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Genetic and epigenetic variation, together with transcriptional plasticity, contribute
tointratumour heterogeneity’. The interplay of these biological processes and

their respective contributions to tumour evolution remain unknown. Here we show
thatintratumour genetic ancestry only infrequently affects gene expression traits

and subclonal evolution in colorectal cancer (CRC). Using spatially resolved paired
whole-genome and transcriptome sequencing, we find that the majority of
intratumour variation in gene expression is not strongly heritable but rather ‘plastic’.
Somatic expression quantitative trait loci analysis identified anumber of putative
genetic controls of expression by cis-acting coding and non-coding mutations, the
majority of which were clonal within a tumour, alongside frequent structural
alterations. Consistently, computational inference on the spatial patterning of tumour
phylogenies finds that a considerable proportion of CRCs did not show evidence of
subclonal selection, with only a subset of putative genetic drivers associated with
subclone expansions. Spatial intermixing of clones is common, with some tumours
growing exponentially and others only at the periphery. Together, our data suggest
that most genetic intratumour variation in CRC has no major phenotypic consequence
and that transcriptional plasticity is, instead, widespread withina tumour.

Geneticintratumour heterogeneity (gITH) is aninevitable consequence
of tumour evolution®. Extensive gITH has been documented across
human cancer types', and its precise pattern withinan individual cancer
isadirect consequence of the evolutionary dynamics driving the devel-
opmentofthe tumour®. Consequently, clones that undergo positive, neg-
ative or neutral selection can be identified through analysis of gITH**®.
However, clonalselectionincanceroperatesonthe phenotypiccharacter-
istics of a cell-for example, the ability of a cancer cell to evade predation
by the immune system’ or to survive in oxygen-poor environments®’
and can be modulated by spatial competition® . Knowledge of the
genotype-phenotype map of cancer cells is limited and thus, while
genomics offers us a window into determination of which clones are
selected, the methodology provides limited information on precisely
why they are selected. Interrelatedly, the extent to which subclonal
mutations in tumours lead to phenotypic change is unclear.

RNA sequencing (RNA-seq) enables high-throughput profil-
ing of phenotypic characteristics of cancer cells by quantitative

measurement of gene expression levels®. Historically, studies have
focused on intertumour differences in gene expression patterns
and have led to the identification of gene expression signatures
that correlate with clinical outcomes. In colorectal cancer (CRC),
the focus of this study, consensus molecular subtypes (CMS) or
cancer cell-intrinsic gene expression subtypes (CRIS)" exemplify
this approach. Because the transcriptome is a feature of the can-
cer cell phenotype, it is natural to view changes in expression, and
the pattern of transcriptomic intratumour heterogeneity (tITH),
as ‘functional’ and the substrate for tumour evolution. Potentially
tITH could be driven entirely by underlying heritable (epi)genetic
variation that evolves during tumour growth. However, the observa-
tion that local invasion is polyclonal in both CRC™ and early breast
cancer® challenges the notion that cancer cell phenotype (here, the
ability toinvade) isdriven solely by the accrual of genetic mutations.
Furthermore, observations of rapid transcriptional shifts following
treatment (for example, in melanoma?®®) and, in CRC, variationin
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subclone proliferation rates through serial retransplantation despite
largely stable patterns of genetic alterations®, discount the notion
that transcriptomic phenotypes are determined solely by clonal
replacement. It has previously been determined that most driver
mutations are clonal in metastatic CRC, meaning that intratumoral
transcriptional variation often happensin the absence of the acquisi-
tion of new key driver mutations?. Collectively, these studies suggest
that phenotypic characteristics are at least partially plastic—they can
vary without acquiring anew heritable (epi)genetic alteration to drive
expression changes, for instance as aresponse to the cellular environ-
ment. In patient samples we cannot measure longitudinally the exact
same clones or cells, and so here we define atrait as plasticifit varies
independently of evolutionary history. Conversely, non-plastic traits
are fixed through tumour evolution.

Here we analyse spatially resolved paired genomic (whole-genome
sequencing), epigenomic (assay for transposase-accessible chromatin
using sequencing, or ATAC-seq), and transcriptomic (whole-transcript
RNA-seq) profiling, coupled with computational modelling, to char-
acterize the evolution of phenotypic heterogeneity in CRC. Paired
DNA-RNA data enable assessment of the interrelationship between
genetic evolution and gene expression patterns, and of the functional
consequence of gene expression change for cancer evolution.

We analysed our spatially resolved, multiomic, single-gland profil-
ing dataset from primary CRCs* that were part of our Evolutionary
Predictionsin Colorectal Cancer (EPICC) study. Single-gland profiling
allowed multimodal DNA, chromatin and RNA characterization of the
same small clonal unit of tissue (glands or crypts). We focused our
analysis on 297 samples from 27 CRCs (mean, 11 samples per tumour;
range, 1-38) in which we had obtained high-quality, full-transcript
RNA-seq data. Paired deep and shallow whole-genome sequencing
and chromatin accessibility analysis by ATAC-seq were available for a
subset of these samples. An analysis of the ATAC-seq data is available
inthe associated paper?.

Expression heterogeneity in CRC

First, we explored the heterogeneity of gene expression within and
between CRCs. We clustered a filtered set of 11,401 genes (including
removal of very lowly expressed genes and those significantly nega-
tively correlated with purity; Methods) using both the mean and vari-
ance of gene expression within each tumour (Fig. 1a), and separated
the dendrogram into four groups (Methods): group 1 had high aver-
age expression and relatively low variance in gene expression (‘highly
expressed, limited heterogeneity’); groups 2 and 3 had progressively
lower average gene expression and high variance in expression, whereas
group 4 genes had low average gene expression and low variability
between samples from the same tumour (Fig. 1b,c and Supplemen-
tary Table 1). Meta-pathway analysis showed weak, non-significant
enrichment for pathwaysinvolvedin cellgrowth and deathingroup 1,
and significant enrichment for cancer-related genes in group 2 and
pathwaysrelated toreplication and repairin group 3 (Fig.1d). Group 4
was weakly and non-significantly enriched for signalling pathways
but, due to generally low expression, it was excluded from further
analyses. We confirmed that transcriptional heterogeneity evidentin
group 2 genes in tumours was less prominentin an equivalent analysis
of normal colon single-cell RNA-seq (scRNA-seq) data, thus excluding
the possibility that the gene expression variation we observed was
simply the natural transcriptional noise of colon cells (Methods and
Supplementary Figs.1and 2).

We repeated the clustering analysis using hallmark pathways?
(Methods) rather than individual genes (Extended Data Fig. 1a), and
separated the dendrograminto four groups of pathways based on the
degree and heterogeneity of enrichment score within and between
cancers, respectively (Extended Data Fig. 1b,c). Hallmark pathways
were grouped into ‘classes’ according to their biological mechanism
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(oncogenic, immune, stromal and so on)*. Homogeneously enriched
pathways (pathway group 1) showed moderate but not significant
enrichment for cellular stress response; heterogeneously enriched
pathways (pathway group 2) were moderately but not significantly
enriched for oncogenic signalling (Extended Data Fig. 1d), congru-
ent with the gene-level result. Pathway group 4 (low average pathway
enrichment and high heterogeneity) contained two pathways, epi-
thelial-mesenchymal transition and angiogenesis; these were both
classed as stromal, meaning that pathway group 4 was enriched for
stroma-related pathways (Extended Data Fig. 1d).

Consensus molecular subtypes' and CRISY are useful approaches
in classification of CRC by gene expression patterns. We investigated
theintratumour heterogeneity of these classifiers. For CMS, only 2 out
of 17 tumours with sufficient samples for analysis were homogene-
ously classified (both CMS3; Extended Data Fig. 2a). For CRIS, only a
single tumour was homogeneously classified (CRIS-A; Extended Data
Fig. 2b). CRIS classification exhibited higher intratumour expression
heterogeneity than CMS (Extended DataFig.2a,b), and heterogeneity
remained when the analysis was limited to only those samples that
could be subtyped with high accuracy (Extended Data Fig.2e-h). Cor-
respondence between CRIS and CMS type calls was weak (Extended
DataFig. 2c). We note that others have published data showing the
heterogeneity of molecular subtypes in CRC*** and the discordance
between CRIS and CMS classifications?. The genes used for both
CMS and CRIS classification were depleted for highly homogeneously
expressed genes (group 1; Extended Data Fig. 2d). Consequently, both
CRIS and CMS classifiers exhibited extensive ITH.

