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RNA sequencing-based single sample predictors of molecular
subtype and risk of recurrence for clinical assessment of
early-stage breast cancer
Johan Staaf 1✉, Jari Häkkinen 1, Cecilia Hegardt1, Lao H. Saal 1, Siker Kimbung 1, Ingrid Hedenfalk 1, Tonje Lien2,3,
Therese Sørlie 2,4, Bjørn Naume4,5, Hege Russnes2,3, Rachel Marcone6,7, Ayyakkannu Ayyanan 6, Cathrin Brisken 6,
Rebecka R. Malterling8, Bengt Asking8, Helena Olofsson9,10, Henrik Lindman11, Pär-Ola Bendahl 1, Anna Ehinger 1,12,
Christer Larsson13, Niklas Loman1,14, Lisa Rydén 15,16, Martin Malmberg 14, Åke Borg 1 and Johan Vallon-Christersson1✉

Multigene assays for molecular subtypes and biomarkers can aid management of early invasive breast cancer. Using RNA-
sequencing we aimed to develop single-sample predictor (SSP) models for clinical markers, subtypes, and risk of recurrence (ROR).
A cohort of 7743 patients was divided into training and test set. We trained SSPs for subtypes and ROR assigned by nearest-centroid
(NC) methods and SSPs for biomarkers from histopathology. Classifications were compared with Prosigna in two external cohorts
(ABiM, n= 100 and OSLO2-EMIT0, n= 103). Prognostic value was assessed using distant recurrence-free interval. Agreement
between SSP and NC for PAM50 (five subtypes) was high (85%, Kappa= 0.78) for Subtype (four subtypes) very high (90%,
Kappa= 0.84) and for ROR risk category high (84%, Kappa= 0.75, weighted Kappa= 0.90). Prognostic value was assessed as
equivalent and clinically relevant. Agreement with histopathology was very high or high for receptor status, while moderate for
Ki67 status and poor for Nottingham histological grade. SSP and Prosigna concordance was high for subtype (OSLO-EMIT0 83%,
Kappa= 0.73 and ABiM 80%, Kappa= 0.72) and moderate and high for ROR risk category (68 and 84%, Kappa= 0.50 and 0.70,
weighted Kappa= 0.70 and 0.78). Pooled concordance for emulated treatment recommendation dichotomized for chemotherapy
was high (85%, Kappa= 0.66). Retrospective evaluation suggested that SSP application could change chemotherapy
recommendations for up to 17% of postmenopausal ER+/HER2-/N0 patients with balanced escalation and de-escalation. Results
suggest that NC and SSP models are interchangeable on a group-level and nearly so on a patient level and that SSP models can be
derived to closely match clinical tests.
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INTRODUCTION
The majority of women with early-stage invasive breast cancer
(IBC) are candidates for adjuvant systemic treatment. Prognosis
and treatment decisions are routinely based on menopausal
status, disease burden, Nottingham histological grade (NHG), and
immunohistochemical (IHC) measurements of estrogen receptor
(ER), progesterone receptor (PR), human epidermal growth factor
receptor 2 (HER2), and the proliferation marker protein Ki67, as
well as the copy number of HER2 assessed by in situ hybridiza-
tion1. Diverse prognosis and unpredictable benefits of adjuvant
treatment are prominent in the large ER+/HER2- luminal
subgroups of breast cancer (BC). Here, overtreatment remains a
major clinical challenge, a cause of decreased quality of life, and a
high economic burden for the individual and society.
Multigene expression assays have in the past decades been

demonstrated to provide guidance in the selection of patients

with luminal disease for adjuvant chemotherapy in addition to
endocrine treatment, especially in postmenopausal patients2–4.
Whereas most multigene signatures are developed by the public
research community, clinical use has largely been restricted to
commercial implementations of individual signatures using
targeted assays5. These clinical tests are based on data from
mainly retrospective analyses of different patient cohorts, but also
on a few prospective clinical trials2,6. An important limitation of
current clinical multigene tests is their targeted design, providing
only a limited number of clinically useful outputs per analysis. In
this context, global mRNA sequencing (RNA-sequencing) may
provide a more generic solution, but current prediction models
lack validation.
One of the current targeted clinical multigene tests is the

Prosigna assay, which is based on the PAM50 molecular subtype
classification7, omitting the Normal-like subtype, and implemented

1Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, SE 22381 Lund, Sweden. 2Department of Cancer Genetics, Institute for Cancer
Research, Oslo University Hospital, POB 4953 Nydalen N-0424, Oslo, Norway. 3Department of Pathology, Oslo University Hospital, POB 4953 Nydalen N-0424, Oslo, Norway.
4Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. 5Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, POB 4953
Nydalen N-0424, Oslo, Norway. 6ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,
Switzerland. 7Swiss Institute of Bioinformatics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1005 Lausanne, Switzerland. 8Department of Surgery,
Region Jönköping County, Jönköping, Sweden. 9Department of Clinical Pathology, Akademiska Hospital, Uppsala, Sweden. 10Department of Pathology, Centre for Clinical
Research of Uppsala University, Vastmanland´s Hospital Västerås, Västerås, Sweden. 11Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala,
Sweden. 12Department of Genetics and Pathology, Laboratory Medicine, Region Skåne, Lund, Sweden. 13Division of Translational Cancer Research, Department of Laboratory
Medicine, Lund University, Lund, Sweden. 14Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden. 15Division of Surgery,
Department of Clinical Sciences, Lund University, Lund, Sweden. 16Department of Surgery and Gastroenterology, Skåne University Hospital Malmö, Malmö,
Sweden. ✉email: johan.staaf@med.lu.se; johan.vallon-christersson@med.lu.se

www.nature.com/npjbcancer

Published in partnership with the Breast Cancer Research Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41523-022-00465-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41523-022-00465-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41523-022-00465-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41523-022-00465-3&domain=pdf
http://orcid.org/0000-0001-5254-5115
http://orcid.org/0000-0001-5254-5115
http://orcid.org/0000-0001-5254-5115
http://orcid.org/0000-0001-5254-5115
http://orcid.org/0000-0001-5254-5115
http://orcid.org/0000-0002-8466-9179
http://orcid.org/0000-0002-8466-9179
http://orcid.org/0000-0002-8466-9179
http://orcid.org/0000-0002-8466-9179
http://orcid.org/0000-0002-8466-9179
http://orcid.org/0000-0002-0815-1896
http://orcid.org/0000-0002-0815-1896
http://orcid.org/0000-0002-0815-1896
http://orcid.org/0000-0002-0815-1896
http://orcid.org/0000-0002-0815-1896
http://orcid.org/0000-0002-7001-8367
http://orcid.org/0000-0002-7001-8367
http://orcid.org/0000-0002-7001-8367
http://orcid.org/0000-0002-7001-8367
http://orcid.org/0000-0002-7001-8367
http://orcid.org/0000-0002-6840-3397
http://orcid.org/0000-0002-6840-3397
http://orcid.org/0000-0002-6840-3397
http://orcid.org/0000-0002-6840-3397
http://orcid.org/0000-0002-6840-3397
http://orcid.org/0000-0002-5995-2319
http://orcid.org/0000-0002-5995-2319
http://orcid.org/0000-0002-5995-2319
http://orcid.org/0000-0002-5995-2319
http://orcid.org/0000-0002-5995-2319
http://orcid.org/0000-0003-2496-0025
http://orcid.org/0000-0003-2496-0025
http://orcid.org/0000-0003-2496-0025
http://orcid.org/0000-0003-2496-0025
http://orcid.org/0000-0003-2496-0025
http://orcid.org/0000-0002-6857-3230
http://orcid.org/0000-0002-6857-3230
http://orcid.org/0000-0002-6857-3230
http://orcid.org/0000-0002-6857-3230
http://orcid.org/0000-0002-6857-3230
http://orcid.org/0000-0001-8862-1845
http://orcid.org/0000-0001-8862-1845
http://orcid.org/0000-0001-8862-1845
http://orcid.org/0000-0001-8862-1845
http://orcid.org/0000-0001-8862-1845
http://orcid.org/0000-0001-9225-7396
http://orcid.org/0000-0001-9225-7396
http://orcid.org/0000-0001-9225-7396
http://orcid.org/0000-0001-9225-7396
http://orcid.org/0000-0001-9225-7396
http://orcid.org/0000-0001-7515-3130
http://orcid.org/0000-0001-7515-3130
http://orcid.org/0000-0001-7515-3130
http://orcid.org/0000-0001-7515-3130
http://orcid.org/0000-0001-7515-3130
http://orcid.org/0000-0002-9500-8982
http://orcid.org/0000-0002-9500-8982
http://orcid.org/0000-0002-9500-8982
http://orcid.org/0000-0002-9500-8982
http://orcid.org/0000-0002-9500-8982
http://orcid.org/0000-0002-5793-132X
http://orcid.org/0000-0002-5793-132X
http://orcid.org/0000-0002-5793-132X
http://orcid.org/0000-0002-5793-132X
http://orcid.org/0000-0002-5793-132X
https://doi.org/10.1038/s41523-022-00465-3
mailto:johan.staaf@med.lu.se
mailto:johan.vallon-christersson@med.lu.se
www.nature.com/npjbcancer


