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Purpose: Online adaptive radiotherapy would greatly benefit from the development of reliable auto-
segmentation algorithms for organs-at-risk and radiation targets. Current practice of manual segmen-
tation is subjective and time-consuming. While deep learning-based algorithms offer ample opportu-
nities to solve this problem, they typically require large datasets. However, medical imaging data are
generally sparse, in particular annotated MR images for radiotherapy. In this study, we developed a
method to exploit the wealth of publicly available, annotated CT images to generate synthetic MR
images, which could then be used to train a convolutional neural network (CNN) to segment the par-
otid glands on MR images of head and neck cancer patients.
Methods: Imaging data comprised 202 annotated CT and 27 annotated MR images. The unpaired CT
and MR images were fed into a 2D CycleGAN network to generate synthetic MR images from the CT
images. Annotations of axial slices of the synthetic images were generated by propagating the CT con-
tours. These were then used to train a 2D CNN. We assessed the segmentation accuracy using the real
MR images as test dataset. The accuracy was quantified with the 3D Dice similarity coefficient (DSC),
Hausdorff distance (HD), and mean surface distance (MSD) between manual and auto-generated con-
tours. We benchmarked the approach by a comparison to the interobserver variation determined for the
real MR images, as well as to the accuracy when training the 2D CNN to segment the CT images.
Results: The determined accuracy (DSC: 0.77�0.07, HD: 18.04�12.59mm, MSD: 2.51�1.47mm)
was close to the interobserver variation (DSC: 0.84�0.06, HD: 10.85�5.74mm, MSD: 1.50
�0.77mm), as well as to the accuracy when training the 2D CNN to segment the CT images (DSC:
0.81�0.07, HD: 13.00�7.61mm, MSD: 1.87�0.84mm).
Conclusions: The introduced cross-modality learning technique can be of great value for segmenta-
tion problems with sparse training data. We anticipate using this method with any nonannotated MRI
dataset to generate annotated synthetic MR images of the same type via image style transfer from
annotated CT images. Furthermore, as this technique allows for fast adaptation of annotated datasets
from one imaging modality to another, it could prove useful for translating between large varieties of
MRI contrasts due to differences in imaging protocols within and between institutions. © 2020 The
Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of
Physicists in Medicine [https://doi.org/10.1002/mp.14619]
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1. INTRODUCTION

Radiotherapy (RT) requires accurate segmentation of irradiation
targets and organs at risk (OARs) to be able to plan and deliver
a sufficient dose to the targets while minimizing side effects to
the OARs. Current practice of manual segmentation is subjective
and time-consuming,1,2 in particular for the treatment of head
and neck cancer (HNC) patients due to the complex anatomy,
including many OARs and irradiation targets associated with
HNC. Automating the outlining of regions of interest (ROIs)
would allow to alleviate the enormous workload of manual seg-
mentation and reduce inter- and intraobserver variabilities.3

New methodologies based on deep learning offer ample
opportunities to solve this problem, of which deep convolu-
tional neural networks (CNNs)4 are particularly promising.
CNNs are supervised approaches that require annotated train-
ing images. Recently, CNNs have successfully been imple-
mented to contour OARs on HNC CT images.5–9 The success
of CNNs on CT images can strongly be attributed to the large
amounts of available annotated data, as CT is being used on
daily base in most RT clinics throughout the world. While it
is still unclear how many training examples deep learning-
based algorithms need, it is evident that the generalizability
increases with an increasing diversity in the training data.
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However, for less common imaging techniques that are
only starting to be used in clinical routine for radiotherapy,
such as ultrasound,10 positron emission tomography
(PET),11,12 and magnetic resonance imaging (MRI),13–16

annotated data are rare. Furthermore, MRI contrast varies a
lot depending on sequence settings, causing limited transfer-
ability onto a new dataset with new MRI settings. Despite the
limited ground truth data, these novel techniques can greatly
gain from automatic contouring, particularly when these
imaging techniques are to be applied daily.17–22 In this study,
we exploited the large amount of annotated CT datasets to
enrich the MRI datasets which have limited or no annotated
data.