Together, these analyses showed that gene expression programmes
that define cancer cell biology and interactions with the surrounding
tumour microenvironment were not uniformly expressed across CRCs.

Evolution of expression heterogeneity

We sought to understand the genetic determinants of the observed
tITH. If variability in gene expression was caused by genetic change
withinthe tumour (thatis, iftiITHis caused by gITH), then gene expres-
sion variability should mirror genetic ancestry. Phylogenetic signal is a
statistical method derived from evolutionary biology that measures the
degree towhich phenotypic (dis)similarity between speciesis explained
by genetic ancestry, and can be quantified by Pagel’s A statistic?*>°
(Supplementary Fig. 3). We assessed the phylogenetic signal of gene
expression heterogeneity in each of our CRCs with sufficient paired
RNA-seqwhole-genome sequencing (WGS) data (114 samples from eight
tumours; median 11 samples per tumour, range 6-31). Phylogenetic
trees for each tumour were constructed from WGS data (Methods)
and terminal nodes overlaid with gene expression profiles (Fig. 1e,f
and Extended DataFig. 3). Pagel's Awas computed for 8,368 genes from
groups 1-3 (as defined in Fig. 1a), with group 4 genes removed due to
low average expression. Within each tumour a median of 166 genes
(range 67-2,335) had expression levels with detectable phylogenetic
signal (P < 0.05), though with the exception of cancer C559 no associa-
tionsremained after multiple testing correction. The number of genes
with phylogeneticsignal (at P< 0.05) did not significantly correlate with
thenumber of samples per tumour (P = 0.25; Supplementary Fig.4). The
above analyses were rerun using standard log-normalization of gene
expression and there was a high overlap between genes with evidence
of phylogenetic signal, indicating that the normalization method has
anegligible impact on results (Supplementary Fig. 5). Adjustment of
expression for tumour content (purity) before running phylogenetic
signal analysis was also found to have a minimal impact on results
(Methods and Supplementary Fig. 6). Post hoc power analysis indi-
cated that our dataset was sufficiently sized to enable detection of the
heritability of early subclonal, large-effect changes in gene expression
(Supplementary Fig. 7); the expression of most genes did not show this
pattern of heritability.
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Fig.1|Heterogeneity of gene expression and phylogenetic signalin CRC.
a, Heatmaps showing clustering of genes by expression level across tumours
(left) and expression variation within tumours (right). Hierarchical clustering
showed four distinct groups, groups 1-4. Units are scaled by columnineach
heatmap.b,c, Summarybox plots per gene group (group 1, 891 genes;

group 2, 2,444 genes; group 3, 5,033 genes; group 4, 3,033 genes). Mean
expression level (b) and intratumour heterogeneity of expression (c) per
group, as measured by s.d. d, Meta-KEGG pathway analysis showing which
pathway categories are most over-represented in each group (after removal of
‘infectious disease: bacterial’ and ‘neurodegenerative disease’—most
significantingroup 1). e,f, Phylogenetic trees and heatmaps of genes with
evidence of phylogenetic signal (at P< 0.05) for tumours C551 (e) and C554 (f).
g,Heatmap of genes with recurrent phylogenetic signal across tumours (those
which were found to have evidence of phylogenetic signal in at least three
tumours). h, Results of chi-squared test showing whether gene groups were

Only 61 genes had expression patterns that recurrently mirrored
phylogenetic ancestry in at least three tumours (Fig. 1g). Group 1
genes (highly expressed, limited heterogeneity) were enriched for

enriched for phylogenetic genes (those with evidence of phylogenetic signal
inatleastone tumour—“Phylo”) comparedto all other genes (“Non-phylo”).

i, Enrichment of KEGG PPAR signalling pathway for recurrently phylogenetic
genes. j, Example phylogenetic tree and pathway enrichment heatmap for
tumour C559. Pathways are ordered by decreasing significance of phylogenetic
signal. k, Heatmap showing recurrence of phylogenetic signal of pathways
acrosstumours. Pathways are ordered by decreasing recurrence. Refer to
pathway key in Extended Data Fig. 4 for pathway names. *P<0.05, **P<0.01,
***P<0.001; Mean norm., mean gene expressioninnormal samples; Mean
mean exp., mean of mean gene expression per tumour; Mean var., mean
standard deviation of gene expression; MedPval, median P-value from forest of
100 trees; MedLambda, medianAvalue from forest of 100 trees; NumRec,
number of tumours in which gene has evidence of phylogenetic signal; Num
Sig, number of tumoursin which pathway has evidence of phylogenetic signal;
d.f.,degreesof freedom.

phylogenetic signal whereas group 3 genes (moderately expressed,
moderate heterogeneity) were significantly depleted for phylogenetic
signal (Fig. 1h). Interestingly, the Kyoto Encyclopedia of Genes and
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Fig.2|Genetic control ofexpression witheQTL. a, The number of genes with
significant models for each datatype.b, Distribution of regression coefficients
(effect sizes) for each datatype.c,d, Volcano plots highlighting selected genes
significant for SCNA (c) and MuteQTLs (d) (linear regression two-sided t-tests;
P4, FDR-adjusted Pvalues). e, In comparison with non-synonymous mutations
(NS), enhancer (Enh) mutations tended to have large effect sizes and a higher
proportion of positive effect sizes. f, The proportion of subclonal mutations
associated with detectable changesin cis gene expression was significantly
lower than for clonal eQTL mutations. g, Visualization of Fisher’s exact tests
showing that gene-mutation combinations were more likely tobe eQTLs if
they were associated with recurrent phylogenetic genes (genes found to have
evidence of phylogenetic signalin atleast three tumours) for subclonal
mutations, and that this was not significant for clonal mutations. Phylo and
Non-phyloindicate whether agene had evidence of phylogenetic signalin the
tumour in which the mutation was present. Two-sided Fisher’s exact tests,
Pvalues not corrected for multiple testing.

Genomes (KEGG) pathway peroxisome proliferator-activated receptor
(PPAR) signalling, involved in prostaglandin and fatty acid metabolism®
was statistically over-represented in this recurrently phylogenetic
set of genes (false discovery rate (FDR) = 0.0075, STRINGdb analysis;
Fig.1i).Links between PPAR metabolism and CRC have previously been
reported**,

Analogous assessment of phylogenetic signal at the level of gene
expression pathways (Fig.1jand Extended DataFig. 4; at P<0.05, only
cancer C559 showed associations after correction for multiple test-
ing) showed two pathways with recurrent evidence of phylogenetic
signal in at least three tumours: (1) fatty acid metabolism, related to
the PPAR signalling pathway, which was identified in the gene-level
analysis, and (2) MYC_TARGETS _V2 that contains genes regulated by
MYC signalling (Fig. 1k). Phylogenetic signal at pathway level was not
related to pathway class (as used in Extended Data Fig. 1a,d). Thus, in
our dataset, the expression of most pathways was not strongly related
to genetic ancestry.