on the Nanostring nCounter Analysis System. Along with the
PAM50 subtypes, Parker and colleagues also reported the
construction of risk of recurrence (ROR) scores based on subtype
correlations and a dichotomized tumor size variable7. The equation
for ROR and risk classification cutoff was constructed using a cohort
of predominantly node-negative patients not receiving adjuvant
systemic therapy and with long (median 9 years) clinical follow-up,
while prediction of preoperative chemotherapy sensitivity was
evaluated in patients based on pathological complete response7. A
re-engineered assay based on PAM50 classification and developed
for formalin-fixed, paraffin-embedded (FFPE) tissue was subse-
quently implemented on the Nanostring nCounter Analysis System
and validated as the clinical Prosigna test that reports four subtypes
and a ROR score8. Since the first report of the PAM50 subtypes and
ROR, the prognostic value of these classifications has repeatedly
been demonstrated9–12 and it has been shown that the Prosigna
test recapitulates and matches properties of the published PAM50
classifier and ROR model8,13.
Similar to most multigene expression models, PAM50 subtypes

and ROR rely on normalization to quantify gene expression
relative to a reference. New samples are assigned a class label by
measuring a distance in relative gene expression space to class
centroids and selecting the nearest one, i.e., nearest-centroid (NC)
classification. In order for the distance measure to be valid, new
samples must be normalized to appropriately adjust their gene
expression in relation to the used reference centroids. Failure to
do so can result in erroneous classification8,14–18 but when
performed correctly classifications are valid8. One strategy is to
use a standardized normalization of every new sample to be
classified. However, this requires the use of a uniform platform
consistent over time, which might be challenging, and methods
reliant on data transformations derived from other samples are
not considered true single-sample predictors.
An alternative strategy involves models built on rules that only

consider gene expression values from a single sample, indepen-
dent of normalization to reference samples, and was suggested
for absolute assignment of breast cancer intrinsic molecular
subtype (AIMS) by Paquet and Hallett14. Such models are built by
identifying a small set, e.g., <50, of gene-pair rules specific for the
respective class and based on the form: expression of gene
A > expression of gene B. New samples are classified by evaluating
these gene-pair rules and assigning a class by the largest number
of fulfilled rules or by a probability model14,19. Such models can
rightfully be termed single-sample predictors (SSPs) and have
been shown to be applicable for cancer classification problems
including distinct molecular subtypes14,20 as well as for continuous
variables such as cell proliferation signal20. Even though SSP
models have features attractive for clinical implementation, robust
implementations relevant for BC diagnostics and treatment
decision support are still lacking.
In the present study, we aimed to develop and benchmark RNA-

sequencing-based SSP models for conventional clinical BC
biomarkers, the four intrinsic molecular subtypes corresponding
to Prosigna subtypes, and ROR scores. To construct and evaluate
SSPs we used a uniformly accrued population-based cohort of BC
comprising 7868 patients from South Sweden analyzed by whole
transcriptome RNA-sequencing through the Swedish Cancerome
Analysis Network - Breast (SCAN-B, ClinicalTrials.gov ID
NCT02306096) study21–23. This unique cohort allows general-
ization and real-world side-by-side prognostic assessment of
developed predictors in clinically relevant subgroups with
available follow-up data. Moreover, retrospective analysis enables
estimation of the possible impact on therapy recommendations
from SSP-based molecular subtype and ROR in the clinical
decision-making. Finally, we performed benchmarking of our
developed SSPs against the Prosigna test in two smaller
independent clinical series. Taken together, we demonstrate that
appropriate sampling of fresh BC tissue, i.e., not FFPE, can be

effectively integrated into current clinical routine practices and
used for cost effective RNA-sequencing with different SSPs for
expression-based diagnostic and prognostic purposes. Thus, our
study moves the usefulness and role of RNA-sequencing one step
closer toward clinical implementation in BC and provides a
resource for continued exploration of expression-based BC
markers.

RESULTS
Study cohorts
During the inclusion period, 11,790 patients provided an informed
SCAN-B consent based on either a diagnosis of BC or a suspected
BC. In the current study, we included 7743 enrolled patients,
based on availability of tissue and RNA-sequencing data, with a
total of 8350 gene expression profiles (GEXs) generated from
obtained tissue specimens as described23 (including GEXs from
bilateral diagnoses, multiple patient specimens, and repeated
RNA-sequencing experiments). We assigned these patients to
three partly overlapping cohorts as shown in Table 1 and
Supplementary Fig. 1a: (i) a training set agnostic to variables
other than available GEX in order to maximize training size for SSP
models, i.e., including for instance multiple GEX profiles per
patient and irrespective of verified BC or suspected BC diagnosis,
(ii) a test set with 2412 early-stage IBC patients, and (iii) a larger
cohort with 6660 IBC patients, referred to as the early-stage
follow-up cohort hereon. As shown in Supplementary Fig. 1a, the
6660-patient early-stage follow-up cohort overlapped with both
the training set (partial overlap) and the test set, while the test set
is completely independent from the training set. The early-stage
follow-up cohort and hence the test set are non-redundant, i.e.,
included patients are represented by only one GEX profile. The
rationale for creation of the 6660-patient cohort, by use of clinical
data obtained from the Swedish National Quality Register for
Breast Cancer (NKBC) as outlined in Supplementary Fig. 1b, was to
form a cohort representative of the underlying IBC background
population of the catchment area of the SCAN-B study in Sweden
(Supplementary Fig. 1c). Based on the early-stage follow-up cohort
we could define a suitable independent test set for validation,
selecting the majority of patients diagnosed between 2010 and
2013 in order to prioritize long follow-up time (median of 8.1 years
for DRFi). In addition, the 6660-cohort also allowed us to naively
assess the potential impact of SSP classification on treatment
recommendations in a population representative manner. The
usage of the different SCAN-B derived data subsets as well as
external validation datasets is schematically shown in Fig. 1a.

Training SSP models for molecular subtypes of breast cancer
We trained an SSP model for five subtypes (SSP-PAM50) on the
subtype classes assigned by our extended NC classifier (NCN)
model for PAM50 subtype (NCN-PAM50) (Fig. 1b). In total, 5255
GEX profiles were used in the training: Basal-like n= 552, Her2-
enriched n= 528, Luminal A n= 2573, Luminal B n= 1377, and
Normal-like n= 225. The maximum overall agreement was
observed at 24 gene-rules per subtype (Supplementary Table 1).
Only marginal improvement was observed using >15 gene-pair
rules, consistent with previous reports14. The number of unique
genes (Entrez ID) represented in the selected model rules for all
five subtypes was 216, of which 27 overlap with the reported
PAM50 genes. The overall accuracy of SSP-PAM50 for predicting
NCN-PAM50 in the training set was 85%.
An SSP model with four subtypes (SSP-Subtype) that would

correspond to Prosigna subtypes was trained on NCN-Subtype
labels (Fig. 1b) from 5202 GEX profiles: Basal-like n= 578, Her2-
enriched n= 529, Luminal A n= 2718, and Luminal B n= 1377.
The maximum overall agreement in training was observed at 21
gene-rules per subtype (Supplementary Table 1), with only
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marginal improvement observed beyond 10 gene-pair rules. The
number of unique selected genes was 153, of which 27 genes
overlap with PAM50 genes. The overall agreement of SSP-Subtype
for predicting NCN-Subtype in the training set was 90%.

Concordance between SSP and NCN for molecular subtypes in
the independent test set
SSP models for molecular subtype were validated in our reserved
test set of 2412 patients (Fig. 1b). Overall agreement between SSP
and NCN classifications for PAM50 (five subtypes) was 85%
(Kappa= 0.78) (Fig. 2a and Table 2). The agreement is equivalent
to the corresponding estimate from the training set, indicating
that over-fitting has not occurred, and is higher than what was
reported in the original AIMS study (77%)14. The overall agreement
for PAM50 remains high (83%) even when 55 cases assigned as
unclassified by NCN are regarded as discordant. For SSP-PAM50,
the largest individual group of discordance is Luminal A by NCN
assigned as Normal-like by SSP (128/1212 cases, 11%), consistent
with findings in the original AIMS study14. Other similarities with
the original AIMS study include groups of Luminal B and Normal-
like by NCN assigned as Her2-enriched and Luminal A respectively
by SSP (Fig. 2a). However, for most groups of discordant
assignments, their respective fraction of the NCN defined subtype
is low by comparison. Overall agreement between SSP and the
original AIMS method for PAM50 subtype in our validation cohort
was 74% (Kappa= 0.63) and corresponding overall agreement
between NCN and AIMS was 70% (Kappa= 0.56). The majority of
the discordance occurred between Luminal A by AIMS vs. Luminal
B by SSP (41% of discordant cases) and Normal-like by AIMS vs.
Luminal A by SSP (36% of discordant cases).
The agreement between SSP and NCN for Subtype (four

subtypes) in the test set was 90% (Kappa= 0.84) (Fig. 2b and
Table 2). Here, the largest group of discordance in absolute
numbers was 52 of 1311 (4%) Luminal A by NCN assigned as

Table 1. Patient and clinical characteristics for SCAN-B study material.