A common approach to tackle the lack of training data is
to augment them with random rotations, translations, geomet-
ric scaling, mirroring, contrast stretching, or elastic deforma-
tions.23,24 While these methods try to increase the diversity in
the training data, they are generally not able to mimic the
large variabilities existing in the full population of patients’
anatomies. Another approach is to use pretrained networks
on related problems via transfer learning.25 Instead of train-
ing a model from scratch, weights from a model, which was
trained for another, typically much larger dataset and task,
can be used to improve generalization and robustness. Most
published studies use transfer learning by starting from pre-
trained classification models on natural images.26,27 However,
data augmentation and transfer learning require that the
ground truth segmentation needs to be repeated for every
novel MR contrast setting. Moreover, these methods face the
challenge to be able to reflect a broad range of patients’ ana-
tomies.

Recently, deep learning has been used for synthetic image
generation.28 Especially promising are generative adversarial
networks (GANs) which can learn to mimic any data distribu-
tion and have been applied to image-to-image translation
problems, such as reconstructing objects from edge maps.29

In the field of medical image segmentation, GANs were
lately employed for data augmentation purposes.30,31 Conven-
tional GANs require paired datasets as their input, which in
practice may be hard to obtain for medical imaging and
would limit the dataset to patients who were imaged with
multiple imaging modalities. An extension of GANs to
unpaired datasets is the CycleGAN.32 Such a network was,
for example, used to generate paintings from photographs,
which would be infeasible if matched images were required.
In a radiotherapy context, the CycleGAN was used to gener-
ate synthetic CT images from unmatched brain MR data33 for
MR-only treatment planning purposes.

In this study, we used a CycleGAN to generate synthetic
MR images from CT images of a different patient cohort.
Instead of using the synthetic images for data augmentation,
we took one step further and trained a 2D CNN solely based
on the synthetic images to segment the parotid glands. This
resembled the situation where one would like to employ
annotated data from a different imaging domain (here CT
images) for a new imaging domain (here MR images) to
avoid the need for the time-consuming and expensive manual

segmentation process. Furthermore, the CycleGAN method
allows for the datasets to be unpaired. To the best of our
knowledge, this was the first study to generate synthetic MR
images from CT images for the purpose of training a network
to segment MR images.

2. MATERIALS AND METHODS

All data processing was done in Python (version 3.6).
Neural networks were trained using Pytorch (version 0.4.1),
Tensorflow (version 1.10.0), and Keras (version 2.2.2).

2.A. Data acquisition and preparation

The imaging database comprised 202 annotated CT
images and 27 annotated MR images of two different patient
cohorts. The MR library contained baseline T2-weighted MR
scans of 27 patients, all with a tumor at the base of the tongue
and treated with RT at the MD Anderson Cancer Center
(Houston, Texas, USA). One clinician at the Royal Marsden
Hospital (London, UK) manually delineated the left and right
parotid glands using the treatment planning system Raysta-
tion (Raysearch, Stockholm, Sweden). The CT images from
the publicly available database of the Cancer Imaging
Archive,34 as well as the MICCAI HNC segmentation chal-
lenge35 served as additional input data for the image synthe-
sis method. Figure 1 demonstrates exemplary axial, sagittal
and coronal views of all imaging modalities, together with
the manually segmented ROIs. Table I lists the relevant image
acquisition parameters for each imaging modality of the orig-
inal database.

As the resolution and field of view of the MR and CT
images were different from each other, we developed an
automated pipeline to ensure that CT and MR images had a
similar resolution and field of view. Both CT and MR
images were resampled to a 1x1 mm2 in-plane resolution.
The CT images were cropped to a window of 256×256 pix-
els in-plane, centered around the head, which was obtained
by detecting the skull outline. In the cranial-caudal direc-
tion, the range of the CT images was manually restricted to
be similar to that of the MR images. Resampling along the
cranial-caudal direction was not necessary as the applied
method was a 2D method and input was unpaired for the
CycleGAN.