4 | Nature | www.nature.com

We defined phenotypic plasticity as gene expression changes that
occurred independently of evolutionary history, possibly as a conse-
quence of external stimulus from the tumour microenvironment. To
examine this, phylogenetic trees and expression-based dendrograms
were compared, showing few instances in which genetic history mir-
rored current levels of gene expression (Extended Data Fig. 5 and Sup-
plementary Fig. 8). Across the cohort, the level of geneticintermixing
of clones across tumour spatial regions was uncorrelated with the level
of gene expression heterogeneity between regions (Supplementary
Fig.9). To specifically examine the influence of tumour microenviron-
ment, we tested whether gene expression of tumour glands was clus-
tered by tumour region (Supplementary Fig.10), observing significant
clusteringin4 of 11 tumours (FDR < 0.05; Methods and Supplementary
Fig.11). We used CIBERSORTX>** to quantify immune cell infiltrationin
oursamples and tested for association between the degree of infiltra-
tionand overall difference in gene expression, finding a significant but
weak association (R?= 0.21; Methods and Supplementary Fig.12), with
the caveat thatthereisinherent uncertainty in RNA-seq deconvolution
ingeneral. Together, insupport of previous research studying how the
microenvironment can determine gene expression®*?¢, these analyses
provided evidence that the tumour microenvironment could influence
plastic gene expression programmes in tumour cells irrespective of
accrued genetic changes in those cells.

Genetic determinants of gene expression

Somatic mutations altering gene expression are a potential mechanistic
explanation of phylogenetic signal. We used asimple linear regression
framework (Methods), inspired by the expression quantitative trait loci
(eQTL) used in human population genetics®, to detect cis associations
between inter- and intratumour somatic genetic heterogeneity and
gene expression.

Intotal, 5,927 genes had cis somatic genetic variationin at least two
samples (n =167 samples with matched RNA-seqand WGS data and at
least two samples per tumour), comprising n = 2,422 non-synonymous
genic mutations (mutations were single nucleotide variation (SNVs)
orindels), n=20,790 non-genic (enhancer) mutations and extensive
somatic copy number alterations (SCNAs). Of these genes, 1,529 (25.8%)
had expression significantly correlated with inter- or intratumour
somatic genetic variation (including both mutations and copy number
alterations; FDR < 0.01, Storey’s m = 0.1007; Fig. 2a and Supplementary
Table 2), which we termed eQTL genes. A higher FDR cut-off of 10% was
assessed, but this had only a negligible impact on results.

Somatic copy number alterations contributed to expression changes
of1,163 out 1,529 (76.1%) eQTL genes (Fig. 2b,c and Supplementary
Table 2), but the magnitude of the effect on expression was generally
small (Fig. 2b; median effect size 0.30 s.d. in expression change per
allele copy). A positive correlation between copy number and expres-
sionwas observed for1,082 genes but, interestingly, a negative correla-
tionwas observed for 81. Positive correlations were enriched at loci with
total copy number one and four (Supplementary Fig.13a,d) whereas
negative correlations were disproportionately more common at genes
with total copy number two or three (copy number two includes cases
with copy-neutral loss of heterozygosity, copy number three includes
unbalanced gains; Supplementary Fig.13b,c). Consequently, we specu-
late that negative correlations between copy number and expression
are due to dominant-negative activity of the amplified allele. We note
that this idea is consistent with cell line research which found that
single-chromosomal gains can function as tumour suppressors,

Mutations, both coding and non-coding, were associated with gene
expression variation in 508 eQTL genes (Fig. 2b,d) and, typically, the
magnitude of the association was much greater than for SCNAs (mean
effectsize1.92 versus 0.30 s.d. for mutation versus single-copy number
change; Fig. 2b). For coding somatic mutations, approximately equal
numbers of mutations associated with an increase versus decrease
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in expression were observed (33 coding mutations with increasing
expression versus 27 with decreasing expression, P= 0.4). Non-coding
enhancer somatic mutations were associated with the greatest changes
in gene expression observed in our cohort, and were more likely to

be associated with increases in expression (486 increases versus 258
decreases, P=6.3 x1077; Fig. 2e). The expression of 175 genes was
significantly associated with both SCNAs and mutations, indicating
how the combination of somatic mutation and copy number altera-
tions can potentially determine the gene expression phenotype of
cancer cells. We used the Hartwig metastatic CRC cohort® to validate
eQTL results: 22 eQTL mutations had sufficient variation present in
the Hartwig cohort to detect associations of the magnitude observed
in our cohort and, of these, 9 (41%) were validated (Supplementary
Fig.14). The unexplained gene expression variation for the remaining
13 variants could be due to germline, trans or other epigenetic effects.
A post hoc power analysis found that we were powered to detect (that
is, at least 80% power) effect sizes greater than 0.94 (s.d. in expres-
sion change; Supplementary Fig. 15). Assessment of germline SNPs
showed some outliers that may have had a small impact on our eQTL
analysis, and this could possibly be due to variations in patient genetic
ancestry (Methods and Supplementary Fig.16). With thisinmind, and
because we did not examine trans effects, we emphasize that eQTLs
areonly associations and not proof of amechanisticlink. In aseparate
subgroup analysis of mutations in microsatellite stability (MSS) versus
microsatellite instability (MSI) cases, mutations in MSS tumours were
more frequently associated with large effects on gene expression (Sup-
plementary Fig.17) whereas the addition of MSI status as a cofactor had
minimalimpact on tumour eQTL associations (correlation of R’ values
betweenoriginaland MSI-added analysis, P<1.1 x 107¢, R*= 0.855; Sup-
plementary Figs.18 and 19).

Overall, only 2.4% (89 out of 3,705) of subclonal mutations in
whicheQTL status could be investigated were associated with detect-
able changes in cis gene expression, compared with 3.6% (688 out of
19,256)—many more in absolute numbers—of clonal eQTL variants
(P=3.7 x107*;Fig. 2f). Genes associated with subclonal eQTL mutations
were enriched for phylogenetic signal (odds ratio (OR) =3.5, P=0.02;
Fig.2g), and this significant enrichment was absent for genes associated
with clonal mutations (OR =1.7, P=0.11; Fig. 2g). Thus, whereas most
somatic mutations did not result in a detectably large direct change
incisgene expression, each tumour contained asmall number of sub-
clonal genetic variants (median 1) significantly associated with altered
gene expression. We emphasize that finding variants associated with
gene expression changes does not necessarily imply that those variants
underwent selection within the tumour.

Selection on cancer driver mutations

Cancer genomics studies have established that only afew genes actually
contribute directly to cancer evolution, and these genes are termed
drivers*®. We therefore focused on understanding the evolutionary
consequences of putative CRC driver mutations on tumour expansion.

We used our extensive single-gland, multi-region WGS data (deep
WGS, median depth 35x%, between 3 and 15 samples per patient
(median, 8) and low-pass WGS (median depth 1.2x, between 1 and
22 samples per patient, median 8) for accurate identification of
clonal and subclonal somatic variants (https://doi.org/10.6084/
m9.figshare.19849138 from ref. »*) and to call somatic copy number
alterations in each tumour (note that thisincluded additional tumours
lacking RNA-seq data). We specifically examined the clonality of
69 genes (excluding PARP4, LRP1B and KMT2C, which we excluded
duetoahigh number of false-positive low-frequency variantsin these
genes) on the IntOGen list* of putative CRC driver genes (Methods
and Fig. 3a). The most frequently mutated drivers in colorectal cancer,
suchasAPC,KRAS, TP53and SOX9, as well as other known driversinclud-
ing PTEN, EGFR, CCDC6, PCBP1, ATM and CTNNBI, were invariably clonal
incancers, except for one tumour with asubclonal KRAS mutationand
another withasubclonal TP53 mutation. These findings are consistent
with previous multi-region sequencing studies* but contradict claims
of frequent subclonality of these genes in single-sample bulk data®,
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highlighting the need for methods to identify functional intratumour
heterogeneity**.