Early-stage
follow-up
cohorta

Test setb Training setc

Patients 6660 2412 5250

Cases — — 5341

Samples — — 5711

GEX — — 5857

OAS mediand (ranged)
years follow-up

7.0 (0.2–11.2) 9.4 (1.1–11.2) 5.8 (0.2–11.9)

Events 1017 (15.3) 464 (19.2) 827 (14.8)

Unknown 3 0 286

DRFi mediand (ranged)
years follow-up

5.4 (0–10.9) 8.1 (0.1–10.9) 5.1 (0–11.1)

Events 379 (7.5) 184 (7.6) 270 (7.9)

Unknown 1626 3 2444

Age at diagnosis
median (range) years

65 (25–95) 65 (25–95) 65 (25–95)

≤50 years at
diagnosis

1373 (20.6) 499 (20.7) 1178 (21.7)

>50 years at
diagnosis

5287 (79.4) 1913 (79.3) 4255 (78.3)

Unknown 0 0 424

ER status

Positive 5678 (85.7) 2073 (86) 4367 (84.6)

Negative 946 (14.3) 337 (14) 792 (15.4)

Unknown 36 2 698

PR status

Positive 4714 (71.2) 1764 (73.2) 3568 (69.2)

Negative 1908 (28.8) 645 (26.8) 1588 (30.8)

Unknown 38 3 701

Node status

Positive 2310 (35.5) 877 (36.7) 1800 (36.1)

Negative 4194 (64.5) 1514 (63.3) 3184 (63.9)

Unknown 156 21 873

HER2 status

Positive 801 (12.6) 278 (11.6) 636 (13.6)

Negative 5571 (87.4) 2122 (88.4) 4051 (86.4)

Unknown 288 12 1170

Tumor size median
(range) mm

17 (0–250) 20 (0–115) 21 (0–250)

≤10mm 952 (14.6) 311 (13) 738 (15.1)

>10 ≤ 20mm 3382 (51.8) 1249 (52.3) 2445 (50.2)

>20mm 2196 (33.6) 830 (34.7) 1689 (34.7)

Unknown 130 22 985

Grade

1 1026 (16.1) 369 (15.7) 752 (15.9)

2 3185 (50.1) 1159 (49.2) 2387 (50.3)

3 2152 (33.8) 829 (35.2) 1602 (33.8)

Unknown 297 55 1116

Histological type

Ductal 5177 (78) 1936 (80.5) 3950 (76.6)

Lobular 917 (13.8) 311 (12.9) 733 (14.2)

Ductal/Lobular mixed 128 (1.9) 32 (1.3) 120 (2.3)

Other 415 (6.3) 126 (5.2) 357 (6.9)

Unknown 23 7 697

Table 1 continued

Early-stage
follow-up
cohorta

Test setb Training setc

Clinical subgroup

ER+/HER2-/N0 3197 (50) 1207 (50.3) 2279 (47.7)

ER+/HER2-/N+ 1727 (27) 666 (27.8) 1309 (27.4)

HER2+/ER- 254 (4) 85 (3.5) 221 (4.6)

HER2+/ER+ 564 (8.8) 193 (8) 462 (9.7)

TNBC 649 (10.2) 248 (10.3) 509 (10.6)

Unknown 269 13 1077

Clinical subgroup

ER+/HER2-/N0/
age>50

2663 (41.3) 1008 (41.9) 1890 (38.3)

ER+/HER2-/N
+/age>50

1333 (20.7) 521 (21.7) 1001 (20.3)

Other 2456 (38.1) 877 (36.5) 2044 (41.4)

Unknown 208 6 922

Figures represent n (%) unless otherwise specified. Percentage for variables
exclude Unknown in totals.
aThe early-stage follow-up cohort has no patient redundancy and a single
GEX profile per patient.
bThe test set is as subset of the early-stage follow-up cohort.
cPart of the training set overlap with the early-stage follow-up cohort but
there is no patient overlap between test set and training set. Statistics for
the training set are summarized on GEX profile.
dCalculated for patients without event.
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>5200 SCAN-B GEX profiles with NCN classes

SSP training based  on NCN classes

>2400 SCAN-B patients with SSP and NCN classes

SSP vs NCN classification agreement
in SCAN-B test set

NCN
subtype

SSP
PAM50

4 class 5 class

OSLO2-EMIT0 cohort: n=103
ABiM cohort: n=100

SSP agreement vs Prosigna classification

NCN
PAM50

5 class

SSP
subtype

4 class

>2400 SCAN-B patients with SSP and NCN classes
and survival data

SSP & NCN vs prognosis in SCAN-B test set

NCN
ROR

Bartlett  et al.

SSP
ROR

Bartlett et al.

low/high risk low/high risk

All patients ER+HER2-

SSP
ROR
ETR

3 class: 
none, endocrine,

1600 SCAN-B ER+HER2-N0, 50-70 years 

diagnosed 2013-2018

Potential SSP therapy impact in ER+HER2-N0 pts 

OSLO2-EMIT0: 54
ABiM: 33

Combined: 87

>5200 SCAN-B GEX profiles with 
ER, PR, HER2, Ki67, NHG data

SSP training based on clinical markers

>2400 SCAN-B patients with 
SSP and marker classes

SSP classification agreement with
clinical markers in SCAN-B test set

SSP
PR

SSP
HER2

SSP
Ki67

SSP
NHG

pos/neg pos/neg low/high 1/2/3

SSP
ER

pos/neg

SSP
HER2-ER

pos/neg

405 patients with SSP and marker classes

SSP classification agreement with
clinical markers in ABiM cohort

SSP
ROR

low/inter/high

NCN
ROR

low/inter/high

Aim: Train SSPs for PAM50 subtypes and ROR

Aim: Does SSP and NCN classifications agree in independent data?

Aim: Does SSP and NCN carry similar prognostic information?

Aim: Does SSP subtype and ROR classifications agree with Prosigna?

Aim: How would naive SSP usage impact therapy recommendations?

Aim: Train SSPs for five different clinical markers

Aim:Agreement of SSP classifications with clinical markers
 from registry data for independent patients?

Aim:Agreement of SSP classifications with clinical markers
 in pathology reviewed independent patients?

SCAN-B test setSCAN-B training set

Clinical marker data from registry

Survival data from registry

RNAseq Fresh Tissue (FT) 

ABiM external cohort (n=405)

Reviewed clinical marker data

RNAseq FT

Prosigna FT (n=100)

Prosigna FFPE (n=100)

OSLO2-EMIT0 external cohort (n=103)

Clinical marker data  from charts

RNAseq FT

Prosigna FFPE

SSP development: subtype, ROR, and 
five clinical markers

SSP validation

SSP clinical marker validation

SSP & ROR subtype validation

SSP & ROR subtype validation

c

a b

SSP
PR

SSP
HER2

SSP
Ki67

SSP
NHG

pos/neg pos/neg low/high 1/2/3

SSP
ER

pos/neg

SSP
HER2-ER

pos/neg

SSP
PR

SSP
HER2

SSP
Ki67

SSP
NHG

pos/neg pos/neg low/high 1/2/3

SSP
ER

pos/neg

SSP
HER2-ER

pos/neg

NCN
subtype

SSP
PAM50

4 class 5 class

NCN
PAM50

5 class

SSP
subtype

4 class

SSP
ROR

low/inter/high

NCN
ROR

low/inter/high

NCN
subtype

SSP
PAM50

4 class 5 class

NCN
PAM50

5 class

SSP
subtype

4 class

SSP
ROR

low/inter/high

NCN
ROR

low/inter/high

NCN
ROR

Bartlett  et al.

SSP
ROR

Bartlett et al.

low/high risk low/high risk

SSP
subtype

4 class

SSP
ROR

low/inter/high

SSP
ROR

Bartlett et al.

low/high risk

chemo+endo

SSP
ROR
ETR

3 class: 
none, endocrine,

chemo+endo

Fig. 1 Outline of the study. a Study cohorts: SCAN-B, ABiM, and OSLO2-EMIT0. Available data types and usage outlined. FT fresh-frozen tissue,
FFPE formalin-fixed paraffin-embedded tissue. b Scheme for development and validation of SSP models for molecular subtypes and ROR
versus NCN equivalents. Scheme outlines created SSP models and their usage in different cohorts. NCN and SSP 4-class subtype models
include Basal-like, HER2-enriched, Luminal A and Luminal B subtypes. Binary SSP-ROR and NCN-ROR risk classes were created similar as
described by Bartlett et al.5. An emulated 3-group SSP-based treatment recommendation (SSP ROR ETR) was created based on published
Norwegian guidelines for Prosigna usage and applied to relevant SCAN-B patients based on guidelines. c Scheme for development and
validation of SSPs for clinical markers: ER, PR, HER2, Ki67, and NHG. Scheme outlines created SSP models and their usage in different cohorts.
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Luminal B by SSP, followed by 46 of 582 (8%) Luminal B by NCN
assigned as Her2-enriched by SSP (Fig. 2b). No individual group of
discordant subtype assignment by SSP represented >8% of the
NCN defined subtype.

