derived radiomic features
in patients with liver metastases from colorectal cancer, which is an emerging clinical site
of interest [22].

2. Materials and Methods
2.1. Image Acquisition and ROI Definition

We examined pre-treatment MRI scan data in patients recruited for a clinical trial
(EudraCT number 2009-011377-33) [23]. All patients gave written informed consent. The
study was conducted in accordance with the Declaration of Helsinki, and the study received
institutional board approval (North West-Greater Manchester Central Research Ethics
Committee, REC 09/H1008/99). All included patients were aged 18 years or over, had
primary colorectal cancer, with at least one liver metastasis measuring >2.5 cm in maximum
dimension on their screening CT scan, had a performance status of 0-2, and had two pre-
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treatment scans (median time between scans = 4 days, range = 2-7 days) (Figure 1a). Given
the retrospective nature of this study, the available data determined the sample size, rather
than a formal power calculation.
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Figure 1. (a) Flowchart for subject and lesion selection. For T{W and T,W pre-contrast images, a total of 51 subjects (1) with

134 lesions (I) were included. Sixty-five of these lesions were also analysed on T;{W post-contrast images and pre-contrast

quantitative T; maps. For direct comparison in terms of number of lesions included, the T;W pre-contrast images from this

subset were re-analysed in 39 patients. (b) Example images for one subject with two metastases (red outlines).

MRI acquisition and analysis was performed to Good Clinical Practice (GCP) stan-

dards. Data were acquired on a 1.5 T Philips Achieva scanner (Philips Healthcare, Best,
The Netherlands). All imaging sequences were acquired without breath-holds or gating,
with 25 axial slices, either 4 or 8 mm thick. Individual sequence parameters were:

Multislice 2D T;-weighted turbo field-echo sequence prior to contrast agent adminis-
tration (flip angle (FA) = 15°, repetition time (TR) = 10 ms, echo time (TE) = 4.60 ms,
field of view (FoV) = 375 mm x 264 mm, acquired in-plane resolution = 1.46 mm X
2.09 mm, reconstructed in-plane resolution = 1.46 mm x 1.46 mm, 25 slices); hereafter
termed TqW pre-contrast.

Multislice 2D T-weighted turbo spin-echo sequence (FA = 90°, TR = 541 ms, TE = 80 ms,
FoV = 375 mm X 264 mm, acquired in-plane resolution = 1.46 mm x 1.84 mm,
reconstructed in-plane resolution = 1.46 mm x 1.46 mm, 25 slices); hereafter termed
T,W pre-contrast.

Three 3D spoiled gradient-echo sequences (FAs = 2°,10°,20°, TR =4 ms, TE = 0.82 ms,
FoV = 375 mm x 375 mm, acquired in-plane resolution = 2.93 mm X 3.71 mm,
reconstructed in-plane resolution = 2.93 mm x 2.93 mm, 25 slices). T; was quantified
by fitting the spoiled gradient-echo equation [24] to the signal intensities, S, in the
three flip angle images: S(a) = Mysina(1 — E)/(1 — Ecosa), where M, is a factor
proportional to proton density, « is the flip angle, and E = exp (—TR/T;). Fitting
was performed on a voxelwise basis using a Levenberg-Marquardt algorithm, and the
resulting T; maps are hereafter termed qT; maps.
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e Multislice 2D T;-weighted turbo field-echo sequence acquired 5 min after contrast
agent administration (FA = 15°, TR = 10 ms, TE = 4.60 ms, FoV 375 mm X 264 mm,
acquired in-plane resolution = 1.46 mm x 2.09 mm, reconstructed in-plane resolution
=1.46 mm x 1.46 mm, 25 slices). 0.1 mmol/kg of gadoterate meglumine contrast
agent (Dotarem, Guebert, France) was administered intravenously at a rate of 3 ml/s,
using a Medrad Spectris power injector (Bayer, Reading, UK); hereafter termed T; W
post-contrast.

Regions of interest (ROIs) were defined manually using Java Image software (JIM
version 6.0_16, Xinpase Systems Ltd, UK) by a radiologist (J.P.B.O’C; 16 years of experience).
In each case an ROI was drawn on the T{W pre-contrast images, and again on the T,W
pre-contrast images. Both pre-treatment scans were annotated together. Up to five target
lesions were identified for each patient. Next, the qT1 maps and the T{W post-contrast
images were inspected along with the ROIs drawn on the accompanying T1{W pre-contrast
image to determine if the ROIs provided accurate delineation of each target lesion on these
sequences. If the ROI was not deemed accurate for the qT1 maps and the T{W post-contrast
images then data were excluded for those target lesions. Lesions included for the qT;
maps and Tq{W post-contrast images were therefore a subset of those for the T{W and ToW
pre-contrast images; the T{W pre-contrast images from this subset were treated as another
dataset, to allow a direct comparison (in terms of lesion numbers) with qT; map and T{W
post-contrast data (Figure 1a). The qT1 map masks were created based on the ROI defined
on the higher-resolution T;W pre-contrast images. Due to the different resolutions of the
weighted and quantitative images, these qT1 map masks were subsequently up-sampled for
application to the subset of T{W pre-contrast images, to ensure directly comparable masks
were used when comparing qT; maps to the T{W pre-contrast subset (Supplementary
Information Figure S1). Each patient therefore had data for up to four sequences for two
separate scan sessions. Example ROIs for one patient are shown in Figure 1b.

2.2. Radiomic Feature Extraction

For all ROl in all imaging sequences, radiomic features were extracted using PyRa-
diomics, version 2.2.0.post41+gc46ed88 [25]. PyRadiomics was chosen as it is open source,
which facilitates reproducible research, and is largely ISBI-compliant (for details of differ-
ences see https:/ /pyradiomics.readthedocs.io/en/latest/faq.html), which can aid com-
parison with studies using other ISBI-compliant platforms [26]. In total, 105 features
were extracted from every lesion, with each feature belonging to one of the seven standard
classes in PyRadiomics: Shape, First Order, Gray Level Co-occurrence Matrix (GLCM), Gray
Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), Gray Level
Dependence Matrix (GLDM), and Neighbouring Gray Tone Difference Matrix (NGTDM).
Descriptions and formulae for all features can be found at https:/ /pyradiomics.readthedocs.
io/en/latest/features.html. 3D feature extraction was performed for images without nor-
malisation, and for images normalised to have a mean of 0 and standard deviation of
100, using PyRadiomics’ standard linear normalisation. In all cases, a bin width of 5 was
used, and no filters were applied to images before feature extraction. For T{W pre-contrast,
T,W pre-contrast, qT; pre-contrast, and T{W post-contrast, the median number of bins
over all lesions and visits was 60, 13, 310, and 110 (non-normalised) and 29, 42, 45, and 38
(normalised). YAML parameter files and analysis code used in this study can be found at
https:/ / gitlab.com/manchester_gbi/manchester_qgbi_public/radiomics_repeatability.