As image intensities can vary between MR images, we
standardized the contrast with an intensity histogram-based
thresholding technique, before feeding them into the network.
We rescaled the intensities in the CT images to the recom-
mended soft-tissue window (level 40, window 350 HU)36 to
increase visibility of the parotid glands. Additionally, intensi-
ties of both imaging modalities were mapped to an intensity
range between 0 and 255.

2.B. Overview of employed method

Figure 2 provides an overview of the method employed in
this study. It consisted of three steps:
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(1) For each axial slice of the CT images, a correspond-
ing∗ synthetic MR axial slice was generated using the
2D CycleGAN (see Section 2.C.).

(2) A 2D U-Net was trained using the synthetic MR
images and corresponding manual contours from CT
images as input (see Section 2.E.).

(3) The trained 2D U-Net was used to propose contours
on unseen real MR images (see Section 2.G).

2.C. Synthetic MR generation

Step (1) of the workflow illustrated in Fig. 2 comprised
the synthetic MR generation. The unpaired 2D slices from
the CT and MR images were fed into a 2D CycleGAN net-
work to generate synthetic MR images for each of the 202
CT images. We used the PyTorch37 implementation provided
by Zhu et al.32 on Github.† In the following paragraphs, we
shortly describe the CycleGAN and the adjustments we made
to the PyTorch implementation. For further details, we refer
to the original implementation and publication.32

2.C.1. General workflow and objectives

The CycleGAN consists of two basic networks: a genera-
tor and a discriminator network. In our case, the generator’s
task was to generate realistic examples of MR images from a
given CT image, while the discriminator’s task was to clas-
sify presented examples as real or fake. These two networks
compete in an adversarial game of which the aim is to

FIG 1. Examples of images used in this study: Axial, coronal and sagittal views of the T2w MR (top row) and the CT images (bottom row). The colored regions
represent the manually segmented regions of interest of the left (red) and right (green) parotids. The CT images were downloaded from the publicly available
database of the Cancer Imaging Archive,34 as well as the MICCAI head and neck cancer segmentation challenge.35

TABLE I. Imaging parameters of the main, unprocessed database (T2-
weighted MR and CT images).

Parameter T2w MR CT

FOV [#pixels] 512×512 512×512

#slices 30 [165, 235]

Voxel size [mm3] 0.5×0.5×4 0.98×0.98×2.5

TE [ms] [96.72, 107.30] n.a.

TR [ms] [3198, 4000] n.a.

Flip angle [∘] 90 n.a.

Sequence type 2D T2w spin echo n.a.

Field strength/tube voltage 3 T 120 keV

∗As there was no one-to-one mapping for this case, the aim was to
map to a “plausible” MR image. †https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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improve each other’s performance. While this method can
generate images which appear to be realistic, nothing ensures
a corresponding anatomy between the input CT image and
the generated synthetic MR image.

To reduce the space of possible mappings, CycleGANs
employ a cycle-consistency strategy.32 This is achieved by
introducing two additional networks, a generator that is
trained to generate CT images from MR images and a dis-
criminator that learns to distinguish real from fake CT
images. Cycle-consistency loss functions then guarantee that
reconstructed CT images which have gone through the full
cycle (CT->MR->CT) are similar to the original CT images
and vice versa for MR images. Figure 3 illustrates these for-
ward (CT→MR→CT) and backward cycles
(MR→CT→MR).

To further constrain the generated synthetic MR images to
ones that geometrically match the source CT images, we
introduced a geometric consistency loss as additional contri-
bution to the objective function. For this purpose, we deter-
mined the skull mask of the source CT and the synthetic MR
and calculated the binary cross-entropy between these masks.
We introduced the same loss for the mapping in the opposite
direction (source MR to synthetic CT). With MðICTÞ denot-
ing the skull mask of a CT image ICT and GMR representing
the generator which generates MR images from CT images,
the geometric loss term Lgeo,CT for the forward cycle yields

Lgeo,CTðGMR, ICTÞ ¼M GMRðICTÞð Þ � log M ICTð Þð Þ
þ 1�M GMR ICTð Þð Þð Þ � log 1�M ICTð Þð Þ:

(1)

FIG 2. Overview of the proposed cross-modality learning method: in the first step (top row), synthetic MR images are generated through the CycleGAN network.
The synthetic MR images are then fed into a 2D U-Net, together with the annotations from the CT images (second row). In a third step, the trained network is
applied to unseen real MR images (bottom row)
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The geometric loss term for the backward cycle can be
obtained by replacing the MR by the CT and vice versa. This
loss function was an addition to the default network. The full
network architectures of both, generator and discriminator,
are illustrated in Fig. 4.