Training and validation of an SSP model for ROR in breast
cancer
Since ROR score is an integer value between 0 and 100 we used
data binning with 20 equally spaced levels to transform NCN-ROR
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into categorical training labels for our SSP-ROR model (Supple-
mentary methods). For training the SSP-ROR model, NCN-ROR
scores from a total of 5359 GEX profiles were stratified into binned
ROR labels: <5 n= 100, 6–10 n= 186, 11–15 n= 272, 16–20
n= 314, 21–25 n= 324, 26–30 n= 317, 31–35 n= 361, 36–40
n= 318, 41–45 n= 311, 46–50 n= 364, 51–55 n= 384, 56–60
n= 390, 61–65 n= 411, 66–70 n= 366, 71–75 n= 349, 76–80
n= 272, 81–85 n= 196, 86–90 n= 124 profiles. The maximum
overall agreement in training was observed at 21 gene-rules per
subtype (Supplementary Table 1) with only marginal improve-
ments observed using >10 gene-pair rules. The union of unique
genes represented in selected rules for all ROR bins was 296, of
which 18 overlap with the PAM50 genes. The overall accuracy in
the training set for categorical binned ROR labels was 17%. A
strong linear relationship was observed between the SSP and NCN
categorical value (R2= 0.87).
In the test set, overall agreement for binned NCN-ROR score and

predicted SSP-ROR was 17% (Kappa= 0.13, weighted Kappa=
0.90), equivalent to training results. Similar to the training set, a
strong linear relationship with binned ROR score (R2= 0.88) was
also observed in the test set (Fig. 2c). The relationship was also
visualized by boxplots of the non-binned NCN-ROR scores for SSP-
ROR (Fig. 2d). Importantly, when stratified by SSP-PAM50, the
distributions of ROR showed similar relationships between
subtypes for NCN-ROR scores (Fig. 2e) and SSP-ROR score (Fig.
2f). Also, the distributions were as expected lower in Luminal A
cases7,8. Distributions of ROR scores stratified by SSP-Subtype
were also specifically investigated for Luminal A and Luminal B
cases within the clinical subgroup of ER+/HER2- tumors
(Fig. 2g, h), again finding relationships between subtypes to be
similar and also consistent with what has been reported for the
Prosigna assay (ref. 8 and Prosigna insert 2017-07 LBL-C0191-09
section 15.1, Figure 9).
SSP and NCN concordance for ROR score was also investigated

after relevant stratification into ROR risk category groups (Low,
Intermediate, High) using cutoffs specific for nodal status3 and
used by Prosigna (refs. 8,24 and Prosigna insert 2017-07 LBL-C0191-

09 section 13.4, Table 9). For NCN-ROR, the score was calculated
using the gross tumor size variable as described3. For SSP-ROR, the
assigned score was adjusted with +5 for tumors >20 mm to
appropriately account for the effect of the gross tumor size
variable and minimizing the risk of underestimating the score
(Supplementary methods). Overall agreement between SSP and
NCN for risk category was 84% (Kappa= 0.75, weighted Kappa=
0.90) (Fig. 2i). Effectively, all discordance (>99%) was observed
between adjacent risk groups, explaining the high weighted
Kappa, with discordance between Intermediate by NCN-ROR and
either Low or High classification by SSP-ROR, comprising 40 and
33% of all discordant cases respectively. To illustrate and evaluate
agreement that reflects practical clinical use we also performed a
dichotomized comparison by combining Low and Intermediate
risk classification into one category, similar to the study by Bartlett
et al.5 that compared different commercial multigene tests in BC.
The overall agreement between SSP and NCN for this two-group
ROR stratification was 92% (Kappa= 0.84) (Fig. 2j).

Training and validation of SSP models for clinical markers in
breast cancer
In addition to deriving SSPs for intrinsic molecular subtypes and
ROR score, we also trained SSP models for five conventional
clinical BC markers, ER, PR, HER2, Ki67, and NHG, using training
labels based on clinicopathological registry data (Fig. 1c). Cutoffs
for ER and PR status were set to 10% or greater positive staining
according to Swedish national guidelines. For HER2, in addition to
a general SSP model, we also trained two separate SSP models
specific for ER status using only ER+ or ER- cases respectively. For
Ki67 status, a two-group model (High/Low) was trained using
cutoffs for included tumors from the respective local pathology
departments. The number of gene-rules per class at maximum
overall agreement in training ranged from 3 for PR to 19 for ER
(Supplementary Table 2). Performance was first evaluated in the
independent test set (Table 3 and Fig. 3). Concordance with
clinicopathological status was very high for ER (overall accuracy=
96%, Kappa= 0.86) and high for PR (overall accuracy= 87%,

Table 2. SSP prediction performance for subtypes and ROR categories validated against NCN classification in the independent population-based test
set of early breast cancer.

SSP model vs. NCN Accuracy Accuracy Null Kappa Class value Sensitivity Specificity Positive
predictive value

Negative
predictive value

PAM50, n= 2357 0.85
(0.83, 0.86)

0.51 0.78
(0.76, 0.80)

Luminal A 0.83 0.96 0.96 0.85

Luminal B 0.86 0.96 0.87 0.96

Basal 0.87 1.00 0.97 0.99

Her2-enriched 0.83 0.97 0.71 0.98

Normal-like 0.90 0.93 0.41 0.99

Subtype, n= 2343 0.90
(0.89, 0.91)

0.56 0.84
(0.82, 0.86)

Luminal A 0.92 0.96 0.96 0.91

Luminal B 0.85 0.96 0.88 0.95

Her2-
enriched

0.88 0.95 0.66 0.99

Basal 0.94 0.99 0.93 0.99

ROR risk classification,
n= 2370

0.84
(0.83, 0.86)

0.44 0.75
(0.73, 0.77)

Low 0.95 0.91 0.83 0.97

Intermediate 0.50 0.95 0.73 0.86

High 0.94 0.91 0.89 0.95

Binary ROR risk
categorization, n= 2370

0.92
(0.91, 0.93)

0.56 0.84
(0.82, 0.87)

Low/
Intermediate

0.91 0.94 0.95 0.89

High 0.94 0.91 0.89 0.95

Figures in parentheses represent 95% confidence interval.
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Kappa= 0.70) with clinically relevant positive predictive values
(99% and 95%, respectively). Concordance was high for HER2
using ER-specific models (overall accuracy= 92%, Kappa= 0.67)
and moderate for the general HER2 SSP model (overall accuracy=
89%, Kappa= 0.58). Overall concordance for HER2 SSP models
was mainly negatively influenced by false positives for the SSP
models. Correspondingly, the negative predictive values were
high (98% for both the general and ER-specific HER2 models).
Concordance with clinicopathological status was moderate for
Ki67 (overall accuracy= 80%, Kappa= 0.59), and fair for NHG
(overall accuracy= 57%, Kappa= 0.38, weighted Kappa= 0.60).
For NHG, 80% of all discordance was from NHG Grade 2 (811 of in
total 1012 discordant cases), stratified by SSP into Grade 1 or 3.
This observation is consistent with previous studies dividing NHG
Grade 2 tumors into either low or high-proliferative cases25,26. By
comparison, only a small fraction of discordant cases (58/1012,
5.7%) were misclassified from Grade 1 to 3 or vice versa reflected
by substantially higher weighted agreement bordering moderate
and high concordance. The negative predictive values were
accordingly comparably high for both Grade 1 and Grade 3 (95%
and 90%, respectively). To test whether discordant SSP stratifica-
tion of clinical NHG status provided prognostic value we created
Kaplan–Meier plots in the subgroup of patients with ER+/HER2-
disease who only received endocrine adjuvant treatment (Sup-
plementary Fig. 2). A marked difference in DRFi was found for
stratification of clinical NHG Grade 2 but not for clinical NHG
Grade 1 or 3 (Supplementary Fig. 2).
The quality of registry data in NKBC has been shown to be

high27. In addition, review of medical chart data performed in
subsets of the SCAN-B cohort has shown high validity of register
data in general and for dichotomized treatment data in
particular, e.g., yes/no for endocrine and chemotherapy treat-
ment28. Even so, to further investigate if evaluated concordance
for clinical markers was adversely affected by assessment against
registry data we evaluated performance against consensus status
from re-stains and re-evaluation done by three board-certified
breast cancer pathologists in the independent ABiM material29.
Concordance was largely comparable with results in the SCAN-B
test set. For Ki67, distributions appeared skewed using the Ki67
cut-off set at High >20%, as a large number of cases were given a
re-evaluated consensus score of exactly 20% and most of these
were classified as High by SSP (Supplementary Table 3 and
Supplementary Fig. 3).

Comparison between NCN and SSP stratifications by patient
outcome
To further validate SSP subtype and ROR models against NCN
stratification on a group level, we assessed prognostic value by
survival analysis using registry data in the population representa-
tive test set (Fig. 1b). Comparison with patient outcome is
particularly relevant as it reflects the intended use of the
classifications. Moreover, we reasoned that group level compar-
isons are relevant given the nature of the intrinsic subtypes and
ROR classification with classes defined by underlying boundaries
for relative correlations to centroids. As such, there are no obvious
distinctions in underlying data between some classes (e.g.,
Luminal A vs B, or a continuous ROR score).
Outcome analysis typically requires comparisons within groups

of uniformly treated patients. However, as the test set represents
early-stage IBC in Sweden, the majority diagnosed between 2010
and 2013 and all treated in accordance with national guidelines at
the time of study inclusion, the overall differences in outcome for
intrinsic subtypes can be expected to reflect treatment outcome
for each respective group. Therefore, we first compared outcome
characteristics for molecular subtypes by Kaplan–Meier plots using
DRFi in the full test set and irrespectively of clinical markers and
administered treatment (Fig. 4a, b). As expected, intrinsic subtypesTa
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display markedly separate outcome consistent with previous
reports7,30. Patient outcomes are generally very good and highly
similar between SSP and NCN with respect to Luminal A and
Luminal B cases, with each respective group having 95% (Luminal
A) and ~85% (Luminal B) event-free survival respectively
irrespective of classification method and model.
We next focused on specific patient subgroups where the

available commercial molecular assays in question are generally
recommended for use in assisting treatment decisions. Prognostic
value was first assessed for NCN and SSP-based intrinsic subtypes
and for different ROR classification groups in patients >50 years
with ER+/HER2-/N0 disease that only received endocrine adjuvant
treatment (n= 772). Hazard ratios and 95% confidence intervals
were highly similar and overlapping between corresponding SSP
and NCN-based stratifications in univariable analysis (Fig. 4c, left
side), as well as in multivariable analysis with tumor size, age at
diagnosis, and NHG as covariates (Fig. 4c, right side). To further
illustrate SSP and NCN stratifications we generated Kaplan–Meier
plots showing similar DRFi characteristics for stratifications by SSP
and NCN for PAM50 subtype (Fig. 4d), Subtype (four subtypes)
(Fig. 4e), ROR risk group classification (Fig. 4f), and the two-group
stratification according to Bartlett et al.5 (Fig. 4g).