2.3. Repeatability Analysis and Statistical Comparison

The repeatability of radiomic features was evaluated using the intraclass correlation
coefficient (ICC) [27-29] and the repeatability coefficient (RC) [30]. ICC is a measure of
within-subjects consistency relative to the total variability observed in the population,
and it can be estimated in different ways, depending on the underlying statistical model
that best captures the data structure under study; indeed, a feature’s ICC depends on the
variability of the feature across the cohort studied [28]. Here, ICC(1,1) [28] was judged
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to be the most suitable (see Supplementary Information), with point estimates and 95%
ClIs calculated as described by McGraw and Wong [27]. RC point estimates and 95% Cls
were calculated as described by Barnhart and Barboriak [30]. RC is proportional to the
within-subject standard deviation, and for a given feature the difference between repeat
measurements is expected to fall within —RC and +RC, for 95% of patients. As such, RC is
a useful metric for determining significant changes in a feature over time, for example in
assessing treatment-induced changes relative to baseline. In contrast to ICCs, RCs depend
on the magnitude and unit of the underlying feature, and themselves have the unit that the
feature is measured in.

The models underlying ICC and RC calculations assume the feature follows a Gaussian
distribution [29,31], and deviations from this assumption have been reported to impact ICC
point estimates and confidence intervals (CIs) [32]. The assumption of Gaussian feature
distributions was tested using the Shapiro-Wilk test for all radiomic features extracted
from all MR sequences (for non-normalised and normalised images). Feature distributions
were judged to be non-Gaussian based on a Bonferroni-corrected p < 0.05/105 threshold
in the Shapiro-Wilk test (given 105 features per dataset). For non-Gaussian features,
the optimal A parameter to use in a Box-Cox transformation was found, such that the
original feature distribution, x, could be transformed to a new distribution, y, which was
consistent with a Gaussian distribution, according to y = (x* —1)/A,if A # 0; y = log(x),
if A = 0 [33]. Shapiro-Wilk tests and Box—Cox transformations were carried out using the
stats subpackage of the SciPy library in Python [34].

Note that we refer to ‘Gaussian distributions’ of the radiomics features rather than

‘normal distributions’, to avoid confusion with the term ‘image normalisation’, which refers

to the transformation applied to image signal intensities prior to feature extraction. To
assess the impact of Box—Cox transformations and image normalisation across images with
different magnitudes and units, only ICCs were used, as RCs depend on the magnitude and
unit of the underlying feature. As such, there were 16 datasets from which ICCs could be
obtained: 4 MR sequences, each without and with image normalisation, and each without
and with applying Box-Cox transformations to feature distributions.

To compare repeatability across different sequences, both ICC and RC were estimated,
but for RC, only normalised datasets were used (where signal intensities become dimen-
sionless) and were only estimated on the subset of features where the application of the
Box—Cox transformation was consistent for all sequences (that is, for features where the
transformation either was applied for all sequences, or was not applied for any sequence,
to ensure comparable feature magnitudes). It should be noted that for features where
the Box—Cox transformation was used, the direct comparison of RCs across sequences is
hampered due to the different optimal A values for the different sequences, as A influences
the feature magnitudes. This may potentially confound interpretability when comparing
RCs from Box—Cox transformed features.

ICCs were formally compared using Fisher’s Z-test [35], which involves applying a
transformation to the ICCs; note that this is independent of the Box-Cox transformations
described above. The test allowed ICCs to be compared between features without and
with Box—Cox transformations (e.g., T{W pre-contrast without Box—Cox transformations
vs. T{W pre-contrast with Box—-Cox transformations), between features from different
MR sequences (e.g., T{W pre-contrast vs. ToW pre-contrast), and between features from
non-normalised and normalised images (e.g., T{W pre-contrast without normalisation
vs. T{W pre-contrast with normalisation). In these comparisons, ICCs were taken to be
significantly different based on a Bonferroni-corrected p < 0.05/105 threshold. RCs were
descriptively compared across sequences, and with ICCs, on a per-feature basis.

3. Results
3.1. Effect of Box—Cox Transformations

Figure 2 illustrates the Box-Cox transformation procedure for three example features
from non-normalised T{W pre-contrast images. The chosen features, GLCM Inverse
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Difference Moment, GLSZM Large Area Low Gray Level Emphasis, and Elongation reflect
three scenarios in terms of feature distributions: (a) the original distribution is Gaussian,
and does not need transforming before ICC calculation; (b) the original distribution is
not Gaussian, but becomes Gaussian after a Box-Cox transformation; and (c) the original
distribution is not Gaussian, but is still not Gaussian after a Box-Cox transformation. In case
(c), although the feature still fails the Shapiro-Wilk test, the quantile-quantile (Q-Q) plot
indicates that the transformation does help to make the distribution more consistent with a
Gaussian. Across all sequences, with and without normalisation, the majority of features
reflected scenario (b), where the transformation corrected a previously non-Gaussian
distribution (Table 1). With this procedure, Gaussian distributions could be obtained for
>93% of features for all datasets. For features where the applied transformation still did
not yield a Gaussian distribution, qualitative assessment of Q-Q plots suggested some
improvement, so these transformed features were still used. Supplementary Information
Figures S2-S5 show feature histograms, Box-Cox transformations, and Q-Q plots for all
features, for all sequences.
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Figure 2. Feature distributions and transformations for three example features, (a) Inverse Difference Moment, (b) Large

Area Low Gray Level Emphasis, (c) Elongation, from non-normalised T;W pre-contrast images, pooling feature values

from both visits for all subjects. Feature distributions and Q-Q plots for the original features are shown in the first and

second columns, respectively. The third column shows the Box—Cox normality plots, with red vertical lines indicating

the optimal A to use to transform the distributions. Feature distributions and Q-Q plots for the transformed features

are shown in the fourth and fifth columns, respectively. In (a) the original distribution is consistent with a Gaussian

distribution (Shapiro-Wilk test), and does not require a transformation. In (b) the original distribution is not consistent

with a Gaussian distribution, and the transformation corrects this. In (c) the original distribution is not consistent with a

Gaussian distribution, but the transformed distribution is still not Gaussian, though the Q-Q plots suggest the transformed

distribution is closer to Gaussian than the original. Y-axis labels are omitted for clarity, but are: Counts, Sample quantiles,

Correlation coefficient, Counts, Sample quantiles, for each column, respectively.
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Table 1. Effectiveness of Box-Cox transformations, assessed by the number of features with distributions consistent with a

Gaussian distribution in different scenarios, for four MR sequences (rows), without and with normalisation (left and right).

The first, second, and third column on each side show the number of features whose original distribution was Gaussian (Pre

Box-Cox), the number of features whose original non-Gaussian distribution was transformed to Gaussian (Post Box—Cox),

and the number of features whose distribution was non-Gaussian before and after applying transformations (Never). In all

cases the total is 105, reflecting the number of features extracted.

No Normalisation Normalisation
Pre Box—Cox Post Box—Cox Never Pre Box—Cox Post Box—Cox Never
TqW pre-contrast 22 77 6 17 81 7
ToW pre-contrast 17 84 4 15 87 3
qT; map pre-contrast 25 78 2 27 77 1
T1W post-contrast 26 77 2 34 70 1

Figure 3 shows the effect of the Box—Cox transformations on calculated ICCs, for
Tq{W and ToW pre-contrast non-normalised images (Supplementary Information Figure S6
shows equivalent plots for qT1 maps and T;W post-contrast non-normalised images). Note
that these figures do not directly plot the ICC differences, but rather the difference in
ICCs after applying Fisher’s Z-transformation, and the error bars show the 95% CI on this
difference. Note also that not all features where the 95% Cls do not contain zero are marked
as significant due to the use of Bonferroni correction.