2.C.2. Training parameters

We employed the recommended training settings, as
described in the original publication32 (Adam optimizer38

with batch size 1, initial learning rate 2�10�4 fixed for 100
epochs and linearly decaying to zero over another 100
epochs, where in each epoch, the algorithm iterates over all
training images.). For the respective contributions to the full
objective function, which is composed of the weighted sum
of the individual terms, we set the weights to λadversarial ¼ 1
for the adversarial loss term, λcycle ¼ 10 for the cycle-consis-
tency terms, and λgeo ¼ 10 for the geometric consistency
terms.

2.D. Data cleaning as input for segmentation
network

Since not all synthetic MR images perfectly matched the
input CT, we performed a data cleaning where we only
selected slices that were suitable for the segmentation of the
parotid glands. The selection was done based on the Dice
overlap of the external outline of the head between the syn-
thetic and real image where we discarded all images that had
an overlap of less than 80%. Furthermore, we explored

constraints on the external outline of the head and decided to
perform a refinement 2D registration to map synthetic MR
images to the original CT. We performed the registration
using the Elastix toolkit39 (rigid registration followed by
deformable registration, CPP grid spacing: 8 mm, similarity
measure: mutual information, optimizer: gradient descent).
As the synthetic MR images were already generated in the
same geometrical space as the CT, the segmentation of the
CT formed the gold standard MR segmentation for the seg-
mentation network.

2.E. Segmentation network

After data cleaning, we fed all remaining 2D synthetic
MR images (approximately 1500) into a 2D U-Net as training
data (step (2) of the workflow in Fig. 2). The U-net was
trained to generate contours for the input MR images.
Figure 5 illustrates the network’s architecture (5 resolution
levels, starting at 64 features and ending at 1024 features at
the lowest resolution in the bottleneck).

We split the data into 80% training and 20% validation to
choose suitable hyperparameters. The inference was per-
formed on the 27 real MR images, which comprised the test-
ing data. We trained the segmentation network for 100
epochs with an initial learning rate of 5�10�5. We used the
Adam optimizer38 and a Dice similarity loss function. We
gradually reduced the learning rate by monitoring the valida-
tion loss, down to a minimum of 10�7 and employed early
stopping when the validation loss did not decrease by more
than 1% after a patience of 10 epochs.

FIG 3. Illustration of the CycleGAN method: two cycles are introduced such that the generated synthetic images resemble the input images (Cycle for synthetic
MR images on the left and for synthetic CT images on the right). The different networks are illustrated in detail in Fig. 4.
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FIG 4. Generator and discriminator networks: This figure illustrates the generator network (top row) and the discriminator network (bottom row). The generator
consists of three convolutional layers (conv) with a rectified linear activation function (ReLU), followed by nine residual blocks, two transpose convolutional lay-
ers, and a final convolutional layer with a tanh activation function. The discriminator consists of five convolutional layers and classifies images into two cate-
gories: real or fake. The black numbers on top of the layers represent the number of feature channels. Below each array, the colored numbers denote the
convolutional kernel size (#x#), the size of the stride s and the size of potential zero-padding zp.

FIG 5. Network architecture: This figure illustrates the architecture of the segmentation network (2D U-Net with five resolution levels, starting at 64 features and
ending at 1024 features at the lowest resolution in the bottleneck). Each rectangle corresponds to a feature map. The feature channels are denoted at the top of the
rectangles. Striped boxes represent copied feature maps. The colored arrows denote the different operations as indicated in the legend. The output for all three
approaches is a 2D segmentation map.
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2.F. Computation time

The run times were determined for program execution on
a single Tesla V100 with 16 GB VRAM. Inference times are
stated per patient, where we calculated the average over all 27
patients, as well as the standard deviation.