The same tendency for outcome and similarity between SSP
and NCN stratifications was also observed in patients with
ER+/HER2-/N0 tumors that received adjuvant chemotherapy prior
to endocrine treatment, although groups are small as shown for
ROR risk classification (Supplementary Fig. 4a, b). Furthermore,
comparable prognostic stratification for SSP and NCN was seen in
the similarly sized group of patients with ER+/HER2-/N0 tumors
that received no adjuvant treatment (Supplementary Fig 4c, d).
Here, the majority of tumors were classified as low risk by ROR
score and reassuringly with none or very few distant recurrences.
Finally, the same pattern also extended to ROR stratification of
node positive (N+) disease and the larger group of patients with
ER+/HER2-/N+ tumors that only received adjuvant endocrine
treatment (Supplementary Fig. 4e, f). Within this group, about 50%
of cases were categorized as either Low or Intermediate risk by
ROR and contribute few events.

Cross-comparison between SSP and Prosigna in independent
external clinical series
To benchmark the developed SSP models for Subtype and ROR
versus a commercially available assay, we compared classifications
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Fig. 4 Assessment of prognostic value of SSP stratification and NCN stratification. Comparison of SSP and NCN classifications in the
independent population-based test set by assessment of prognostic value. Kaplan-Meier plots for molecular subtype with five groups (PAM50)
or four groups (Subtype) using DRFi as clinical endpoint: a PAM50 by NCN (left) and SSP (right), b Subtype by NCN (left) and SSP (right). c Cox
regression analysis using DRFi as endpoint in the test set restricted to patients with ER+/HER2-/N0 disease diagnosed over 50 years of age that
only received endocrine adjuvant treatment (n= 772). Test and reference group is specified on the left. Hazard ratios and 95% confidence
interval ranges from univariable analysis (left forest plot) and multivariable analysis (right forest plot) with tumor size, age at diagnosis, and
NHG as covariates. Kaplan–Meier plots for stratification of ER+/HER2-/N0 disease diagnosed over 50 that only received endocrine adjuvant
treatment in the test set by NCN (left in each panel) and SSP (right in each panel) for: d PAM50 subtype, e Subtype, f ROR risk classification, and
g the two-group ROR stratification according to Bartlett et al.5. Error bars correspond to 95% confidence interval.
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to results from the Prosigna assay performed on FFPE tissue in two
independent external clinical series (Fig. 1b): (i) OSLO2-EMIT0
(n= 103, clinical Prosigna assay results), and (ii) ABiM (n= 100,
Prosigna classifications calculated from non-clinical Nanostring
data). Overall accuracy for Subtype assignment was 83% in
OSLO2-EMIT0 and 80% in ABiM (Kappa= 0.73 and 0.72, respec-
tively) (Table 4, Supplementary Fig. 5a and Supplementary Fig. 6a).
Overall accuracy for ROR risk category was 68% in OSLO2-EMIT0
and 84% in ABiM (Kappa= 0.50 and 0.70, weighted Kappa= 0.70
and 0.78, respectively). We also compared distributions of ROR
score by subtype assignment in respective full series as well as in
respective series restricted to ER+/HER2- tumors classified as
Luminal subtype (Supplementary Fig. 5d–g and Supplementary
Fig. 6d–g). Concordance for the two-group stratification, as
reported by Bartlett et al.5, was 82% in OSLO2-EMIT0 and 89%
in ABiM (Kappa= 0.64 and 0.76, respectively) (Table 4, Supple-
mentary Fig. 5i and Supplementary Fig. 6i). In a pooled analysis of
OSLO2-EMIT0 and ABiM the agreement for Subtype was 81%
(Kappa= 0.73), the agreement for ROR risk category was 76%
(Kappa= 0.59, weighted Kappa= 0.74), and the agreement for the
Bartlett two-group stratification of ROR risk was 85% (Kappa=
0.70). In a pooled analysis restricted to ER+/HER2- tumors the
agreements were 79% for Subtype (Kappa= 0.61), 75% for ROR
risk (Kappa= 0.61, weighted Kappa= 0.74), and 86% for the
Bartlett two-group stratification of ROR risk (Kappa= 0.72).

Expected confounders in the above comparisons would include
sampling and tissue preservation (FFPE versus fresh-frozen) as
noted by others for the clinical Prosigna assay24,31. To assess these
confounders and put concordances in a context we utilized
multiple readings from different models and procurements in the
ABiM cohort (Fig. 1b). We first compared concordance between
SSP and Prosigna using classifications from applying the
respective models to data from the same RNA extract obtained
from macro-dissected fresh tissue. Overall agreement for Subtype
assignment increased to 87% (Kappa= 0.81), in line with
agreement between SSP and NCN models in the test set. Notably,
ROR risk classification decreased to 79% (Kappa= 0.61, weighted
Kappa= 0.76), whereas concordance for the Bartlett two-group
risk category remained unchanged at 89% (Kappa= 0.76)
(Supplementary Table 4 top section). Finally, to conversely isolate
the effect of sampling on discordance we evaluated agreement in
the ABiM cohort solely using the Prosigna model but comparing
data obtained from either FFPE tissue or from the paired macro-
dissected fresh tissue. The overall agreement for Subtype assign-
ments was 82% (Kappa= 0.74), for ROR risk classification 84%
(Kappa 0.71, weighted Kappa= 0.84) and 90% (Kappa 0.79) with
two-group categorization (Supplementary Table 4 bottom sec-
tion), largely matching the agreements between SSP and Prosigna.
For a more specific comparison between SSP and Prosigna that

better reflects the use for directing adjuvant chemotherapy in a

Table 4. SSP prediction performance validated against Prosigna classification in the full external clinical series OSLO2-EMIT0 and ABiM.

SSP model vs.
Prosignaa

Accuracy Accuracy Null Kappa Class value Sensitivity Specificity Positive
predictive value

Negative
predictive value

OSLO2-EMIT0 cohortb

Subtype, n= 103 0.83
(0.74, 0.89)

0.52 0.73
(0.62, 0.84)

Luminal A 0.85 0.90 0.90 0.85

Luminal B 0.71 0.93 0.80 0.90

Basal 0.86 0.99 0.92 0.98

Her2-enriched 1.00 0.93 0.50 1.00

ROR risk
classification, n= 103

0.68
(0.58, 0.77)

0.44 0.50
(0.37, 0.63)

Low 0.74 0.86 0.65 0.90

Intermediate 0.29 0.90 0.56 0.75

High 0.91 0.74 0.73 0.91

Binary ROR risk
categorization,
n= 103

0.82
(0.73, 0.89)

0.56 0.64
(0.49, 0.78)

Low/
Intermediate

0.74 0.91 0.91 0.73

High 0.91 0.74 0.73 0.91

ABiM cohortc

Subtype, n= 100 0.80
(0.71, 0.87)

0.38 0.72
(0.60, 0.83)

Luminal A 0.82 0.92 0.86 0.89

Luminal B 0.74 0.86 0.74 0.86

Basal 0.93 1.00 1.00 0.99

Her2-enriched 0.79 0.93 0.65 0.96

ROR risk
classification, n= 98

0.84
(0.75, 0.90)

0.60 0.70
(0.57, 0.83)

Low 0.75 0.95 0.79 0.94

Intermediate 0.58 0.95 0.73 0.90

High 0.95 0.79 0.88 0.91

Binary ROR risk
categorization,
n= 98

0.89
(0.81, 0.94)

0.60 0.76
(0.63, 0.89)

Low/
Intermediate

0.79 0.95 0.91 0.88

High 0.95 0.79 0.88 0.91

Figures in parentheses represent 95% confidence interval.
aProsigna reference in the OSLO2-EMIT0 cohort is the clinical test performed on FFPE as prescribed whereas Prosigna reference in the ABiM cohort is
Nanostring data (not clinical test) generated in Lund on FFPE material and sent to Nanostring for calculating the Prosigna Subtype and ROR readout.
bPerformance evaluated in the OSLO2-EMIT0 cohort (all available cases).
cPerformance evaluated in the ABiM cohort (all available cases).
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clinical setting, we compared agreement for stratification that
emulates treatment recommendation (ETR) in postmenopausal
patients with ER+/HER2-/N0 and pT1–2 tumors adapted from
Norwegian national guidelines (Supplementary methods). The ETR
schema adheres to actual general recommendations but does not
include individualized assessment of possible escalation or de-
escalation. The treatment guidelines stratify patients into three
groups with respect to recommended adjuvant treatment: None,
Endo (endocrine treatment alone for 5–10 years), or ChemoEndo
(adjuvant chemotherapy followed by endocrine treatment for
5–10 years). The comparison was also done for treatment
recommendations dichotomized for chemotherapy, i.e., by com-
bining None and Endo into one group. SSP performance was
evaluated in both the pooled external clinical series (n= 87) as
well as in the respective series separately (Supplementary Table 5).
Overall agreement for ETR in the pooled data was 78% (Kappa=
0.65) and when dichotomized for chemotherapy it was 85%
(Kappa= 0.66).