We used analysis of the ratio of non-synonymous to synonymous
substitutions (dN/dS)*, which quantifies the excess of non-synonymous
mutationsinagene, todetect selection across the complete set of can-
cer drivers (Methods). We found clear evidence of positive selection
(dN/dS greater than 1) for clonal missense and truncating mutations
in IntOGen driver genes in MSS cancers (Fig. 3b), and dN/dS values
were higher for the IntOGen list than for a second, pan-cancer driver
list®, confirming that the IntOGen list was enriched for true CRC driv-
ers. For subclonal variants, we found evidence of subclonal selection
of truncating variants and missense mutations with dN/dS higher
than 1for CRC-specific IntOGen variants but not for the pan-cancer
driver list*, suggesting that a subset of putative subclonal CRC driver
mutations were under positive selectionin growing tumours. For MSI
tumours, subclonal selection was less evident from dN/dS, probably
due to the higher mutation rate generating a much larger number of
neutral mutations in cancer driver genes and thus diluting the dN/dS
signal but, nevertheless, selection for clonal missense and truncating
mutations was significant in MSI cancers (Fig. 3c). We then examined
dN/dS values for each of the IntOGen driver genes in a larger dataset,
combining our datawith The Cancer Genome Atlas (TCGA) colonand
rectal cancer cohorts and additional data***” (n =1,253 CRCs). Most
genes in the list showed no evidence of selection, with the majority
of the top significant genes being the ‘usual suspects’ in CRC drivers*
(Extended Data Fig. 6).

For an orthogonal assessment of driver gene function we turned
to the DepMap dataset*® that assesses the functional consequence of
gene knockouts across alarge panel of cell lines (Methods). Most CRC
candidate drivers showed no evidence of essentiality (a measure of
cell viability following gene perturbation) across the CRC cell lines of
the DepMap dataset, whereas the two most likely under strong selec-
tion in our cohort, KRAS and PIK3CA, were significantly essential in
many CRC cell lines and were found to be significantly differentially
essential when contrasting mutant versus wild-type (WT) CRC cell lines
(Student’s t-test P < 107¢; Supplementary Fig. 20).

Thus, surprisingly, these analysesindicated that even putative driver
mutations in CRCs sometimes have limited phenotypic consequence
whenmeasured in terms of subclonal selection. Thelack of detectable
selection on CRC driver mutations is consistent with previous reports
of widespread neutral subclonal evolution within CRCs>*%%°,

Evolutionary dynamics within tumours

We assessed the evolutionary dynamics of individual driver mutations
on a tumour-by-tumour basis through assessment of phylogenetic
tree shape and the related clonal structure of the tumour (Fig. 4 and
Extended DataFig.7; Methods). ‘Balanced’ trees, in which similar branch
lengths are found across tumour samples and regions, are consistent
with effectively neutral evolution and were observed for a large pro-
portionoftumours. A clear outlier was tumour C539, inwhichthe tree
contained aparticularly large clade that spanned multiple geographical
regions of the tumour (all A and part of B). This ‘unbalanced’ tree was
suggestive of subclonal selection®, and indeed, the expanded clade
contained aKRAS G12C mutation (Fig.4h). We used BaseScope, acom-
mercialin situ RNA-based mutation detection technique® (Methods),
tovisualize subclones containing a putative driver alteration. We tested
the KRAS G12C subclonal variant in C539 (Fig. 4h and Supplementary
Fig.21) and the PIK3CA E545K subclonal variantin C537 (Fig. 4i and Sup-
plementary Fig.22). This analysis confirmed the spatial segregation of
subclones, showing heterogeneity in a subset of the blocks, whereas
we also found complete absence of the clone in alarge proportion of
other areas of the tumour (Supplementary Table 3). Furthermore, and
consistent with our previous reports**’, tumours could be split into
two groups characterized by subclonalintermixing between spatially
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distinct regions (16 out of 28, 57% of tumours) versus strict segregation
by geography (Supplementary Fig. 23).

We assessed the functional consequence of 38 subclonal putative
driver mutations from the IntOGen list that were detected in MSS can-
cers. PolyPhen® scores showed that 8 out of 38 (21%) mutations were
putatively benign mutations (marked in grey in Fig. 4 and Extended
DataFig. 7). Paired RNA-seq showed only wild-type reads for 5 out of
38 (13%) putative driver mutations (also marked in grey). We could
not assess mutant transcript expression for 25 out of 38 mutations
(66%) because of missing RNA-seq data or lack of reads covering the
variant location. Of those, 13 out of 25 (52%) were in genes with dN/dS
approximately 1in the TCGA cohorts; COAD and READ. Six out of 38
(16%) variants were identified as deleterious by PolyPhen and were also
found to be expressed in matched RNA-seq (marked in bold).

Attheindividual tumour and mutation level these analyses showed
that, of the large number of putative driver events identified in our
cohort (Fig. 3a), many showed no evidence of being under selection:
14 out of 38 (37%) variants were either benign or not expressed in the
cancer (although we note that expression could not be assessed for
two-thirds of variants), and afurther 10 out of 38 (26%) variants werein
genes with dN/dS of approximately 1in the external cohorts. However,
positive dN/dS values for pooled cases suggested that some of these
subclonal variants were under selection. Toidentify these, we designed
aspatial inference framework able to detect and measure subclonal
selection in our dataset.

Spatial inference of growth dynamics

We decided to further probe for evidence of evolutionary consequence
of heritable alterations in individual tumours. Computational mod-
els allow the simulation of different types of spatial growth dynam-
ics and have provided insights into tumour evolution and the effect
of spatial constraints® ™. Here we used computational modelling in
combination with approximate Bayesian computation (ABC) to infer
subclonal selection and the impact of spatial effects from our spatially
resolved WGS data. For this, we extended our previous model based
oncellreplication, death and mutation® to incorporate more realistic
spatial growth conditions and branch overdispersion (Extended Data
Fig.8aand Methods). We note that we did not specifically modeliinter-
actions between subclones. We simulated the genome-wide accrual of
somatic mutations in each lineage, including both neutral mutations
(Extended Data Fig. 8b-d, bottom) and selected (driver) mutations
(Extended Data Fig. 8b-d, top), showing characteristic patterns caused
by subclonal selection. Furthermore, distinct clonal patterning was
observed for peripheral versus exponential growth (governed by the
width of the growing outer rim of cells (d,,,,); Extended Data Fig. 8e
and Supplementary Fig. 24), in which clonal intermixing was greater
inthe exponential case.

To compare the model with data, we simulated our empirical spa-
tial sampling scheme (Fig. 4a,c,e, ref. > and Supplementary Fig. 1) on
our virtual tumours (Extended Data Fig. 8f). This generated realistic
whole-genome sequencing synthetic data that we used toreconstructa
(synthetic) phylogenetictree, thus comparingreal data (Fig. 5a) and the
corresponding matched simulation (Fig. 5b and Extended Data Fig. 8g).
The corresponding spatial patterns of subclonal heterogeneity could
bevisualized fromthe simulation (Fig. 5c). Bayesianinference (sequen-
tial Monte Carlo, or ABC-SMC**) of model parameters was performed
on a patient-by-patient basis by matching synthetic and empirically
observed trees, making use of regularization with the Akaike information
criterion (AIC) for model selection® (Fig. 5d and Extended Data Fig. 8h;
see Methods and Supplementary Note with https://doi.org/10.6084/
mo.figshare.20394369 for details). Specifically, the number of param-
eters (k) is used to regularize the negative log-likelihood (NLL) of the
models, calculate AIC and, more importantly to estimate the confi-
dence in model selection, the AAIC value (difference in AIC between
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Fig.4|Spatial phylogenomics of colorectal cancer. a, In this MSI tumour
(C516) the cancer (regions A and B) and macroscopically diagnosed advanced
adenoma (regions C and D) formed alarge mass and were physically adjacent to
oneanother. Photo indicates sampling quadrant, not precise location.b, The
advanced adenomashared multiple drivers with the cancer but showed early
divergence. ¢, Tumour C551 presented with a cancer and aconcomitant
adenomathat were very distant, indicatingtwoindependent events.d, The
phylogenetic tree was characterized by clonal intermixing of diverging
lineages collocated in the same region (for example, some lineages from
regions A, Band C were genetically close). Subclonal drivers of unknown
significance were present, including anon-expressed variantin USP6 and

compared models). AAIC greater than 4is considered to represent strong
support for one model over another, this was the threshold used to
identify strongly preferred models. The relationship between AIC and
critical distance of summary statistics between real and simulated trees
isreportedinFig. 5e. Generally good agreement between simulated and
observed phylogenetictree structures was observed despite the relative

once;scalebars, 50 pm.