Depending on the feature, ICC point estimates could increase or decrease due to the
transformation, though differences tended to be relatively small, and significant differences
were observed for a minority of features. This suggests that while ICC calculations assume
features follow a Gaussian distribution, there is a degree of robustness against cases where
this assumption is invalid. While the application of the transformations does not have a
dramatic effect on ICCs, it does help ensure the validity of methodological assumptions,
and it can significantly affect the repeatability of some features. As such, ICCs from
Box—Cox transformed features were used throughout the rest of the analysis.

3.2. ICC and RC Overview

Features exhibited a wide range of repeatabilities, with ICCs ranging from 0.30
(GLSZM Small Area Emphasis for ToW images without normalisation) to 0.99 (Voxel
Volume for T;W post-contrast images). For all sequences, Voxel Volume and Mesh Volume
were the features with the two highest ICCs (>0.98), indicating that tumour volume was
the most repeatable feature.

Figure 4a provides an overview of the ICC results, plotting ICCs for all features, for
each sequence, with and without normalisation, facilitating comparisons across all datasets.
The dominance of yellow in the Shape class illustrates the tendency for higher ICCs for
these features, though Sphericity has a notably lower ICC (~ 0.58) across all sequences.
Excluding Shape features, nine features have ICC > 0.90 for all sequences, with and without
normalisation): Energy, Total Energy, GLRLM Gray Level Non Uniformity, GLRLM Run
Length Non Uniformity, GLSZM Gray Level Non Uniformity, GLSZM Size Zone Non
Uniformity, GLDM Dependence Non Uniformity, GLDM Gray Level Non Uniformity,
and NGTDM Coarseness. However, all these features are correlated with Mesh Volume
(absolute Spearman’s p ranged from 0.62 to 0.97, across all sequences, with and without
normalisation), suggesting these features offer limited independent information beyond
tumour size. Figure 4b further summaries the impact of sequence choice and normalisation
on repeatabilities, plotting the coefficient of variation (CoVs) in ICCs across all sequences,
with and without normalisation. Shape features, with the exception of Sphericity, and
NGTDM features tend to show the lowest variation, while features in other classes show
greater variation in repeatability.

RC values for all features and datasets are shown in Supplementary Information
Figures 57-514. Note that in general these values cannot be directly compared for different
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, suggesting they provide comparable information about

to show more variability between sequences than ICC, with qT; and T;W-post tending to

have lower RCs. While ICCs tend to be uniformly high across sequences, indicating good
repeatability regardless of sequence, the lower RCs for qT; map and T W-post suggest
these would be preferred for detecting longitudinal changes in Shape features. ICCs
and RCs can therefore be seen to offer different perspectives on repeatability, with the
choice of metric informed by the context of a particular study. Supplementary Information

Figures 515-520 plot RC against ICC for the other feature classes. For some features, ICCs

and RCs are inversely correlated
however, correlations are not observed, showing that for certain features, a low RC does not

necessarily imply a high ICC. For example, Energy and Total Energy from qT; maps have

relatively low RCs, but have the lowest ICCs of the four sequences. Conversely, for most
other First Order features, qT1 maps exhibit the highest RC and lowest ICC (Figure S15).

features and sequences, due to their differing units. For the subset of Shape features where
RC values can be compared, Figure 5 plots RC against ICC for the four sequences. RC tends
repeatability (with higher ICCs and lower RCs indicating better repeatability); for others,
Again, it should be noted that the direct comparison of RCs for Box-Cox transformed
features is confounded by having different optimal A values for the different sequences.
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Figure 3. Effect of applying Box—Cox transformations to feature distributions, for T{W (top) and T,W (bottom) pre-contrast
represent 95% Cls. Features are colour coded according to their class: Shape (red), First Order (blue), GLCM (purple),

GLRLM (orange), GLSZM (brown), GLDM (pink), and NGTDM (grey). Black stars and bold fonts indicate features where

images. Bars represent the difference in ICC point estimates (after applying Fisher’s Z-transformation), and error bars
ICCs from original and Box-Cox transformed data are significantly different.
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—8 plot ICCs for non-normalised images from the 4 MR sequences. Note

As ICCs are more readily comparable across features and datasets, the following
that Figure 6 includes data from 134 lesions, while in Figures 7 and 8 the presented data

sections analyse ICCs in more detail, comparing non-normalised data across the different

MR sequences, and investigating the effect of normalisation.

Figures 6
come from the subset of 65 T{W pre-contrast lesions that match those used in qT; map and

T1W post-contrast analyses. The bottom panel in Figures 68 plot the differences in ICCs
T, W), comparison of pre-contrast anatomical and quantitative images (T1W and qT; map),

and comparison of pre- and post-contrast images (T;W pre- and post-contrast). These
specific comparisons will be described below. As in Figure 3 above, note that these plots
show the difference in ICCs after applying Fisher’s Z-transformation, and the error bars

between two sequences, allowing comparison of pre-contrast anatomical images (T1W and
show the 95% CI on this difference.

3.3. Comparing MR Sequences
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Figure 6. ICCs for Box—Cox transformed features from T{W (top) and ToW (middle) pre-contrast images. Data points and

error bars represent ICC point estimates and 95% Cls. Features are colour coded according to their class and black points
correspond to mean =+ standard deviation ICCs over features within each class. The bottom panel represents the difference

in ICCs (after applying Fisher’s Z-transformation) for T{W and ToW pre-contrast images. Black stars and bold fonts indicate

features where ICCs from the two sequences are significantly different.
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Figure 7. ICCs for Box-Cox transformed features from T{W (top) and qT; map (middle) pre-contrast images. Data points
and error bars represent ICC point estimates and 95% CIs. Features are colour coded according to their class and black

points correspond to mean =+ standard deviation ICCs over features within each class. The bottom panel represents the
difference in ICCs (after applying Fisher’s Z-transformation) for T{W and qT; map pre-contrast images. Black stars and

bold fonts indicate features where ICCs from the two sequences are significantly different.
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Figure 8. ICCs for Box—Cox transformed features from T;W pre-contrast (top) and T;W post-contrast (middle) images. Data

points and error bars represent ICC point estimates and 95% Cls. Features are colour coded according to their class and
black points correspond to mean + ICCs over features within each class. The bottom panel represents the difference in ICCs
(after applying Fisher’s Z-transformation) for T{W pre-contrast and T1W post-contrast. Black stars and bold fonts indicate
features where ICCs from the two sequences are significantly different.

3.3.1. T{W Pre-Contrast and T;W Pre-Contrast

Figure 6 shows that shape feature ICCs tend to be very similar between T{W and
T,W pre-contrast images. Point estimates for Sphericity are most dissimilar, although
the relatively wide confidence intervals means this difference is not significant; Major
Axis Length and Maximum 3D Diameter ICCs are significantly higher on ToW, though
point estimates >0.91 on both images. Of the 38/105 features whose ICCs are significantly
different, 10 are from the First Order class, with all but one of these (Minimum) exhibiting
a higher ICC on T,W. Of the remaining 26 significantly different features in the texture
classes, 21 exhibit a higher ICC on ToW.