Assessing potential impact of SSP molecular subtype and ROR
testing on use of chemotherapy
In addition to validating SSP classifications for Subtype and ROR
against research-based NC classifications and benchmarking SSP
against Prosigna models we also wanted to apply our SSP models
in the entire 6660-patient early-stage follow-up cohort (Fig. 1,
Table 1, Supplementary Fig. 1) to retrospectively assess the
potential extent and type of altered treatment recommendation
from using SSP models in treatment guidance. To this end we
used the naive ETR classification dichotomized for chemotherapy
and compared this with information from NKBC on administered
treatment.
To verify that SSP classifications were independent of year of

diagnosis we first calculated the proportions of SSP-Subtype and
SSP-ROR risk group in the entire population stratified by year of
diagnosis. Proportions for classifications varied slightly between
years but were largely stable throughout the enrollment period
that extends over nine years (Fig. 5a, b). Overall proportions across
the entire period for SSP-Subtype were: 52% Luminal A, 25%
Luminal B, 10% Basal-like and 13% Her2-enriched (Fig. 5a).
Corresponding proportions for SSP-ROR risk classification were:
38% Low, 15% Intermediate and 47% High (Fig. 5b).
Among other clinical management indications, molecular

testing is indicated for postmenopausal IBC patients with
ER+/HER2-/N0 with an ambiguous risk of recurrence. To attempt
to represent a relevant indication we first studied the patients with
known treatment status diagnosed with ER+/HER2-/N0 breast
cancer at age >50 years (2644/6660, 40%). In this subgroup, the
use of chemotherapy differed between age groups and adjuvant
therapy among the more elderly patients was largely restricted to
endocrine treatment (Fig. 5c). Therefore, the clinical assessment
subgroup was further restricted to patients aged >50 ≤ 70 years in
order to reduce the impact of high age and expected associated
comorbidities as factors influencing treatment decisions. The
fraction of patients receiving chemotherapy in this age-restricted
subgroup increases across early years of enrollment, especially
apparent from 2012, but levels out for the later years (Fig. 5d). The
observed increase coincides with changes in national treatment
guidelines introduced during the period of enrollment. Therefore,
to be able to better extrapolate our results, estimates were
calculated for patients from the later enrollment period
(2013–2018). Proportions of treatment across this latter period
differ to some extent from the overall and were 60% (versus 65%)
with endocrine only and 24% (versus 20%) with adjuvant
chemotherapy and endocrine treatment, whereas the proportion
of patient that received no adjuvant treatment remained at 15%
(Fig. 5d). The potential effect on therapy was estimated by cross

comparing the naive ETR dichotomized for chemotherapy with
NKBC records of administered systemic treatment.
In the N0 subgroup strict adherence to ETR would result in

modest net increased use of adjuvant chemotherapy from 24 to
25% estimated for patients from 2013 to 2018 (Fig. 5e). The
estimated net change is the combined result from patients where
treatment would be escalated with chemotherapy (No CT to CT,
9%), and patients that would be spared chemotherapy (CT to No
CT, 8%). Thus, in total 17% of the investigated clinical subgroup
had potential for changed chemotherapy recommendation based
on SSP molecular subtyping.
In addition to estimating possible effects on therapy, we also

assessed the prognostic value of the molecular test by stratifica-
tion of uniformly treated subgroups. For N0 patients with no
adjuvant treatment, patients suggested for endocrine treatment
by SSP (41 of 176) had worse outcome (Fig. 5f) with a univariable
Cox hazard ratio of 10 (95% CI= 0.88–113) (Fig. 5h) and
multivariable hazard ratio of 16 (95% CI= 0.94–273) (Fig. 5i). For
N0 patients with endocrine therapy only, patients suggested for
escalation (No CT to CT) by SSP (135 of 787) had worse outcome
(Fig. 5g) with a univariable Cox hazard ratio of 4.09 (95%
CI= 1.94–8.62) (Fig. 5h) and multivariable hazard ratio of 2.96
(95% CI= 1.28–6.82) (Fig. 5i). For N0 patients receiving adjuvant
chemotherapy there was no difference in outcome for the
patients suggested for de-escalation of chemotherapy by SSP
classification (Fig. 5h, i).

DISCUSSION
In this study, we have trained, validated, and benchmarked RNA-
sequencing-based gene expression SSP models for conventional
clinical markers, molecular subtypes, and ROR in the largest,
consecutive, primary BC cohort reported worldwide to date.
Importantly, the observational population-based SCAN-B cohort is
representative of contemporary stage-distribution and treatments,
with sampling of fresh tumor tissue completely integrated in
parallel with clinical routines21,23 and with a complete turn-around
assay time compliant with clinical usage (see Supplementary
methods). These characteristics strongly support that results
based on this cohort can be extended and generalized to the
national BC population in Sweden, and other populations with
comparable demographics.
The SSP classifications for conventional markers were validated

against clinical pathology data from NKBC and against consensus
status from independent re-assessment by three pathologists in
the ABiM cohort29 (Fig. 1c). The concordance was high for ER, PR,
and HER2. For ER and PR results are well in line with previous
studies confirming that sequencing-based assays can accurately
mimic readouts from current commercial assays29,32,33. However,
for any marker that is a direct target for treatment, such as the ER
and HER2 receptors, special considerations regarding practical use
of surrogate assays are required. For example, for HER2, the
negative predictive value was very high for all SSP models
(NPV= 0.98). Considering that the Swedish HER2 amplification
rate in 2019 was 13.5%34 this would imply that the sequencing-
based classifiers could drastically reduce the number of negative
tests performed. The lower positive predictive value of HER2 could
be explained by differences in assessments. While histochemical
or in situ hybridization scoring takes only stained invasive cancer
cells into account, gene expression is measured from bulk RNA
extracts including intraductal components. Moreover, the SSP
models may also capture elevated HER2 signals present in tumors
without HER2 protein overexpression or gene amplification. This
suggests that a positive SSP HER2 scoring should be comple-
mented with in situ (FFPE HER2 IHC/ISH) measurements to assure
a correct status for anti-HER2 treatment decisions. On the other
hand, tumors with elevated HER2 signal but without protein
overexpression or gene amplification may potentially be sensitive
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Fig. 5 SSP classifications for Subtype and ROR risk category in early-stage breast cancer and cross-comparison with administered
systemic treatment. The basis for comparisons is the 6660-patient follow-up cohort (Table 1). Summarized proportions are shown on the
right side of bar graphs. The first and last year of enrollment (2010 and 2018) are not full calendar years and therefore include notably smaller
numbers of enrolled patients. a Proportions of SSP-Subtype by year of diagnosis. b Proportions of SSP-ROR risk category by year of diagnosis.
c Proportions for adjuvant treatment within ER+/HER2-/N0 patients diagnosed at age >50 years by different age at diagnosis. Endo: endocrine
therapy only, ChemoEndo: adjuvant chemotherapy and endocrine therapy. None: no adjuvant systemic therapy. d Proportions for adjuvant
treatment within ER+/HER2-/N0 patients diagnosed at age >50 ≤ 70 years by year of diagnosis. e Cross-comparison of the naive SSP ETR
dichotomized for chemotherapy (yes/no) with records of administered systemic treatment within ER+/HER2-/N0 patients at age >50 ≤ 70. The
groups for which SSP treatment recommendation is in agreement with the administered treatment are shown in black for regimen without
chemotherapy (No CT) and in red for regimen including chemotherapy (CT). The discordant groups where SSP would lead to escalation of
treatment (No CT to CT) are shown in orange and de-escalation of treatment (CT to No CT) in blue. f Kaplan-Meier plot for SSP stratification by
SSP-ETR treatment recommendation within the N0 subgroup of ER+ /HER2- patients diagnosed at age >50 ≤ 70 and no adjuvant treatment.
g Kaplan-Meier plot for SSP stratification by SSP-ETR dichotomized for chemotherapy (chemotherapy vs. no chemotherapy) within
ER+/HER2-/N0 patients diagnosed at age >50 ≤ 70 treated with adjuvant endocrine therapy only. h Forest plots of Hazard ratios and 95%
confidence interval ranges from univariable and i multivariable Cox regression using DRFi as endpoint stratified using SSP treatment
recommendation. Multivariable analysis is with tumor size, age at diagnosis, and NHG as covariates. Test (SSP stratification) and subgroup
(administered treatment) is specified on the left of the univariable forest plot. Error bars correspond to 95% confidence interval.
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to other treatments targeting the HER2 signaling pathway, which
should be further addressed. In contrast to ER, PR, and HER2, the
SSP classifications for the proliferation marker Ki67 and NHG had
lower accuracy. This may be expected as these conventional
markers are routinely assessed by means that have been reported
as sensitive to subjective and inter-observer variability29,35–37.
Perhaps more importantly, the sequencing-based predictor
showed very high negative predictive values for NHG Grade 1
and 3 tumors, while for the more heterogeneous NHG Grade 2
tumors the sequencing-based classification showed the ability to
stratify patients into subsets with different clinical outcome,
representing actual clinical value, in line with previous studies in
the field25,26,29. Taken together, our results indicate that gene
expression-based SSPs can accurately reproduce pathology-based
classifications of ER, PR and HER2 (negative predictive value), but
not Ki67 and NHG. As such, gene expression-based SSPs may have
a role in clinical diagnostics of breast cancer as a decision support
tool that may complement or alternatively inform routine
pathology evaluations.
A primary focus of this study was to derive SSP models for