an ARID1A mutation. Early divergence between the cancerand adenoma F

was evident, with noshared drivers between the two lesions. e, Tumour C561
presented with alarge cancer mass and multiple small concomitant adenomas.
f, Again, there was no notable somatic alterationin common between the
differentlesions. The cancer showed clonal amplification of MYC and only a
benignsubclonal mutation in FAT4. g, Phylogenetic reconstruction of four
further tumours with annotated driver events. h,i, Phylogenetic trees with
matched insitu mutation detection with BaseScope for the KRAS G12C
subclonal variantin C539 (h) and the PIK3CA E545K subclonal variantin C537 (i).
Staining by haematoxylinand eosin (H&E) and BaseScope were each performed

simplicity of our model, with quantitative assessment of the goodness of
fit confirmed by likelihood and posterior predictive Pvalue distribution
(Fig. 5f).Forexample, C539 was predicted to contain aselected subclone
(Fig.5a-f) and carried aKRAS G12C mutation that presumably drove the
clonal expansion (Fig. 5a). Tumour C548 was inferred to be neutrally
evolving (Fig. 5g-1) and thus predicted to carry no strongly selected
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Fig.5|Inference of evolutionary dynamicsinindividual tumours.

a,b, Target tree for C539 (a) versus best simulated tree for C539 (b). ¢, Spatial
patternsand sampling of the simulation. d, Model selection considering the
number of parameters (k) and NLL to calculate AIC. AIC differences

(AAIC) greater than 4 indicate strong preference of amodel. e, AIC value with
respect to distance from the data (¢) for each of the models. Dotted line
indicates final distance of ABC-SMC; dashed line indicates distance of trees
withadded random uniform noise (0.5-2.0). f, Posterior predictive P value
(one-sided). Dashed lineindicates average distance between target and
simulated trees. g, Target (real) tree for C548. h, Simulated tree for C548
identified during theinference. i, Spatial patterns of simulation that generated

subclonal driver mutations, despite there being subclonal mutations
in putative driver genes in this case.

Across the whole cohort (see https://doi.org/10.6084/m9.figshare.
20394360forasupplementaryinferenceresultbooklet), wefoundstrong
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thedata.j, Modelselection for C548.k, AIC value versus .1, Posterior
predictive Pvalue (one-sided). m, Proportion of instances in which models
were selected by model selection. AICand AAIC values arereported, the latter
indicating the proportion of tumours that can be explained by both models.
n, Inference of selection (AIC) was not associated with a higher number of
samples per tumour (one-sided bootstrap test,n=15neutraland n=12
non-neutral). 0, Subclonal dN/dS values for carcinomawith and without
selection (AIC). Numbers of tumours per group: 3 neutral MSI, 3 selected MSI,
12 neutral MSS and 9 selected MSS carcinomas. Error bars indicate 95%
confidenceintervals. p, Marginal posterior distributions of parameters, split
by neutral (green), selected (orange) and selected x2 (purple).

evidence of subclonal selection in 7 out of 27 tumours (AAIC greater
than 4; Fig. 5m). In four of these seven tumours, a putative subclonal
driver mutation was present in the selected clade and the variant was
expressed in the RNA (subclone drivers are listed in Supplementary
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Table 4 and reported in Figs. 3a and 4 and Extended Data Fig. 7).
These included (1) C518, with subclonal selection in A and B driven by
PTEN missense mutation C136R; (2) C531, with subclonal selection in
B driven by SMAD4 missense mutation A118V; (3) C538, with subclonal
selectionin D drivenby RNF43 nonsense mutation Q153*; and (4) C539,
with subclonal selection in A and part of B driven by KRAS missense
mutation G12C. Infive additional tumours we detected a weak prefer-
ence for the subclonal selection model. These included (1) C524, in
whichsubclonalselectionin B appeared tobedrivenby a PIK3CA C378R
mutation, and (2) C525, in which subclonal selection in C appeared
to be driven by a PIK3CA Q546P mutation. The selective advantage
of PIK3CA and KRAS mutations agrees with our orthogonal assess-
ment of CRC driver genes using the DepMap database (Supplementary
Fig. 20). Evidence of selection in the phylogenetic trees included a
significantly longer branch containing the selected event (for example,
Fig.5a, selectionevent 1), or two distinct regions having amore recent
common ancestor with respect to the others (for example, Fig. 5a,
selection event 2).

In the remaining 15 out of 27 tumours the preferred subclonal
growth model was neutral (Fig. 5m). The number of samples per tumour
(that is, more extensive tumour sampling) did not confound model
selection (Fig. 5n). Notably, orthogonal dN/dS analysis on the IntOGen
driver gene list confirmed the computational modelling results. Specifi-
cally, putative subclonal driver gene mutations in tumours predicted
to be neutrally evolving showed a dN/dS value of 1 whereas the point
estimate was appreciably higher than1for driver genesin tumours pre-
dicted to experience subclonal selection (Fig. 50). Thisalso supported
the absence of subclonal selection, even in small clades that may not
have undergone sufficient expansion to be detectable by our infer-
ence method. Aside, these results illustrate that our spatial inference
framework could be used for accurate assessment of the evolutionary
consequence of putative driver mutations.

Full parameter estimation is reported in Fig. 5p: overdispersion of
edge length (D), mutation rate per division (m), width of the growing
outer rim of cells (d,,,), growth rate of the first and second subclones
(A, and A;, respectively) and population size at their introduction
(t,andt;, respectively). Theincreased growth rate of selected subclones
was inferred to be as much as 20 times higher than that of the back-
ground clone, and most selected clones originated relatively early dur-
ing tumour expansion (tumour size fewer than 50,000 cells). Inferred
mutation rates were 9.8 x 10° and 46.6 x 10" mutations per base pair
per division in MSS and MSI tumours, respectively, consistent with
previous measurements®. Tumours were delineated by either expo-
nentially growing (high d,,.) or growing more slowly at the periphery
only (low d,,,). Notably, exponential growth was over-represented in
neutrally evolving tumours (Fisher’s exact test, P=0.022).

Epigenome and transcriptome of subclones

Subclone evolution within a cancer is a natural ‘competition experi-
ment’ between human cells with similar genetic background in the
same microenvironment that facilitates delineation of phenotypic
differences between subclones and the consequences of driver
alterations.

We examined matched ATAC-seq and RNA-seq data from selected
subclones versus background clones in six and five, respectively, out
of seven tumours with strong selection for which we had sufficient
matched ‘omics’ data. Enrichment analysis of differentially expressed
genes between the subclone and background clone highlighted consist-
entdysregulation of focal adhesion pathways for C531, C542 and C559.
The epithelial-mesenchymal transition programme was upregulated
in C542whereas MYC + E2F targets were upregulated in C531 (see Sup-
plementary Fig. 25a for gene-level analysis and Supplementary Fig.26
for pathway analysis). Analogous analysis of somatic chromatin acces-
sibility alterations showed promoter loss of accessibility of PPP2R5C,

aregulator of TP53and ERK in C542, which had no known genetic driver
mutation in the selected clade (Supplementary Fig. 25b).

Finally, we assessed whether heritable changes in gene expression
were indicative of subclonal selection. There were eight tumours in
which both adequate phylogenetic signal analysis and assessment of
subclone selection were possible. There was no association between
the number genes with some evidence of phylogenetic signal and the
presence of subclone selection (Wilcoxon P=0.686; Supplementary
Fig. 27a), nor for spatial segregation versus intermixing of subclones
(P=0.393; Supplementary Fig. 27b). Furthermore, the percentage of
tested eQTL genes that were significantin each tumour was not associ-
ated with neutral evolutionary dynamics (P=0.968; Supplementary
Fig.27c¢), nor was the magnitude of heritable gene expression changes
(P=0.195; Supplementary Fig.27d). Together this suggests transcrip-
tional variation even within a selected clone. A visual schematicillus-
trating the main results is shown in Extended Data Fig. 9.