3.3.2. T{W Pre-Contrast and qT; map Pre-Contrast

Figure 7 shows that First Order features have comparable ICCs from Ty W pre-contrast
images and qT; maps. Shape features, and therefore their associated ICCs, are essentially
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identical here as the same mask was used for both sets of images, with minor differences
due to the different resolutions (see Section 2.1); note that qT; maps had a lower resolution
than all other images. In all, 15/105 features have significantly different ICCs. Thirteen of
these 15 show higher ICCs from qT; maps, and while most features are not significantly
different, the tendency is for ICCs to be higher for qT; maps. Note that CIs tend to be wider
on the T{W pre-contrast plot here compared with the top row of Figure 6, as fewer lesions
were included in the analysis for this comparison.

3.3.3. T{W Pre- and Post-Contrast

Figure 8 shows that all First Order features from T{W post-contrast images have
higher ICCs than those from T;W pre-contrast images, though only two are statistically
significant. This tends to be true for all other classes, with the vast majority of features
exhibiting higher ICCs on T{W post-contrast images. Of the 8/105 features whose ICCs
do differ significantly, all have ICCs which are higher on T;W post-contrast images. Note
that Shape features here are identical for pre- and post-contrast images, as the same masks
were used for both.

3.4. Effect of Normalisation

Figures 9 and 10 show how ICCs are affected by applying image normalisation prior
to feature extraction, comparing ICCs between images with and without normalisation,
for each sequence. Normalisation tends to affect T{W and T,W pre-contrast images more
than qT; maps or T{W post-contrast images, with 30 and 14 ICCs significantly changed
by applying normalisation to T{W and T, W pre-contrast images, respectively, with only
seven ICCs significantly affected on qT1 maps, and no ICCs significantly affected for T;W
post-contrast. For T{W pre-contrast images, all ICCs which are significantly affected are
higher when normalisation is applied; for ToW, 11 of the 14 ICCs significantly affected
improve with normalisation. Conversely, for qT; maps, although most ICCs are unaf-
fected by normalisation, for the seven features which are significantly different, all have
lower ICCs when normalisation is applied. Note that Shape features only depend on the
masks, and so are unaffected by normalisation; their ICCs are therefore identical with and
without normalisation.

3.5. Summary of Results

Taken together, the results from the present analysis highlight several aspects of
radiomic feature repeatability which may be important to consider in future studies. Firstly,
while most features had non-Gaussian distributions, the use of Box-Cox transformations
enabled ICCs and RCs to be calculated appropriately for an average of 97% of features
across sequences. Secondly, features exhibited a wide range of ICCs, with Shape features
tending to have the highest ICCs. Thirdly, 19% of features from non-normalised images
exhibited significantly different ICCs in pair-wise comparisons between different MR
acquisitions. Fourthly, the use of image normalisation tended to increase ICCs for pre-
contrast T1- and T-weighted images, and decrease ICCs for qT; maps. Finally, RCs and
ICCs can provide different insights into feature repeatability.
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Figure 9. Effect of image normalisation on T{W and ToW pre-contrast images. Comparison of ICCs for Box-Cox transformed

features from non-normalised and normalised images, for T{W (top) and ToW (bottom) pre-contrast images. Bars represent

the difference in ICC point estimates (after applying Fisher’s Z-transformation), and error bars represent 95% Cls. Features

are colour coded according to their class. Black stars and bold fonts indicate features where ICCs from non-normalised and

images are significantly different.
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Figure 10. Effect of image normalisation on qT; maps and T1W post-contrast images. Comparison of ICCs for Box-Cox

transformed features from non-normalised and normalised images, for qT; map pre-contrast (top) and T;W post-contrast

(bottom). Bars represent the difference in ICC point estimates (after applying Fisher’s Z-transformation), and error bars

represent 95% Cls. Features are colour coded according to their class. Black stars and bold fonts indicate features where

ICCs from non-normalised and normalised images are significantly different.

1scussion

4.D

Evaluating repeatability is a key step in the technical validation of imaging biomarkers,
which itself is essential for translating such biomarkers into clinical practice [4]. In the

context of radiomics, repeatability is an important factor when determining which features
should be included in a predictive model. For example, if a feature has poor single site

repeatability it is unlikely that it will have good multi-centre reproducibility, limiting its
utility in a model. Conversely, good single site repeatability can be seen as a necessary,

but not sufficient, condition for utility, as multi-centre reproducibility would still need
to be demonstrated. As such, feature repeatability is a prerequisite for contributing to a
robust predictive signature, or use as a biomarker of treatment response. Importantly, a

feature’s repeatability according to a particular metric may suggest its suitability for a

particular use case, with a high ICC implying good performance when used as a diagnostic

and/or predictive biomarker, whereas a low RC would be required when using a feature
as a biomarker of treatment response. Note that what is considered ‘low” in this context
is dependent on the magnitude of the expected biomarker change, which needs to be
considered alongside RC when evaluating the relative utility of features as biomarkers
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of change. Appropriately evaluating feature repeatability has practical consequences, as
sample sizes and statistical power can be influenced by the repeatability of the biomarker;
for example, a study using as a biomarker a feature with low repeatability would require a
larger sample size than if a feature with high repeatability was used [28]. By assessing MR
radiomic feature repeatability using two different metrics in a relatively large clinical cohort,
investigating the effects of MR sequence, image normalisation, and assumptions about
feature distributions, this work contributes to the technical validation of radiomic features.
By focussing on liver metastases, and using quantitative T; maps and post-contrast T{W
images, this work complements existing repeatability studies using other MR sequences in
other tumour types [12,14-20].

Evaluating repeatability using the metrics described in this work requires features
to follow a Gaussian distribution, though this assumption is often not confirmed. This
work found most radiomic feature distributions to be non-Gaussian, questioning the
appropriateness of directly applying ICC or RC calculations. While ICCs are relatively
robust to this assumption being invalid, it can make a significant difference for some
radiomic features. As such, we suggest that examining feature distributions should form
part of radiomic analyses, with results here demonstrating that Box-Cox transformations
can be an effective way of obtaining Gaussian feature distributions. It is important to note
that performing the Box—Cox transformation will alter some feature repeatability metrics
significantly.

Across all datasets, Voxel Volume and Mesh Volume were the most repeatable features.
As a class, Shape features tended to have the highest ICCs, consistent with observations
on ToW images of cervical tumours [15], quantitative diffusion kurtosis maps of prostate
tumours [20], and quantitative apparent diffusion coefficient maps of liver metastases and
ovarian tumours [19]. For ToW images in rectal cancer, Gourtsoyianni et al. note that
Gray Level Size Zone Matrix and Neighbouring Gray Tone Difference Matrix features
tended to have poor repeatability [12]. In the present work, the features with the lowest
ICCs on ToW were from the Gray Level Size Zone Matrix, while Neighbouring Gray Tone
Difference Matrix features performed reasonably well (ICCs > 0.77). Gourtsoyianni et al.
did specifically note that Coarseness was an exception in terms of Neighbouring Gray
Tone Difference Matrix features, which is consistent with the present work where it had
ICC > 0.93 for all sequences. Of the nine non-shape features with ICC > 0.90 across all
datasets in the present work, four (Energy, Total Energy, Run Length Non Uniformity,
and Coarseness) were also found to have excellent repeatability and reproducibility in a
phantom study using T,W images [36], providing further evidence of their robustness;
note that in the phantom study these features tended to come from images filtered prior to
feature extraction, while filtering was not investigated in the present work. Along with
differences in filtering, the variation between studies in terms of MR sequence, image
normalisation, and tumour type, make it challenging to directly compare repeatabilities
across studies. Even comparing across the same type of MR sequence can be confounded by
different studies using different parameters, with radiomic features showing sensitivity to
echo time and repetition time in To,W acquisitions [36]. In the present work, the use of zero-
filling during image reconstruction should also be noted, as this will tend to reduce intra-
lesion heterogeneity in signal intensities, and hence impact many radiomic features. As the
use of zero-filling differed between acquisitions, this will contribute to feature differences
across sequences, in addition to the inherent MR weighting. Although not considered
here, the reconstructed images could be resampled to achieve isotropic voxel sizes, which
would be expected to impact texture features extracted in 3D. These points should also be
noted in relation to multi-centre and multi-vendor reproducibility assessments, as precise
acquisition and reconstruction details may vary between scanners, potentially impacting
radiomic features. Further work is needed to understand the benefits of harmonising MR
acquisitions and reconstructions for improving radiomic feature reproducibility, relative to
post-acquisition harmonisation approaches [37]. Such approaches are especially relevant
for retrospective studies where prospective acquisition harmonisation is not possible, and