molecular subtypes and ROR scores in BC that would closely
mimic conventional nearest centroid classifications, while being
more applicable for inclusion in routine diagnostics of early BC. To
achieve this, we used a meticulous normalization approach to
generate suitable centroid training labels, followed by conven-
tional class agreement analysis, patient outcome analysis, bench-
marking versus Prosigna, and assessment of the impact on
treatment recommendation (Fig. 1b). Consistently, concordance
evaluated in the independent test was high to very high (85–90%)
between SSP subtype models (SSP-PAM50 and SSP-Subtype) and
corresponding NCN classifications. Recreating PAM50 subtype
classifications appropriately by use of relative expression mea-
sures in the absence of controls is challenging18, however, we
argue that combining thoroughly matched reference sets with
multiple selections is effectively circumventing much of these
difficulties. Moreover, the main classification discrepancies were
observed at the expected boundaries between the Luminal A and
Luminal B subtypes, and between the Luminal A and Normal-like
subtypes. This is not surprising given the underlying definition for
discriminating between the subtypes, for which the distinction
between Luminal A and B is determined by the ratio of relative
correlations to the respective centroids. In reality, there is no
distinct separation in the underlying data discriminating between
these two subtypes, rather, they are two ends of the same
spectrum of relative ratios. Thus, cases in the middle of the
spectrum are no more Luminal A than Luminal B or vice versa,
similar to the seamless transition between varying degrees of
some biological processes such as cell proliferation38,39. The same
reasoning applies with more clarity to the ROR risk classification
where original cut-points in ROR score between classes are set to
achieve chosen incidences of disease recurrence. Although the
coefficients for ROR score are derived to model risk of recurrence,
it is still an association to risk of recurrence, i.e., a clinical endpoint.
As such, there are no distinct underlying transitions between
degrees of ROR score. Nonetheless, high agreement between SSP
and NCN classifications were observed for ROR risk classifications
as well as for a two-group comparison combining ROR Low and
Intermediate risk classification into one category (Table 2).
Importantly, the high agreement was also mirrored on a group
level by similar prognostic performance for SSP and NCN models
when assessed in the independent test data (Fig. 4), particularly
within the relevant clinical subgroup of post-menopausal (>50
years) ER+/HER2-/N0 BC treated with endocrine treatment alone
(Fig. 4c–g). These analyses suggest that SSP and NCN models are
exchangeable on a group level concerning prognostic value.
Moreover, our results demonstrate that SSP models are on their
own capable of further stratifying current clinical subgroups of BC

into subgroups with different clinical outcome, representing
potential real clinical value.
An important aspect of the current study compared to existing

academic studies in the field is the benchmarking of SSP
classifications to actual matched clinical Prosigna classification,
or Prosigna classification based on non-clinical Nanostring data, in
two external clinical cohorts. Despite the external series being
comparatively small, the comparisons provide important insight
and benchmarking against results from an available and validated
assay that is in clinical use today. These direct class comparisons
demonstrated moderate to high numerical agreements and
broadly high numerical agreements in pooled analysis. When
interpreting the benchmarking results, tissue heterogeneity and
sampling procedure need to be acknowledged as potential
sources of discordance. This was also highlighted by Nielsen
et al. for the clinical Prosigna assay, reporting 90% and 93%
average agreement of ROR risk category for N0 and N+ patients,
respectively, based on analysis at different laboratory sites using
different tissue sections from the same tissue blocks24. Whereas
Prosigna prescribes input material from FFPE sections verified to
comprise a minimum of 10% invasive component, the RNA-
sequencing-based SSPs uses input material from fresh macro-
dissected tumor tissue. This prevents strict direct comparisons of
models even when samples originate from the same tumor. To
investigate this issue, we also compared results from the SSP and
Prosigna models with measurements from identically sourced RNA
aliquots from fresh macro-dissected tissue. Notably, this improved
the classification agreement for Subtype, decreased agreement for
ROR risk category, while agreement for binary ROR risk classifica-
tion remained the same. Importantly, performance for Prosigna
from macroscopically evaluated fresh tissue against Prosigna from
FFPE was in line with the corresponding agreements between SSP
and Prosigna on FFPE. There are some weaknesses in these
comparisons such as small sample size and diverging from
Prosigna prescribed protocols; nonetheless, they highlight the soft
transitions between classes and that exact agreement is neither
expected nor needed for equivalence in practice as suggested by
Bartlett et al.5.
Although the SSP vs. Prosigna classification agreement was not

perfect, the concordance was high compared to reported
agreement levels for different multigene assays22,40,41, extending
to clinical tests individually approved for the same use5. Notably,
in those studies different multigene assays showed far from
perfect agreement on an individual sample basis. In contrast, up to
89% direct agreement between SSP and Prosigna as observed for
binary ROR risk category in this study infers not only similar group
level characteristics, but also high agreement to Prosigna results
on the sample level, although continued confirmation is needed
as larger cohorts with data for both assays becomes available.
Concluding that SSP classifications are at the least comparable

to Prosigna classification on a population level, we next examined
the naive impact on treatment decisions had SSP results been
available to guide recommendation of adjuvant chemotherapy.
Acknowledging that guidelines have changed during the years of
patient recruitment, the estimations presented here remain
somewhat uncertain. Moreover, in clinical practice the molecular
classification would only be one part of the decision process as
multidisciplinary teams, when recommending treatment, also
consider co-morbidity and patient preferences. Such factors have
not been accounted for in our retrospective analysis even though
we restricted the assessment groups to age 51–70 years to reduce
the effect of old age and accompanying co-morbidity. Moreover,
we compared emulated treatment considerations with registry
data for administered treatment, thus our estimates remain to be
confirmed by future prospective evaluation. Nonetheless, our
assessments suggest that naive usage of SSP recommendations
for treatment decisions would lead to a modest net change in use
of adjuvant chemotherapy for ER+/HER2-/N0 BC in Sweden. This
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contrasts an observation in a North American population of early-
stage BC, where a 70-gene signature identified a significant
proportion of clinically high-risk patients that might not require
chemotherapy2. However, hitherto presented data on change of
therapy for the Prosigna test is more in line with our results42. Still,
our results highlight that within ER+/HER2-/N0 early-stage disease
diagnosed at >50 ≤ 70 years as much as 17% of cases may be
subjects for changed chemotherapy recommendations as a result
of molecular subtyping. In this study, we did not include the
corresponding assessment in node positive disease, as current
national guidelines do not include these. However, it seems likely
that a similar or even larger fraction of cases in this group would
be subjects for changed treatment recommendations as a result of
molecular subtyping.
The clinical usefulness of currently available and validated

multigene assays is limited to certain subgroups of BC patients.
For instance, in Sweden the recently added recommendation in
the national guidelines34 to use molecular diagnostics was limited
to early-stage postmenopausal ER+/HER2-/N0 BC. Moreover,
current clinical gene expression-based assays are associated with
a substantial financial cost, may require sending samples outside a
regional healthcare region, and typically report a single assay
output, e.g., a treatment recommendation for a specific patient
population. Considering that modern cancer diagnostics require a
multitude of molecular diagnostic procedures, generic analysis
that can provide several clinically relevant readouts will likely
become even more important in the near future. In this context, a
broad sequencing-based assay, like RNA-sequencing, to generate
generic transcriptome data, from which a multitude of different
readouts can be derived, presents an attractive alternative. In
addition to the current study suggesting that RNA-sequencing can
provide benchmarked intrinsic subtype and ROR scores, RNA-
sequencing has also been reported to be able to provide reliable
models for current conventional BC biomarkers29,32,33 and to
identify expressed somatic mutations in for example ESR1 and
PIK3CA43,44 that may be important for future clinical management.
Moreover, an upfront testing of all breast cancer cases would cut
lead-times for molecular assay results and may also allow future
implementation of prognostic or treatment predictive signatures
in additional clinical subgroups, like TNBC and HER2-amplified
cases, for which there are none in clinical use today.
In summary, we demonstrate the potential of RNA-sequencing

as a multipurpose assay for diagnostics and treatment decision
support in early breast cancer. Based on a single analysis of fresh
tissue, procured at the time of diagnosis at regional pathology
departments without special sampling requirements, we demon-
strate the potential to derive benchmarked equivalent estimates
of current clinical markers and molecular subtypes and risk
assessments, which may be extended to include mutational calls
for key driver genes. Importantly, a completely open assay
coupled with regionally performed sequencing, as part of routine
healthcare after required validation and quality assurance, may be
of strong clinical and socioeconomic value. This is demonstrated
by the potential to reduce current single diagnostic marker
analyses, but also the clear evidence that the gene expression-
based stratification can separate otherwise seemingly homoge-
nous clinical subgroups of breast cancer into groups with clinically
relevant diverse outcomes.