Discussion

Heterogeneity in gene expression is common, both between and
within patients. Leveraging the fact that clone ancestry is encoded
by somatic mutations in the genome, here we determined that only a
small proportion of the observed subclonal transcriptomic variation
shows strong evidence of heritability through tumour evolution (under
1% of expressed genes and under 5% of hallmark pathways). This points
towards phenotypic plasticity—the ability of a cancer cell to change
phenotype without underlying heritable (epi)genetic change—as a
common phenomenon in CRC. We previously considered that the
observation of infrequent stringent selection for subclones within
CRCsis consistent with the notion that phenotypic plasticity is estab-
lished within cancer cells at the outset of cancer growth*®. Here our
explicit analysis of transcriptomic variation supports this hypothesis.

Nevertheless, we do find a evidence of heritable changes in gene
expression in all CRCs examined. Of 29,949 associations between
somatic mutations and gene expression, only 796 (702 clonal) were
associated with significant changes in cis gene expression and so can
be thought of as potentially functional mutations. In any individual
tumour we detected amedian of 1 (maximum, 34) subclonal mutation
that putatively affected gene expression and, notably, the presence
of heritable changes in gene expression was not necessarily related
towhether the cell lineage with the variant was undergoing subclonal
selection. Thisemphasizes that phenotypic changes do not necessar-
ily correlate with changes in fitness—the newly induced expression of
a particular gene may have no relevance to the ability of that cell to
survive or grow in its current microenvironment, and indeed across
species most genetic ‘tinkering’ is near neutral or even deleterious®.
Thus, at least some of the observed tITH is part of the standing phe-
notypic variation in the tumour but is not selected at the time of the
expansion of the primary tumour, even if it is the consequence of the
accumulation of mutations during tumour growth. Care should be
taken not to conflate transcriptional variation with evidence ofimpor-
tant variation in tumour cell biology. We suggest that this variation
could partially be a consequence of tumour evolution being ‘out of
equilibrium’, in which an expanding population with high genomic and
phenotypicinstability generates widespread variation that stabilizing
selection has not yet had time to prune. Nevertheless, such variation
may beimportant for future tumour evolution, such asinresponse to
treatment. We emphasize that the limited size of our cohort reduced
the power to detect the many small associations between genetics and
expression that may occur within tumours, and also means that we
were unlikely to observe recurrent events across cancers. Future single
cell analyses, rather than the tumour glands used here, are likely to be
better powered to reveal DNA-RNA associations. However, we argue
thatthelarge effects, which we were generally powered to see, are those
most likely to be relevant for tumour biology. We emphasize that our
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analysis reports only correlations and is not proof of a mechanistic
link, and that there are other potential confounders including patient
genetic background, epigenetic effects and unexplored trans effects.

Aside from the foregoing, we show that assessment of intratumour
heterogeneity can serve as a ‘controlled experiment’, enabling quan-
titative measurement of ongoing evolutionary competition within
the human body between different lineages with distinct subclonal
mutations, providing a platform for function assessment of the ‘driv-
erness’ of putative driver mutations in vivo in human malignancies.
Ongoing collection of associated relapses and metastatic deposits
will allow assessment of those subclones and drivers responsible for
disease progression.

Our study makes progress in elucidating the role of genetic control
and clonal evolution within primary untreated CRC, suggesting that
phenotypic plasticity is widespread and underlies pervasive transcrip-
tional heterogeneity.
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Methods

Sample preparation and sequencing

The method of sample collection and processing is describedinacom-
panion article (ref.?). Sequencing and basic bioinformatic processing
of DNA-, RNA- and ATAC-seq data are included there as well.

Gene expression normalization and filtering

The number of non-ribosomal protein-coding genes onthe 23 canonical
chromosome pairs used for quality control was 19,671. Raw read counts
uniquely assigned to these genes were converted into both transcripts
per million (TPM) and variance stabilization transformed (VST) counts
viaDESeq2v.1.24.0 (ref.*).

Alist of expressed genes (n =11,667) was determined by filtering
out those for which less than 5% of tumour samples had at least ten
TPM. To concentrate on tumour epithelial cell gene expression, genes
were further filtered out if they negatively correlated with purity as
estimated from matched DNA-seq data (see associated ref.* for meth-
odology of purity estimation). Specifically, for the 157 tumour samples
thathad matched DNA-seqand therefore accurate purity estimates, a
linear mixed-effects model of ‘expression (VST) ~ purity + (1| patient)’
(where‘~’represents ‘is distributed as’) was compared viaa chi-squared
testto ‘expression ~ (1| patient)’. The linear mixed-effects models were
built with Imer from the Ime4 R package v.1.1-28 (ref. ©°). Genes with
anegative coefficient for purity in the first model and FDR-adjusted
P<0.05-suggesting that purity had significantly affected expression—
were filtered out; this led to afiltered list of 11,401 expressed genes.

Gene expression clustering

For eachtumour withat least five tumour samples (n =17 tumours; note
that, except for the large advanced C516 adenoma, adenomas used in
ref. 2 did not undergo RNA-seq), mean expression and s.d. of expres-
sionwere calculated for every filtered expressed gene (n = 11,401) using
DESeq2 VST normalized counts (inspired by ref. '). Euclidean distance
matrices of mean expression and s.d. of expression were calculated
based on non-MSI tumours. Distance matrices were combined with
‘fuse’ from the analogue R package v.0.17-6 (ref. ) with equal (50/50)
weighting, and complete linkage hierarchical clustering was performed.
Four gene groups were determined using ‘cutree’ (k = 4) from the den-
dextend R package v.1.15.2 (ref. ©®). For plotting of Fig. 1a,b, tumours
were clustered with the approach described above and both mean
expression and s.d. of expression matrices were scaled by columns.

Conversionto entrez gene IDs and gene symbols was carried outin
biomaRtv.2.50.3 (ref. ¢*) using Ensembl v.90. Where IDs were missing,
newer Ensembl versions and manual curation were used (the complete
list of gene information is available in Supplementary Table 2).

For the KEGG meta-pathway analysis, pathways and pathway cat-
egories were downloaded from https://www.kegg.jp/kegg-bin/show_
brite?hsa00001_drug.keg. Enrichment of KEGG pathways for each gene
group was determined with enrichKEGG from ClusterProfiler v.4.2.2
(ref.®), and pathways enriched at FDR < 0.1 were input into ‘enricher’
to determine pathway category enrichment (FDR < 0.1). Pathway cat-
egories ‘Neurodegenerative disease’and ‘Infectious disease: bacterial’
were removed due to their irrelevance to CRC cell biology.

Analysis of normal colon scRNA-seq
A scRNA-seq dataset derived from healthy intestine was accessed
from Elmentaite et al.®. scRNA-seq data for colon gut epithelium were
downloaded from https://www.gutcellatlas.org and filtered for cells
from the colon in ‘Healthy adults’. This left seven donors with a mean
of 5,516 cells per donor (range, 1,410-16,828). Expression data were
normalized with Seurat v.4.1.0 (ref. ¥’) and mean expression within
each donor was calculated.

The mean ands.d. of each gene’s expression within each donor was
calculated. Genes were then filtered and grouped according to the

groups identified in Fig. 1a, and plots were produced analogously to
Fig.1b,c.

Pathway enrichment clustering

Hallmark pathways were downloaded from MSigDB (msigdbr R pack-
age v.7.2.1)** with unrelated pathways (SPERMATOGENSIS, MYO-
GENESIS and PANCREAS_BETA_CELLS) removed from analysis, and
the COMPLEMENT pathway was renamed COMPLEMENT_INNATE_
IMMUNE_SYSTEM. Pathways INTESTINAL_STEM_CELL®® and WNT_
SIGNALING (http://www.gsea-msigdb.org/gsea/msigdb/geneset_page.
jsp?geneSetName=WNT_SIGNALING) were added.

For each multi-region tumour (n=17), the TPM expression of
protein-coding genes converted to entrez gene IDs (n =18,950) was
used as input for single-sample gene set enrichment analysis using
the GSVAR package v.1.42.0 (ref. ©). The mean and s.d. of enrichment
were then recorded for each tumour. Because KRAS_SIGNALING_DN
had average enrichmentbelow zero it was removed from downstream
analysis, leading to afinal list of 48 pathways.