Cancers 2021, 13, 240

17 of 21

include the use of neural networks for pre-processing acquired images prior to feature
extraction [37], and methods such as ComBat for mitigating the effects of feature variability
related to specific centres or scanners [38].

Also note that in the present study, the nine non-shape features with ICC > 0.90 all
showed strong correlations with Mesh Volume, which may contribute to their repeatability.
Correlations between radiomic features and tumour volume have been reported previ-
ously [39]; indeed, it has been noted that using repeatability to guide feature selection may
result in radiomic signatures which essentially reflect tumour volume [39]. As such, care
must be taken to evaluate repeatability along with feature correlations.

In addition to their generally high ICCs, Shape features also tended to show the lowest
variability in ICCs across sequences; this is to be expected as Shape features are insensitive
to normalisation, and the same masks were used for T1-weighted images and qT; maps. For
a more comprehensive evaluation of Shape features, inter-observer variability in contouring
could also be evaluated, and compared with test-retest repeatability; this would provide
analogous data to that presented perviously for T,W images of cervical tumours [15],
where Shape features had high ICCs for both test-retest repeatability (all but one feature
having ICC > 0.9) and inter-observer reproducibility (all features having ICC > 0.9). The
low inter-sequence variability in Shape ICCs observed here may also imply that Shape
feature repeatability does not strongly depend on MR image contrast; note however that
RC values for Shape features tended to show more variation across sequences, implying
that the contrast can impact repeatability. (This effect of contrast can only stem from
the fact that tumours may be more readily distinguished from surrounding tissue on
some sequences, facilitating more repeatable delineation; once contours are defined, Shape
features are independent of signal intensities). In general, ICCs and RCs provide different
information about feature repeatability, and the choice of metric needs to be considered in
a study-specific context. Practically, this means that a given feature from a given sequence
may have favourable repeatability characteristics for one application (for example, as a
diagnostic or predictive biomarker), but less favourable characteristics for another (for
example, as a biomarker of treatment response).

The ICCs of non-shape features tended to exhibit greater sensitivity to sequence and
normalisation, particularly for Skewness, Cluster Shade, Small Area Emphasis and Size
Zone Non-Uniformity Normalized. As such, it may be expected that the repeatability of
such features may vary more across different studies, if different MR acquisitions and
normalisation approaches are used, necessitating study-specific repeatability analyses.
Furthermore, unlike for RC, a feature’s ICC depends on the inter-subject variability of that
feature [28], meaning that repeatability as evaluated from ICCs may vary across different
cohorts, even for the same sequence and normalisation, further motivating repeatability
assessments on a per-study basis using the most appropriate metric for that study.

When comparing ICCs from non-normalised T;W and ToW pre-contrast images, First
Order features tended to show better repeatability on ToW. This could reflect easier lesion
definition on To,W images, leading to more repeatable signal intensity distributions, or
could be due to T{W signals having sensitivity to genuine changes in the lesions between
scans, resulting in apparently poorer repeatability. Normalisation tended to improve
repeatability for both sequences, with ICCs increasing significantly in 29% and 13% of
features for T{W and T, W, respectively. This improvement with normalisation would be
expected if repeated scans differed by a uniform scaling factor. However, it should not be
assumed that this is the only difference, as non-uniformities may be present that could
vary between visits, for example through By or B; inhomogeneities [40]. Although the
differences are not dramatic, these ICC results suggest a slight preference of T,W over T{W
images for obtaining repeatable radiomic features in this dataset.

As image signal intensities have no inherent units in MR, it cannot be assumed that
they can be directly compared across different sequences, or even across repeated acqui-
sitions of the same sequence. A key motivation in the use of quantitative MR techniques
is their ability to yield biomarkers which are independent of absolute image signal inten-
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sities. However, comparing First Order features between non-normalised T{W and qT;
pre-contrast images showed no significant differences in repeatability, implying that signal
intensities are as comparable as quantitative T; values; note that this must be considered
in the context of the present study, where a single scanner was used, with the same ac-
quisitions performed for all repeat scans. While quantitative values may be expected to
be more repeatable than signal intensities, quantitative maps may be more sensitive to
motion, given that T; is here quantified through modelling signals across three separate
acquisitions. Radiomic features will in general be affected by motion artefacts, which
are especially relevant for free-breathing liver acquisitions, and these effects may differ
between weighted and quantitative images. As applying normalisation had relatively little
effect on repeatabilities from qT; maps, but tended to improve those from T;W images,
the use of normalisation resulted in T;W images yielding higher ICCs than qT; maps
for all First Order features, with eight of these being significantly higher. This highlights
the different effects of normalisation on weighted and quantitative images. It could be
argued that normalisation is more appropriate for weighted images, as it aims to correct
for potential scaling differences between signal intensities, while quantitative maps are
insensitive to such scalings. Contrary to this, it has been reported that normalisation
improved repeatability for quantitative maps (the apparent diffusion coefficient), but not
for weighted images (T, W) [17]. Further work is therefore needed to fully understand the
use of quantitative maps, as opposed to weighted images, as radiomics inputs. This may
be especially important for multi-centre studies, where comparison of signal intensities
across scanners is likely to be more problematic than for a single scanner, and quantitative
maps may be expected to yield more reproducible features. Although only a simple linear
normalisation has been used in the present work, it should be noted that there are many
approaches that could be employed [41-44]. The issue of normalisation is also especially
relevant when seeking to compare radiomic features over time, for example in assessing
treatment response; here, the use of normalisation could confound genuine signal intensity
changes. Given the conflicting results and importance of this step, further investigation
of normalisation techniques, along with the use of quantitative maps, is warranted. The
potential for using normalised voxel sizes could also be investigated, and may be especially
relevant for comparisons between anatomical images and quantitative maps, given that
the former would typically be acquired at a higher resolution.