METHODS
Ethics approval and informed consent
All SCAN-B and ABiM enrolled patients provided written informed consent
prior to study inclusion. The included ABiM cohort is from patients enrolled
in the population-based All Breast Cancer in Malmö study and data is
available online as described29. Ethical approval was given for the SCAN-B
study (approval numbers 2009/658, 2010/383, 2012/58, 2013/459, and
2015/277) and ethical approval was given for the ABiM study (approval

number 2007/155) by the Regional Ethical Review Board in Lund, Sweden,
governed by the Swedish Ethical Review Authority, Box 2110, 750 02
Uppsala, Sweden.
Included normal breast tissue was obtained from women undergoing

mammoplasty surgery with no previous history of BC, who gave informed
consent, and the tissue samples were examined by the pathologist to be
free of malignancy and processed as described45. The study was approved
by the Cantonal ethics committee, Commission Cantonale d’éthique de la
recherche sur l’être humain, CER-VD, Avenue de Chailly, 1012 Lausanne,
Switzerland (Approval number 183/10).
The included OSLO2-EMIT0 breast cancer cohort is from OSLO2, a

prospective observational study that enrolled BC patients with primary
operable disease at hospitals in southeastern Norway between 2015 and
2020. Informed consent was obtained from all patients included in the
OSLO2 study. Ethical approval was given for the OSLO2 study (approval
number 29668) by the Norwegian South-East Regional Committee for
Medical and Health Research Ethics, Postboks 1130, Blindern, 0318 Oslo,
Norway.

Patient material
Included patient cohorts are outlined in Fig. 1a. The SCAN-B material
comprises a population-based consecutively enrolled series of BC patients
accrued at seven hospitals in the south Sweden health care region, and at
two additional Swedish hospitals (Jönköping and Uppsala). Patient
management, including adjuvant systemic and radiotherapy treatment
have been performed according to national and regional treatment
guidelines at the time of enrollment. SCAN-B patients included in this
study were enrolled between September 1, 2010 and May 31, 2018 and
sample collection and work-up followed reported SCAN-B procedures and
protocols21,23. Clinicopathological and follow-up data as well as informa-
tion on adjuvant medical treatment was obtained from the NKBC34.
Clinicopathological data reported to NKBC was determined by each
respective local pathology department and according to current Swedish
clinical guidelines and definitions. For details on pathological assessment
see KVAST documents published by the Swedish society of Pathologists
(Svensk förening för Patologi – KVAST – document)46. For the earlier part of
the material (2010–2014), characteristics of the enrolled patients, collected
samples, and RNA-sequencing data has previously been shown to
represent the BC population in the recruitment region21–23,28. Available
data on adjuvant therapy for the SCAN-B cohort include dichotomized
status for systemic endocrine, chemotherapy, and HER2-directed therapy.
The indication for adjuvant therapy in patients with ER+/HER2- tumors is
regularly updated and documented in the Swedish national treatment
guidelines.
The external OSLO2-EMIT0 cohort is a population-based consecutive

clinical series of early BC patients accrued during 2015 and 2016 as part of
the OSLO2 study47. The external ABiM cohort is a consecutive clinical series
of patients with preoperative diagnosis of IBC scheduled for surgery in
Malmö, Sweden, during the years 2007–200948. For the OSLO2 and ABiM
material, freshly collected, macroscopically evaluated, and snap frozen
tumor tissue was obtained by clinical pathologists at pathology depart-
ments as described48,49 and total RNA was extracted similar to SCAN-B
cases. Consensus scoring for the ABiM material from histopathology re-
assessment has previously been performed as described by Brueffer
et al.29.

Gene expression analysis
RNA-sequencing was performed as described21 or by Illumina stranded
TruSeq mRNA protocol, either implemented on KingFisher or on the
Illumina NeoPrep system. Expression data (Fragments Per Kilobase per
Million reads, FPKM) from stringtie was derived from RNA-sequencing data
using an analysis pipeline to align and estimate gene expression values for
sequenced samples. The RNA-sequencing analysis pipeline is based on a
collection of open source software tools; picard tools50, trimmomatic51,
bowtie252, hisat253,54, stringtie55 with the GRCh38 human genome primary
assembly, dbSNP56, and GENCODE57 transcriptome model as detailed in
Supplementary methods. Entrez ID from the Gencode27 metadata was
used as gene identifiers.

Assigning PAM50 subtype and ROR score using nearest
centroid
PAM50 subtype and ROR score were assigned by NC classification
following a general and established strategy previously described7. This
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strategy requires an appropriate static reference set to use for normal-
ization before calculating correlations to the published PAM50 centroids. In
order to correctly transform gene expression we selected a static reference
set by matching the clinicopathological metadata of the training
population from which the centroids were derived7. Moreover, our large
dataset permitted us to advance the NC strategy by selecting multiple
reference sets, thereby avoiding relying on a single selection. Therefore,
the selection procedure was repeated 100 times to create a series of
individual static reference sets, each mimicking the original training
population. The collection of reference sets was used to construct an
extended NC classifier, i.e., a NC classifier utilizing 100 separate normal-
izations. Herein we refer to this extended NC classifier as NCN. Normalizing
gene expression data to the reference sets was done by mean centering
log2 transformed FPKM. Using multiple reference sets for normalization
makes it possible to account for heterogeneity that prevails even within
the restricted boundaries set by the target population. Subtype assign-
ments from NCN were done by majority vote whereas ROR score from NCN
was calculated using the average of 100 scores, each calculated as
described3 (Supplementary methods).

Training SSP models using the AIMS procedure
For training SSP models with the described AIMS method14 we used scripts
available from the AIMS GitHub repository58. Training was largely
performed as described by Paquet et al.14 but using gene expression data
for >19,000 genes, a 5-fold cross-validation repeated five times, and
evaluating up to 50 selected gene-pair rules. We used weighted rule
selection to adjust for differences in size between subsets of data from
different library protocols. Evaluation of parameters used was strictly
limited to a subset of the training cohort. To this end, the training cohort
was partitioned into provisional training/evaluation sets. However, the final
training was performed using the full training cohort that, importantly, had
no overlap with our reserved test set. Input gene expression in both
training and subsequent validations was untransformed expression values
as outputted by stringtie for all protein-coding genes from Gencode27
annotated with Entrez ID. Positive controls for normal breast tissue were
omitted from all SSP training. Details of the training are outlined in
Supplementary methods.

Prosigna classification
Prosigna results were obtained from FFPE tumor tissue sections from
clinical routine procedures as prescribed for the Prosigna assay (Prosigna
insert 2017-07 LBL-C0191-09). For the OSLO2-EMIT0 material, the Prosigna
assay was run at the local pathology department using the clinical
Prosigna assay on the nCounter instrument in Dx mode as described31. For
the ABiM material, the Nanostring gene expression data was generated at
the Division of Oncology, Lund University using an appropriate code-set,
including the genes for the Prosigna assay, and then sent to Nanostring for
readout of Prosigna classification results. In addition, for the ABiM material,
paired Nanostring gene expression data and readout of classification
results by Prosigna models was also obtained from the RNA extracted from
fresh macro-dissected tumor tissue used for RNA-sequencing (Fig. 1a).

Survival analysis
Survival analyses were performed in R version 3.6.1 using the survival
package with distant recurrence-free interval (DRFi) as primary endpoint.
Overall survival (OS), recurrence-free interval (RFi), and breast cancer-free
interval (BCFi) was used as additional endpoints (Supplementary methods,
ref. 59 and ref. 60 for cause of death registry). Survival curves were
estimated using the Kaplan–Meier method and compared using the log-
rank test. Hazard ratios were calculated through univariable or multi-
variable Cox regression using the coxph R function. In multivariable
analyses, tumor size (mm), patient age at diagnosis (binned in 5-year
intervals), lymph node status (N+: positive and N0: negative), and NHG
were included as covariates. Median follow-up for DRFi in the full test set of
early-stage IBC was 8.1 years (range 0.1–10.9). Median follow-up for DRFi in
the subset of postmenopausal ER+/HER2-/N0 IBC for the evaluation of
prognosis stratified for ROR and molecular subtype (n= 772) was 8.0 years
(range 0.1–10.7). Median follow-up time in respective two groups for the
additional endpoints were: OS 9.4 and 9.7 years, RFi 8.1 and 8.0 years, BCFi

5.4 and 5.6 years. Median and range for follow-up were calculated for
patients with no reported events.

DATA AVAILABILITY
All RNA-sequencing-based gene expression data is available at Mendeley Data as a
publicly accessible dataset61. Raw sequencing data is regarded personal information
and by Swedish law cannot be made publicly accessible. Clinicopathological data for
samples and classifications for all GEX data are available as Supplementary Data Table 1.

CODE AVAILABILITY
Derived SSP models and functions for classification are available in a standalone R
package, Single-Sample Predictors for Breast Cancer (sspbc), publicly accessible from
GitHub at https://github.com/StaafLab/sspbc.
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