Analogously to the genic analysis, mean and s.d. of pathway enrich-
mentwere jointly used to determine four groups of pathways whereas
tumours were clustered and matrices normalized by column as before.
Fisher’s exact tests were subsequently performed to determine whether
pathway classes® were significantly enriched/depleted in particular
pathway groups.

CMS and CRIS classifications were determined using the CMScaller
R package v.2.0.1 (ref. 7°). As recommended, raw gene counts were
used as input with ‘RNA-seq=TRUE’, meaning that these counts
underwent log, transformation and quantile normalization. CMS
and CRIS were predicted using templates provided in the CMScaller
package, and samples were assigned to the subtype with the shortest
distance. High-accuracy classifications were determined by running
1,000 permutations, where a classification was considered significant
if the FDR-adjusted P-value was under 0.05.

Construction of phylogenetic trees

Reconstruction of maximum-parsimony trees. From deep WGS
(dWGS) samples, maximum-parsimony trees were reconstructed
with the Parsimony Ratchet method” implemented in the phangorn
R package v.2.8.1(ref.”?). Mutations with an estimated cancer cell frac-
tion above 0.25 were considered to be mutated (state 1) and others to
be non-mutated (state 0) in a given sample. The ratchet was run for a
minimum of 100 and a maximum of 10¢ iterations, and terminated after
100 rounds without improvement.

Theacctran algorithm’ 7 was used to estimate ancestral character
states. From these a set of mutations (M,) that were uniquely mutated
(thatis, state O togreater than1) oneach edge e of the phylogeny were
obtained.

Addition of shallow WGS samples to the tree. For anymutationi the
number of reads supporting the variant y,and the total number of reads
covering the locus n; in a shallow WGS (sWGS) sample were obtained
fromthe bam files.

The mutation data were assumed to follow a binomial (Bin) distri-
bution:

Yy, ~Bin(n;, p),

where the success probability p,is a function of the sample’s purity p,
the number of mutated alleles m; in tumour cells, the total copy num-
ber c;in tumour cells and the copy number in contaminating normal
cells, c,=2, given by

_ pm; __pm
pc+(1-p)c, 2-2p+pc;’

pi
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For aset of mutations M, fromagivenedgeeofatreeT, all, noneor
afractionm,, of mutations might be presentinasample. The marginal
likelihood of the observed data (D,) of the set of mutations is

M|

pD.im,) = [ (m, pOyIn;, p) + A= 1,) p(iin, p)),
i=0

where p, is the background noise of the WGS at aunmutated site.

Assuming that mutated sites are not lost at any pointin time, for a
mutation from the edge e = (s,t) to be mutated in asample, all variants
onthe path from the germline node r to the node s of this edge (r » s)
also have tobe mutated (thatis, m,, = 1). All remaining mutations—that
is, those that occur in the descendants of ¢ or in different lineages of
the tree—must be absent (that is, i, = 0). The likelihood of the data D
for all mutations that are part of the tree is

L(e "m’po'p) =p(De|”m)ne’€Anc(s) p(D@'IT[m = Dne’«zAnc(t) p(DE'IT[mz 0),
where Anc(s) is the set of all ancestral edges on the path fromrtos.
Maximum-likelihood estimates of sample parametersé € E, ,,€[0,1],
P, €l0,1]and p€[0,1] were obtained for each sSWGS sample by minimiz-
ing —log(L), and samples were added to location X = (¢, 7i,,,) of the tree.

Estimation of copy number multiplicities. The above analysis was
restricted to mutationsinregionsinwhich nosubclonal SCNA occurred.
The multiplicity of mutations m; ; was estimated across the set of all
samples S as

m;= argmm Z —log[(y }p%:(l p )"51 ysz] s

msjell,...csit e

with p .asdefined above and where I ;indicates whether the mutation
iwas detected insample s. Due to potential issues with the accuracy
of estimates for large copy numbers, only sites with copy number
0 <c<4wereused.

Thetool forassignment of SWGS samples toa dWGStree is available
as R package MLLPT at https://github.com/T-Heide/MLLPT.

Intermixing scores. To calculate intermixing within tree T, each tip
v € V'was labelled with the region of the tumour from which the cor-
responding sample was obtained. Intermixing within the tree was then
measured as

I(T)——1 > L Y Ly em b Ds:={te Ve desc(pa(s))},
[V veyl! |Ds| seDg s

wherel,, ., isanindicator function that indicates whethervand s
had different labels, pa(s) is the parent of s and desc(s) is the set of all
descendants of s.

Phylogenetic signal analysis

Tumours with fewer than six paired DNA-RNA samples were excluded
from this analysis, leaving 114 samples from eight tumours (median
11 samples per tumour, range 6 to 31).

Additional sSWGS samples, however, had zero branch length because
mutations unique to a sample could not be called with sWGS meth-
odology. To account for these ‘missing’ unique variants, we inferred
the probable number of unique variants from the matched dWGS
samples. For each sSWGS sample from a particular tumour region, a
new tip branchlength (‘leaflength’) was drawn from a Poisson distri-
bution based on the mean number of unique mutations observedin
each dWGS sample from the same spatial tumour region. DNA sam-
ples that did not have matched RNA-seq samples were then removed
fromthe trees (with drop.tip from ape R package v.5.6-1, ref. 7). This

process was repeated 100 times for each tumour, leading to a forest
of 100 phylogenetic trees with slightly varying branch length for
each sWGS sample.

Inthe genic phylogenetic signal analysis, Pagel’s Awas calculated for
group1-3 genes (n = 8,368) using ‘phylosig’ from the phytools R pack-
agev.1.0-1(ref.””). This returns the maximum-likelihood Pagel’s A esti-
mate and a P value for the likelihood ratio test with the null hypothesis
of 1= 0. Thisanalysis was performed for all 100 trees and the median A
and P value determined for each tumour, with median P < 0.05indicat-
ing evidence of phylogenetic signal for that gene. Genes withrecurrent
phylogenetic signal were defined as those with evidence of phyloge-
neticsignalinatleast three tumours. The STRINGdb R package v.2.6.1
(ref.”®) was used to determine pathway enrichment of these recurrent
phylogenetic genes, and ‘string-db.org’ was used for plotting of PPAR
signalling genes.

To assess how phylogenetic signal is affected by purity, the analysis
was rerun with purity-corrected expression. The coefficients of how
purity determines gene expression had already been calculated during
gene filtering (that is, the coefficient of purity in ‘expression ~ purity’
regression for all DNA matched samples (Methods) and samples used
for phylogenetic analysis had matched DNA samples, allowing the use
ofaccurate purity values. The expression of each gene (first normalized
by DESeq2 variance-stabilizing transformation) was then normalized
with the following equation:

EXp,, = Exp,, + (Purity coefficient/Sample purity)

Phylogenetic signal analysis was then undertaken with purity-
corrected expression (Supplementary Fig. 6).

In pathway phylogenetic signal analysis, pathway enrichment values
were used as input for ‘phylosig’ for the 48 pathways. Evidence of phy-
logenetic signal was then determined as above. Recurrent phylogenetic
pathways were defined as those with evidence of phylogenetic signalin
atleast two tumours, and Fisher’s exact tests were used to determine
enrichment/depletion in pathway groups and classes.

To determine the power for each tumour used in phylogenetic signal
analysis, gene expression was simulated and A P values estimated. Gene
expressionwas Poisson distributed across nodes and was increased by
afactor of 5-100% across every clade of the tree. This was performed
over the forest of 100 trees of differing branch length, and this pro-
cess was then repeated 1,000 times. The power to detect evidence of
phylogenetic signal for a particular expression percentage change at
aparticular clade was therefore inferred by the percentage of simula-
tions that had a median (that s, over the 100 branch-length-variant
trees) P<0.05.