Although most differences are not statistically significant, there is a tendency for
higher ICCs on T{W post-contrast images than on T{W pre-contrast images. This can-
not be explained by improved lesion conspicuity post-contrast, as the same masks were
used for both sequences and were drawn on pre-contrast images. The trend for better
repeatability could be related to a higher signal-to-noise ratio post-contrast, due to T; short-
ening, or could reflect an increased inter-subject variability due to differences in contrast
agent uptake. Of the four sequences assessed here, T{W post-contrast features were least
affected by normalisation, with no features showing significant differences. Note that
throughout this study, statistical significance was judged based on a Bonferroni-adjusted
p-value which accounted for the dominant source of multiple comparisons, namely, the
number of features extracted. Given the exploratory nature of the investigation, further
adjustments for comparisons between different sequences were not included; these could
be incorporated into future prospective comparison studies to lower the threshold for
determining significance.

The main limitations of the study are that repeatability was assessed over a period of
2-7 days, and that motion correction techniques were not applied. By having up to a week
between repeat scans for some patients, it is possible that tumours may have undergone
genuine macroscopic or microscopic changes, which radiomic features may be sensitive
to. This could lead to an underestimate of feature repeatability, and could be mitigated
by performing test-retest studies with features evaluated from scans performed minutes
apart [15,16,20]; note however that this would not be feasible for T{W post-contrast scans,
as the contrast agent administration cannot be repeated in such a short time window. As
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liver motion could affect the comparison between different sequences, future work could
investigate the impact of applying motion correction before extracting radiomic features
from multiple sequences. Finally, in the context of biomarker validation, multi-centre and
multi-vendor reproducibility is an essential next step. Comparison across scanners may be
especially important for radiomic features which directly depend on signal intensities, as
these are unlikely to be directly comparable across scanners. While the use of quantitative
parametric maps removes the dependence on signal intensities, quantitative T; values in
the human brain have been reported to differ between vendors [45], indicating that there is
also a need for inter-vendor comparisons of radiomic features from quantitative maps.

5. Conclusions

Radiomic features from colorectal cancer liver metastases exhibit a wide range of
repeatabilities. Some, but not all, of these can be significantly affected by the choice of MR
sequence, image quantitation, use of contrast agent, and image normalisation. The presence,
magnitude and direction of significant changes due to these factors is not readily predictable
without conducting such an analysis in a test cohort, as performed here for one study
scenario. The choice of repeatability metric can influence conclusions regarding feature
repeatability, and the study context should be used to determine the most appropriate
metric. These general principles are likely to extend to other MR studies using different
sequences, suggesting that feature-specific repeatability, from specific combinations of MR
sequence and pre-processing steps, should be evaluated with the most appropriate metric
in order to select robust radiomic features as biomarkers in specific studies.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2072-669
4/13/2/240/s1, Figure S1, example masks for TIW pre-contrast, qT'1 map pre-contrast, and TIW
pre-contrast subset; Figures S2-5, feature histograms, Box-Cox normality plots, transformed feature
histograms, and QQ-plots for TIW pre-contrast, T2 pre-contrast, qT1 map pre-contrast, and TIW
post-contrast; Figure S6, effect of applying Box-Cox transforms to feature distributions, for qT1
map pre-contrast and T1W post-contrast; Figures S7-14, Bland-Altman plots with RC values for all
features and datasets; Figures S15-20, plots of RC against ICC for each feature class except Shape.

Author Contributions: Conceptualization, ].P.B.O.; methodology, D.J.M., N.P,, G.J.M.P. and ].P.B.O.;
software, D.J.M. and S.C.; validation, D.J.M., R.A.L., G.J.M.P. and ].P.B.O.; formal analysis, D.].M.,
N.P, S.C., and J.P.B.O.; investigation, D.].M. and ].P.B.O.; data curation, D.J]M., R A.L., YW., G].M.P,
G.CJ., and J.P.B.O.; writing—original draft preparation, D.J.M. and ]J.P.B.O.; writing—review and
editing, all authors; visualization, D.J.M.; supervision, ].P.B.O.; funding acquisition, G.J.M.P,, G.C].
and J.P.B.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Cancer Research UK Accelerator Award C19221/A28683 (to
JOC), Cancer Research UK Advanced Clinician Scientist Fellowship C19221/A22746 (to JOC), and
Cancer Research UK Manchester Cancer Research Centre C147/A18083 (to GJ). This study represents
independent research supported by the National Institute for Health Research (NIHR) Biomedical
Research Centre at The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research,
London and by the Manchester NIHR Biomedical Research Centre. Original MRI data were acquired
through an unrestricted grant from Roche. The funders had no role in the design of the study, in the
collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to
publish the results.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the North West - Greater Manchester Central Research
Ethics Committee (REC 09/H1008/99), start date 25 June 2009.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Extracted radiomic features can be found at https://gitlab.com/
manchester_gbi/manchester_gbi_public/radiomics_repeatability.

Acknowledgments: The authors thank Hitesh B. Mistry and Martin A. Stoffel for useful discussions.


https://www.mdpi.com/2072-6694/13/2/240/s1
https://www.mdpi.com/2072-6694/13/2/240/s1
https://gitlab.com/manchester_qbi/manchester_qbi_public/radiomics_repeatability
https://gitlab.com/manchester_qbi/manchester_qbi_public/radiomics_repeatability

Cancers 2021, 13, 240 20 of 21

Conflicts of Interest: Geoff ].M. Parker has a shareholding and part time appointment and director-
ship at Bioxydyn Ltd. All other authors declare no competing interests.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; Van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard,
R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J.
Cancer 2012, 48, 441-446. [CrossRef] [PubMed]

Aerts, HJ.W.L,; Velazquez, E.R.; Leijenaar, R T.H.; Parmar, C.; Grossmann, P.; Cavalho, S.; Bussink, J.; Monshouwer, R.; Haibe-
Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat.
Commun. 2014, 5, 4006. [CrossRef] [PubMed]

Gillies, R.J.; Kinahan, PE.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563-577.
[CrossRef] [PubMed]

O’Connor, ].P.B.; Aboagye, E.O.; Adams, ].E.; Aerts, H.J.W.L.; Barrington, S.E; Beer, A.J.; Boellaard, R.; Bohndiek, S.E.; Brady, M.;
Brown, G.; et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol. 2017, 14, 169-186. [CrossRef]

O’Connor, J.P.B. Rethinking the role of clinical imaging. eLife 2017, 6, e30563. [CrossRef]

Lambin, P.; Leijenaar, R.T.H.; Deist, TM.; Peerlings, J.; De Jong, E.E.C.; Van Timmeren, J.; Sanduleanu, S.; Larue, RT.H.M.; Even,
A.J.G.; Jochems, A ; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol.
2017, 14, 749-762. [CrossRef]

Fornacon-Wood, I.; Faivre-Finn, C.; O’Connor, J.P.B.; Price, G.J. Radiomics as a personalized medicine tool in lung cancer:
Separating the hope from the hype. Lung Cancer 2020, 146, 197-208. [CrossRef]

Sun, R.; Limkin, E.J.; Vakalopoulou, M.; Dercle, L.; Champiat, S.; Han, S.R.; Verlingue, L.; Brandao, D.; Lancia, A.; Ammari, S.;
et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: An
imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018, 19, 1180-1191. [CrossRef]

Sullivan, D.C.; Obuchowski, N.A.; Kessler, L.G.; Raunig, D.L.; Gatsonis, C.; Huang, E.P.; Kondratovich, M.; McShane, L.M.;
Reeves, A.P,; Barboriak, D.P; et al. Metrology Standards for Quantitative Imaging Biomarkers. Radiology 2015, 277, 813-825.
[CrossRef]

Fournier, L.; Costaridou, L.; Bidaut, L.; Michoux, N.; Lecouvet, E; de Geus-Oei, L.; Boellaard, R.; Oprea-Lager, D.E.; Obuchowski,
N.; Caroli, A.; et al. Incorporating radiomics into clinical trials: Expert consensus on considerations for data-driven compared to
biologically-driven quantitative biomarkers. Eur. Radiol. 2020, in press.