2.G. Geometric evaluation

We evaluated the performance of the segmentation net-
work by calculating the Dice similarity coefficient (DSC),
Hausdorff distance (HD), and mean surface distance (MSD)
between manual and auto-generated contours. We compared
the determined accuracy to training the segmentation net-
work with the CT data (CT only) as a benchmark. It is a
known problem that the evaluation of auto-segmentation suf-
fers from the lack of the ground truth. Interobserver variabil-
ity can provide an estimate of the upper bound on the
desired auto-segmentation accuracy. We compared our
results to the interobserver variability which we had deter-
mined in a previous study.40 That interobserver study was
performed on a subset of the patients from this current
study. In the referenced study, three observers including the
one in our current study contoured the parotid glands. To
determine the interobserver variability between two obser-
vers we first calculated the DSC, HD, and MSD between
the respective observers’ contours for each patient and
defined the variability as the average and SD over all
patients. The overall interobserver variability was then calcu-
lated as the average of the three individual interobserver
variabilities, with the SD being the root mean square of the
three individual SDs.

3. RESULTS

3.A. Synthetic MR generation

Figure 6 illustrates selected (green box) and rejected (red
box) example cases of synthetic MR images together with
their corresponding source CT images. In most rejected
cases, the synthetic MR images appeared as if they could be
real MR images, however, they did not reflect the anatomy
visible in the source CT images.

3.B. Computation time

Training of the CycleGAN took approximately 72 h. The
training of the 2D U-Net took approximately 150 min,
whereas inference was done within 0.86�0.02s per patient.

3.C. Qualitative segmentation results

Figure 7 illustrates four typical example cases for auto-
generated contours using the cross-modality approach, com-
pared to the manual contours. We selected an axial, sagittal,
and coronal view for each of the patients. The auto-generated
contours followed the manual ones closely.

3.D. Geometric evaluation

Figure 8 illustrates boxplots, comparing our developed
method, cross-modality learning, to the CT-trained network.
Table II lists mean and standard deviations for the DSC, HD,
and MSD for all methods. The cross-modality learning accu-
racy (DSC: 0.77�0.07, HD: 18.32�10.12mm, MSD: 2.51
�1.47mm) stayed below, but was close to the interobserver
variability (0.84�0.04, 10.76�4.35mm, 1.40�0.45mm), as
well as the CT-trained (DSC: 0.82�0.09, HD: 13.01
�5.61mm, MSD: 1.81�0.99mm) network.

4. DISCUSSION

In this study, we employed a new technique, cross-modal-
ity learning, to transfer knowledge gained from one applica-
tion (annotated CT images) to a new application
(nonannotated MR images). This technique tackles the gen-
eral problem of data scarcity in medical imaging. To the best
of our knowledge, we were the first to generate synthetic MR
images from annotated CT images to train an MR segmenta-
tion network. We found that it was possible to obtain decent
quality annotations of MR images from annotated CT data.

We anticipate that cross-modality learning could be used
to generally adapt a trained network of one imaging modal-
ity to another imaging modality. Auto-segmentation meth-
ods are usually trained on a very particular subset of
imaging data. These might work well when the target
images are similar to the ones that have been used in the
development phase. However, in clinical routine, there are
frequent changes, especially in MR image settings. While in
a conventional approach this could mean that a new data-
base with annotations of the new images would need to be
created, the cross-modality learning would be able to reuse
the already existing annotations on existing data and transfer
it to the new data.

In this study we investigated the extreme case where no
annotated MR data are available. In future work, one could
combine real and synthetic MR data, for example by using
the synthetic MR images as augmentation data, or by training
the network with the synthetic data as initialization and fine-
tune using the real MR data.