Traverso, A.; Wee, L.; Dekker, A_; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. |.
Radiat. Oncol. Biol. Phys. 2018, 102, 1143-1158. [CrossRef] [PubMed]

Gourtsoyianni, S.; Doumou, G.; Prezzi, D.; Taylor, B.; Stirling, J.J.; Taylor, N.J.; Siddique, M.; Cook, G.J.R.; Glynne-Jones, R.; Goh,
V. Primary rectal cancer: Repeatability of global and local-regional MR imaging texture features. Radiology 2017, 284, 552-561.
[CrossRef] [PubMed]

Kickingereder, P.; Neuberger, U.; Bonekamp, D.; Piechotta, P.L.; Gotz, M.; Wick, A.; Sill, M.; Kratz, A.; Shinohara, R.T.; Jones,
D.T.W,; et al. Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging
characteristics in patients with glioblastoma. Neuro-Oncology 2018, 20, 848-857. [CrossRef] [PubMed]

Reischauer, C.; Patzwahl, R.; Koh, D.M.; Froehlich, ].M.; Gutzeit, A. Texture analysis of apparent diffusion coefficient maps for
treatment response assessment in prostate cancer bone metastases—A pilot study. Eur. J. Radiol. 2018, 101, 184-190. [CrossRef]
Fiset, S.; Welch, M.L.; Weiss, J.; Pintilie, M.; Conway, ].L.; Milosevic, M.; Fyles, A.; Traverso, A.; Jaffray, D.; Metser, U.; et al.
Repeatability and reproducibility of MRI-based radiomic features in cervical cancer. Radiother. Oncol. 2019, 135, 107-114.
[CrossRef]

Mahon, R.N.; Hugo, G.D.; Weiss, E. Repeatability of texture features derived from magnetic resonance and computed tomography
imaging and use in predictive models for non-small cell lung cancer outcome. Phys. Med. Biol. 2019, 64, 145007. [CrossRef]
Schwier, M.; van Griethuysen, J.; Vangel, M.G.; Pieper, S.; Peled, S.; Tempany, C.; Aerts, H.J.W.L.; Kikinis, R.; Fennessy, EM.;
Fedorov, A. Repeatability of Multiparametric Prostate MRI Radiomics Features. Sci. Rep. 2019, 9, 9441. [CrossRef]

Barrett, T.; Lawrence, E.M.; Priest, A.N.; Warren, A.Y.; Gnanapragasam, V.J.; Gallagher, FA ; Sala, E. Repeatability of diffusion-
weighted MRI of the prostate using whole lesion ADC values, skew and histogram analysis. Eur. ]. Radiol. 2019, 110, 22-29.
[CrossRef]

Peerlings, J.; Woodruff, H.C.; Winfield, ]. M.; Ibrahim, A.; Van Beers, B.E.; Heerschap, A.; Jackson, A.; Wildberger, ].E.; Mottaghy,
EM.; DeSouza, N.M.; et al. Stability of radiomics features in apparent diffusion coefficient maps from a multi-centre test-retest
trial. Sci. Rep. 2019, 9, 4800. [CrossRef]

Merisaari, H.; Taimen, P.; Shiradkar, R.; Ettala, O.; Pesola, M.; Saunavaara, J.; Bostrom, P.J.; Madabhushi, A.; Aronen, H.J.; Jambor,
I. Repeatability of radiomics and machine learning for DWI: Short-term repeatability study of 112 patients with prostate cancer.
Magn. Reson. Med. 2020, 83, 2293-2309. [CrossRef]

Shiri, I.; Hajianfar, G.; Sohrabi, A.; Abdollahi, H.P.,; Shayesteh, S.; Geramifar, P.; Zaidi, H.; Oveisi, M.; Rahmim, A. Repeatability of
radiomic features in magnetic resonance imaging of glioblastoma: Test-retest and image registration analyses. Med. Phys. 2020,
47,4265-4280. [CrossRef] [PubMed]


http://doi.org/10.1016/j.ejca.2011.11.036
http://www.ncbi.nlm.nih.gov/pubmed/22257792
http://dx.doi.org/10.1038/ncomms5006
http://www.ncbi.nlm.nih.gov/pubmed/24892406
http://dx.doi.org/10.1148/radiol.2015151169
http://www.ncbi.nlm.nih.gov/pubmed/26579733
http://dx.doi.org/10.1038/nrclinonc.2016.162
http://dx.doi.org/10.7554/eLife.30563
http://dx.doi.org/10.1038/nrclinonc.2017.141
http://dx.doi.org/10.1016/j.lungcan.2020.05.028
http://dx.doi.org/10.1016/S1470-2045(18)30413-3
http://dx.doi.org/10.1148/radiol.2015142202
http://dx.doi.org/10.1016/j.ijrobp.2018.05.053
http://www.ncbi.nlm.nih.gov/pubmed/30170872
http://dx.doi.org/10.1148/radiol.2017161375
http://www.ncbi.nlm.nih.gov/pubmed/28481194
http://dx.doi.org/10.1093/neuonc/nox188
http://www.ncbi.nlm.nih.gov/pubmed/29036412
http://dx.doi.org/10.1016/j.ejrad.2018.02.024
http://dx.doi.org/10.1016/j.radonc.2019.03.001
http://dx.doi.org/10.1088/1361-6560/ab18d3
http://dx.doi.org/10.1038/s41598-019-45766-z
http://dx.doi.org/10.1016/j.ejrad.2018.11.014
http://dx.doi.org/10.1038/s41598-019-41344-5
http://dx.doi.org/10.1002/mrm.28058
http://dx.doi.org/10.1002/mp.14368
http://www.ncbi.nlm.nih.gov/pubmed/32615647

Cancers 2021, 13, 240 21 of 21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.
34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

Fiz, F; Vigano, L.; Gennaro, N.; Costa, G.; La Bella, L.; Boichuk, A.; Cavinato, L.; Sollini, M.; Politi, L.S.; Chiti, A.; et al. Radiomics
of liver metastases: A systematic review. Cancers 2020, 12, 2881. [CrossRef]

Jayson, G.C.; Zhou, C.; Backen, A.; Horsley, L.; Marti-Marti, K.; Shaw, D.; Mescallado, N.; Clamp, A.; Saunders, M.P,; Valle, ] W,;
et al. Plasma Tie2 is a tumor vascular response biomarker for VEGF inhibitors in metastatic colorectal cancer. Nat. Commun.
2018, 9, 4672. [CrossRef] [PubMed]

Fram, E.K.; Herfkens, R.].; Johnson, G.A.; Glover, G.H.; Karis, ].P.; Shimakawa, A.; Perkins, T.G.; Pelc, N.J. Rapid calculation of T1
using variable flip angle gradient refocused imaging. Magn. Reson. Imaging 1987, 5, 201-208. [CrossRef]

Van Griethuysen, ].J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V,; Beets-Tan, R.G.H.; Fillion-Robin, ].C.; Pieper,
S.; Aerts, HJ.W.L. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, e104—e107.
[CrossRef]

Fornacon-Wood, I.; Mistry, H.; Ackermann, C.J.; Blackhall, F.; McPartlin, A.; Faivre-Finn, C.; Price, G.J.; O’Connor, J.P.B. Reliability
and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur. Radiol. 2020,
30, 6241-6250. [CrossRef]

McGraw, K.O.; Wong, S.P. Forming Inferences about Some Intraclass Correlation Coefficients. Psychol. Methods 1996, 1, 30—46.
[CrossRef]

Weir, ].P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. . Strength Cond. Res. 2005,
19, 231-240.