4.A. Synthetic MR generation

The CycleGAN was generally able to generate synthetic
MR image from the input CT images. In the cases where it
failed, the synthetic MR image often still looked like a real
MR image, albeit not corresponding to the anatomy of the
source CT image. Depending on the application, such images
still could be useful. However, for our purpose, where we
propagate the contours, one requires a satisfactory agreement
between the represented anatomies. The failed generation
could stem from the fact that we only had a small number of
real MR images from which the CycleGAN could perform a
style transfer. As the CycleGAN learns to map features from
the source data (here: CT) to the target data (here: MR), it
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might focus on irrelevant features, such as smaller heads in
the target data. Failure to generate an MR that corresponded
well to the input CT especially happened at the superior and

inferior boundary slices. Due to the limited field of view of
the training MR images in that direction, there were not a lot
of samples available for the CycleGAN to learn.

FIG 6. Typical examples of synthetic MRs and their corresponding source CTs: The green boxes highlight example cases that were selected for further learning.
The red boxes highlight cases where the CycleGAN failed to produce anatomically corresponding MR images for the respective CT images and hence were
rejected for further analysis.
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We furthermore detected a systematically narrower exter-
nal outline of the head for the synthetic MR images compared
to the source CT. In theory, no penalty in the CycleGAN pre-
vents it from learning this narrowing function, as it could

learn to generate more “narrow” MR images in the forward
generator and go back to “broader” CT images in the back-
wards generator. This issue could be related to the skin out-
line being visible in the CT images but not in the MR
images. While we tried to enforce a better overlay between
these outlines by incorporating a geometric consistency pen-
alty in the loss function, we were not able to entirely remove
this issue. Wolterink et al.33 did not report on any similar
issues. However, they trained the CycleGAN using CT and
corresponding MR images stemming from the same patients,

FIG 7. Qualitative results for cross-modality method: In each column a typical example case of the cross-modality learning approach (in red) is shown. The man-
ual contours are shown in blue. The rows correspond to an axial, sagittal, and coronal cross-section, respectively. Each example originates from a different patient
image.

FIG 8. Boxplots of the Dice similarity coefficient, the Hausdorff distance and
the mean surface distance (from top to bottom), averaged for both parotid
glands. The introduced method (in red) is compared to the CT-trained net-
work (in green). The gray bar represents the interobserver variability.40

TABLE II. Evaluation of the geometric accuracy of auto-segmenting the left
and right parotid gland of the cross-modality learning approach (highlighted
in bold). As a benchmark, we also include the geometric accuracy of the CT-
trained network.

ROI Method DSC HD (mm) MSD (mm)

Right Cross-modality
learning

0.76 � 0.06 18.32 � 10.12 2.66 � 1.26

Parotid CT only 0.81 � 0.07 13.01 � 5.61 1.87 � 0.84

Interobserver
variability

0.84 � 0.04 10.76 � 4.35 1.40 � 0.45

Left Cross-modality
learning

0.77 � 0.04 17.75 � 7.49 2.36 � 0.75

Parotid CT only 0.82 � 0.05 12.98 � 5.15 1.74 � 0.53

Interobserver
variability

0.83 � 0.04 10.94 � 3.75 1.59 � 0.63
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whereas our study was aiming at datasets where there were
no matched data available and the CT and MR images there-
fore originated from different patients, subject to a large vari-
ability within the dataset itself. A recent study has reported
similar findings and introduced an additional shape-consis-
tency loss to mitigate this problem.41

Recent research has shown that GANs are generally chal-
lenging to train and face problems with nonconvergence,
mode collapse (producing limited varieties of samples) and
diminishing gradients of the generator when the discrimina-
tor becomes too powerful.42 As they have been shown to be
highly susceptible to hyperparameter selections,42 we expect
that one could improve the synthetic MR generation further
by tuning more hyperparameters. However, this would require
more training data than what was available for this proof-of-
concept study. Once more data become available, one could
further optimize these parameters in future studies. In this
study, we performed a 2D registration between the CT and
the corresponding synthetic MR image to mitigate these
detected “narrowing” transformations.

4.B. Geometric evaluation

The accuracy of the cross-modality method stayed below
the interobserver variability, as well as the CT-trained net-
work. We believe that there are several reasons for the cross-
modality method to be inferior in segmentation quality com-
pared to networks trained on real data and we believe that the
accuracy of the network can be further improved if these
issues are addressed adequately. The quality of the ground
truth contours for the CT images was not as high as for the
MR images. Three typical examples demonstrating the infe-
rior quality of the CT contours are illustrated in Fig. 9.