Liljequist, D.; Elfving, B.; Roaldsen, K.S. Intraclass correlation—A discussion and demonstration of basic features. PLoS ONE
2019, 14, €0219854. [CrossRef]

Barnhart, H.X.; Barboriak, D.P. Applications of the repeatability of quantitative imaging biomarkers: A review of statistical
analysis of repeat data sets. Transl. Oncol. 2009, 2, 231-235. [CrossRef]

Raunig, D.L.; McShane, L.M.; Pennello, G.; Gatsonis, C.; Carson, PL.; Voyvodic, ].T.; Wahl, R.L.; Kurland, B.E; Schwarz, A.].;
Gonen, M; et al. Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment. Stat.
Methods Med. Res. 2015, 24, 27-67. [CrossRef] [PubMed]

Ionan, A.C.; Polley, M.Y.C.; McShane, L.M.; Dobbin, K.K. Comparison of confidence interval methods for an intra-class correlation
coefficient (ICC). BMC Med Res. Methodol. 2014, 14, 121. [CrossRef] [PubMed]

Box, G.E.P; Cox, D.R. An analysis of transformations. . R. Stat. Soc. Ser. B 1964, 26, 211-252. [CrossRef]

Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser,
W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261-272.
[CrossRef]

Donner, A.; Zou, G. Testing the equality of dependent intraclass correlation coefficient. Statistician 2002, 51, 367-379. [CrossRef]
Bianchini, L.; Santinha, J.; Lougdo, N.; Figueiredo, M.; Botta, F.; Origgi, D.; Cremonesi, M.; Cassano, E.; Papanikolaou, N.;
Lascialfari, A. A multicenter study on radiomic features from T-weighted images of a customized MR pelvic phantom setting
the basis for robust radiomic models in clinics. Magn. Reson. Med. 2020, 85, 1713-1726. [CrossRef]

Da-ano, R.; Visvikis, D.; Hatt, M. Harmonization strategies for multicenter radiomics investigations. Phys. Med. Biol. 2020.
[CrossRef]

Da-ano, R.; Masson, L; Lucia, F; Doré, M.; Robin, P.; Alfieri, J.; Rousseau, C.; Mervoyer, A.; Reinhold, C.; Castelli, J.; et al.
Performance comparison of modified ComBat for harmonization of radiomic features for multicenter studies. Sci. Rep. 2020,
10, 10248. [CrossRef]

Welch, M.L.; McIntosh, C.; Haibe-Kains, B.; Milosevic, M.F.; Wee, L.; Dekker, A.; Huang, S.H.; Purdie, T.G.; O’Sullivan, B.; Aerts,
H.J.W.L,; et al. Vulnerabilities of radiomic signature development: The need for safeguards. Radiother. Oncol. 2019, 130, 2-9.
[CrossRef]

Belaroussi, B.; Milles, J.; Carme, S.; Zhu, Y.M.; Benoit-Cattin, H. Intensity non-uniformity correction in MRI: Existing methods
and their validation. Med Image Anal. 2006, 10, 234-246. [CrossRef]

Nydul, L.G.; Udupa, J.K. On standardizing the MR image intensity scale. Magn. Reson. Med. 1999, 42, 1072-1081. [CrossRef]
Nydul, L.G.; Udupa, ] K.; Zhang, X. New variants of a method of MRI scale standardization. IEEE Trans. Med Imaging 2000,
19, 143-150. [CrossRef] [PubMed]

Shah, M.; Xiao, Y.; Subbanna, N.; Francis, S.; Arnold, D.L.; Collins, D.L.; Arbel, T. Evaluating intensity normalization on MRIs of
human brain with multiple sclerosis. Med. Image Anal. 2011, 15, 267-282. [CrossRef] [PubMed]

Shinohara, R.T.; Sweeney, E.M.; Goldsmith, J.; Shiee, N.; Mateen, EJ.; Calabresi, P.A.; Jarso, S.; Pham, D.L.; Reich, D.S.; Crainiceanu,
C.M. Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin. 2014, 6, 9-19. [CrossRef]

Lee, Y.; Callaghan, ML.F,; Acosta-Cabronero, J.; Lutti, A.; Nagy, Z. Establishing intra- and inter-vendor reproducibility of T1
relaxation time measurements with 3T MRI. Magn. Reson. Med. 2019, 81, 454-465. [CrossRef]


http://dx.doi.org/10.3390/cancers12102881
http://dx.doi.org/10.1038/s41467-018-07174-1
http://www.ncbi.nlm.nih.gov/pubmed/30405103
http://dx.doi.org/10.1016/0730-725X(87)90021-X
http://dx.doi.org/10.1158/0008-5472.CAN-17-0339
http://dx.doi.org/10.1007/s00330-020-06957-9
http://dx.doi.org/10.1037/1082-989X.1.1.30
http://dx.doi.org/10.1371/journal.pone.0219854
http://dx.doi.org/10.1593/tlo.09268
http://dx.doi.org/10.1177/0962280214537344
http://www.ncbi.nlm.nih.gov/pubmed/24919831
http://dx.doi.org/10.1186/1471-2288-14-121
http://www.ncbi.nlm.nih.gov/pubmed/25417040
http://dx.doi.org/10.1111/j.2517-6161.1964.tb00553.x
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1111/1467-9884.00324
http://dx.doi.org/10.1002/mrm.28521
http://dx.doi.org/10.1088/1361-6560/aba798
http://dx.doi.org/10.1038/s41598-020-66110-w
http://dx.doi.org/10.1016/j.radonc.2018.10.027
http://dx.doi.org/10.1016/j.media.2005.09.004
http://dx.doi.org/10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
http://dx.doi.org/10.1109/42.836373
http://www.ncbi.nlm.nih.gov/pubmed/10784285
http://dx.doi.org/10.1016/j.media.2010.12.003
http://www.ncbi.nlm.nih.gov/pubmed/21233004
http://dx.doi.org/10.1016/j.nicl.2014.08.008
http://dx.doi.org/10.1002/mrm.27421

	Introduction
	Materials and Methods
	Image Acquisition and ROI Definition
	Radiomic Feature Extraction
	Repeatability Analysis and Statistical Comparison

	Results
	Effect of Box–Cox Transformations
	ICC and RC Overview
	Comparing MR Sequences
	T1W Pre-Contrast and T1W Pre-Contrast
	T1W Pre-Contrast and qT1 map Pre-Contrast
	T1W Pre- and Post-Contrast

	Effect of Normalisation
	Summary of Results

	Discussion
	Conclusions
	References