This was also evident from the accuracy of the CT-trained
network. The MR images in this study were contoured by the
observers specifically for the purpose of creating accurate

contours, hence leading to a generally larger agreement. The
CT data, on the other hand, were contoured in clinics for RT
and not for a contouring study. The CT contours hence repre-
sent a typical clinical dataset. The MR contours used to eval-
uate the cross-modality method were done by a single
observer, whereas the CT contours used as a reference for the
CT-only training were done by multiple observers, introduc-
ing further uncertainty. We expect that the true agreement
between observers in the CT dataset would be lower than
what the interobserver variability from the MR data suggests.
However, it was not possible to obtain this value for our
study.

The cross-modality method was trained using the subopti-
mal contours of the CT dataset but was evaluated on the
accurate contours of the MR dataset. The CT-only method,
on the other hand, was compared to the suboptimal contours
of the CT dataset. These reasons led to a worse performance
for the cross-modality method per definition, when compared
to the interobserver variability and the CT-only method. We
believe that the cross-modality approach best represents the
true performance, as in a commercial setting, the end user
(e.g., clinician 1) will use a product that was trained on data
from other clinicians (clinicians 2-N) and the end user will
always compare the performance of the product to what he or
she would have normally contoured. The CT-only method
was only added as an optimal reference. The fact that the
cross-modality method scored only marginally worse (the
CT-only compared to cross-modality difference was included
in the confidence intervals of 1 SD) is very encouraging.

We found two challenges in the synthetic MR generation.
First, the synthetic MR images did not always represent the
corresponding anatomy of the CT images and second, a regis-
tration between source CT and synthetic MR images was nec-
essary. These challenges may have introduced a further
inaccuracy in the segmentation network, hence resulting in a
lower segmentation quality of the cross-modality learning

FIG 9. Quality of CT contours: This figure illustrates three typical example of poor quality CT contours, where the contours do not enclose the full parotids (left
and right parotid in the first column, right parotid in the second column) or are fully missing (left parotid in the last column).
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method compared to training the network with the CT
images.

In comparison to a transfer learning approach, we could
directly incorporate the varieties found in a larger patient
database to the small subset of MR images. Unlike in typical
transfer learning applications, we did not merely want to
transfer the ability to detect edges and simple shapes. Instead,
we aimed to transfer the gained knowledge about the variety
of shapes and locations of the parotid glands from the net-
work trained on CT images. Additional experiments (not
shown in this paper) have shown that it is challenging to
determine where the desired information is stored in the net-
works and hence it is not straightforward to transfer that
information to a new application. Furthermore, unlike the
transfer learning approach, no additional manual segmenta-
tion was necessary with the cross-modality learning method.

4.C. Limitations of this study

A limitation of the introduced cross-modality learning was
that 2D slices were predicted instead of directly generating
3D volumes. This led to inconsistencies between some slices
and only allowed for a 2D segmentation network. Employing
a fully 3D approach may reduce the number of falsely pre-
dicted synthetic MR images. However, current state of the art
GPUs, including ours, are typically not able to train such a
3D CycleGAN due to insufficient memory.

In this proof-of-principle study, 2D image registration
between the CT and synthetic MR slices was necessary. We
are confident that in future work, when larger CT and MR
databases become available, this need will be removed. Such
databases would enable the CycleGAN to capture the impor-
tant features in both imaging modalities and lead to better-
quality synthetic MR images.

5. CONCLUSION

We employed cross-modality learning, to transform anno-
tated CT images into synthetic annotated MR images. These
synthetic MR images were of sufficient quality to train a net-
work for automated contouring. This technique of cross-
modality learning can be of great value for segmentation
problems where annotated training data are sparse. We antici-
pate using this method with any MR training dataset to gener-
ate synthetic MR images of the same type via image style
transfer from CT images. Furthermore, as this technique
allows for fast adaptation of annotated datasets from one
imaging modality to another, it could prove to be useful for
translating between large varieties of MRI contrasts due to
differences in imaging protocols within and between institu-
tions.
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