Assessment of phenotypic plasticity
For expression-based sample clustering, we calculated Euclidean dis-
tance matrices on genes from groups 1-3 (n = 8,368) and performed
complete hierarchical clustering for each tumour with at least five
RNA-seq samples (n=17). The resulting dendrograms are plotted in
Supplementary Fig. 10.

To quantify space-gene expression correlations we constructed
a permutation test. For tumours with at least ten samples (n=11),
cophenetic distance matrices were extracted from the dendrograms
plottedin Supplementary Fig.10. The sum of all cophenetic distances
between samples from the same tumour region was then calculated
to acquire a metric of expression correlation with region for each
tumour. To determine the significance of this metric, sample names
for cophenetic distance matrix were randomly relabelled and the
mixing statistic recalculated 10,000 times, followed by evaluation
of whether the observed data were more extremely clustered than
the random permutations (Supplementary Fig. 11). The intermixing
scores used in Supplementary Fig. 9 were calculated as in Intermix-
ing scores.
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To assess the impact of tumour microenvironment we used CIB-
ERSORTx*, specifically with the LM22 signature file comprising
22 immune cell types” via the online portal (http://cibersortx.stanford.
edu).First, Euclidean distances between the vector of gene expression
from pairs of samples in the same tumour were calculated based on
the expression of the 8,368 genes used in phylogenetic signal analysis.
Euclidean distances were also calculated based on absolute scores
from CIBERSORTXx (note that CIBERSORTx was run using all genes).
These two metrics were then plotted together for sample pairs from
the same tumour and the correlation assessed (Supplementary Fig.12).

Genetic determinants of gene expression heterogeneity

Tumours with at least two tumour samples were included in this

analysis (153 tumour samples from 19 tumours, median four sam-

ples per tumour) and only loci mutated in at least two samples and
connected to an expressed gene (groups 1-3 from Fig. 1) were ana-
lysed (22,961 mutated loci connected to 5,927 expressed genes—

29,949 unique gene-mutation combinations).

The following data were used as input for the linear model:

« Exp: agene x sample matrix of variance-stabilized normalised gene
expression of group 1-3 genes, converted to a z-score by subtract-
ing the mean expression of all samples and dividing by the s.d. of
all samples.

« CNA: agene x sample matrix of the total copy number of the gene
locus. If multiple copy number states were detected for the same gene,
the segment overlapping most with the gene’s locus was selected.

« Mut: a binary mutation x sample matrix in which mutations (SNVs
and indels) were either within the enhancer region of the gene or a
non-synonymous mutation within the coding region of the geneitself.
Enhancer links to genes were defined using ‘double-elite’ annotations
from GeneHancer tracks®. Some enhancer regions overlapped with
the gene coding region, and non-synonymous mutations in these
regions were annotated as both enhancer and non-synonymous.

« Purity: the purity of each sample as determined from dWGS or sWGS.

In addition, 14 matched normal samples were added and these
were assigned WT for all mutations, 2 for total copy number and O for
purity. For each gene-mutation combination, the following linear
model wasimplemented: Exp ~ Mut + CNA + Purity + Tumour, where
‘Tumour’indicates whether the sample was anormal or tumour sample.

A gene-mutation combination was said to be explained if the
FDR-adjusted P value of the F-statistic for overall significance was less
than 0.01. Storey’s 7, the estimate of the overall proportion of true null
hypotheses, was calculated using the qvalue R package v.2.26.0 (ref.%").
Agene-mutation combination was significantly affected by a variable
(that is, Mut/CNA/Purity/Tumour) if the FDR-adjusted P value for the
coefficient of that variable was under 0.05.

For analysis of clonality (Fig. 2f), a mutation was considered ‘sub-
clonal’if at least one mutation associated with that gene was not found
inallmatched DNA-RNA samples for at least one tumour. For combina-
tion of eQTLs with phylogenetic analysis and clonality (Fig. 2g), agene
mutation combination was considered an ‘eQTL’if it was significant for
Mut, ‘subclonal’ if it was not found in all matched DNA/RNA samples
foratleast one tumour and considered ‘phylogenetic’if the associated
gene had significant phylogenetic signal in the tumour in which the
mutation was present.

To look for recurrence of eQTL mutations in the Hartwig cohort,
mutation loci were first converted to hgl9 using liftOver from the
rtracklayer R package v.1.54.0 (ref. #?) and ‘hg38Tohgl9.over.chain’
from http://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver. Two
out of22,961locicould not be converted and were therefore discarded
for this analysis. Converted loci were searched for in the CRC Hartwig
cohortusing the ‘purple.somatic.vcf.gz’ files. For Hartwig gene expres-
sion, ‘adjTPM’ values were used and converted to a z-score whereas
tumour purity was extracted from the metadata. For each locus with
at least one mutated DNA-RNA Hartwig sample, the linear models of

Exp ~ Mut + Purity and Exp ~ Purity were compared via a likelihood
ratio test. An eQTL was said to validate in Hartwig if the P value of the
test was under 0.05 and the coefficient of the Mut variable was the
same sign as the coefficient in the original eQTL analysis (that is, the
mutation increased expression in EPICC and Hartwig or vice versa).

A post hoc power analysis was carried out using the pwr.t2n.test
from the pwr R package v.1.3-0 (ref. ®). For each eQTL, absolute muta-
tion effect size was used as the input effect size with ‘power’ set to 0.99
and ‘'n2’setto the number of DNA-RNA Hartwig CRC samples (n = 394)
minus the number of Hartwig samples with the mutation. The tool then
returned the number of samples needed to determine the effect, and
thisnumber was multiplied by 1.15 given the non-parametric nature of
the data. Ifabsolute input effect size was greater than 3.04, this was set
to 3.04 because higher values returned a ‘not available’ result.

MSlinvestigations for eQTL analysis

A PCA analysis of germline SNPs plotted with ggbiplot v.0.55 (ref. 3*)
found alack of bias for germline SNPs, with the top two principal com-
ponents accounting for only 16.6% of explained variation (Supplemen-
tary Fig.16). Labelling tumours by MSl status also showed that principal
component 1slightly separated MSS from MSI tumours.

To directly assess the effect of MSI on eQTL analysis the analysis
was rerun twice, once with only MSS tumour samples (n =149 across
15 tumours) and again using only MSI tumour samples (n =18 across
three tumours). Given the large difference in sample size and therefore
power, to make the two analyses comparable only mutations with very
large (over 1.5) effect sizes were considered. The absolute mutation
effect sizes of 73 eQTLs from the MSS analysis were therefore compared
with 293 eQTLs from the MSl analysis. A QQ-plot comparing these two
datasets showed there was adifferenceinthe distribution of effect sizes
of significant eQTLs between MSS and MSI analyses (Supplementary
Fig.17). Specifically, there was a higher proportion of MSS eQTLs at very
large effect size in comparison with the MSl analysis. This isinteresting
because it suggests a difference in the genetic control of gene expres-
sion between MSS and MSI tumours.

The original eQTL analysis was also rerun with MSI as a cofactor
(Supplementary Fig.18), and this was found to have aminorimpact on
results. Notably, there was a small decrease in the number of signifi-
cant eQTL genes (Supplementary Fig. 18a,b), non-coding enhancers
were no longer significantly associated with increases in expression
(P=0.08; Supplementary Fig.18e) and subclonal mutations were no
longer more likely to be eQTLs (P = 0.17; Supplementary Fig. 18f).
However, it should be noted that the direction of these effects did not
change. Finally, the distribution of R* values was compared between
the original analysis (without MSI as a covariate) and with MSl as a
covariate. Supplementary Fig.19 shows that, for models that were sig-
nificantinboth analyses, R*values were highly correlated (P<1x 107,
R*=0.855). It is worth noting that R? values tend to be higher for the
analysis with MSI, and this was found to be significant (paired Wilcoxon
signed rank test, P=1.071 x 10%*)). Therefore, inclusion of MSl as a
covariate marginally increased the amount of variance explained by
each model but R?values were very highly correlated with the original
analysis

dN/dS analysis

Per-patient variant calls were obtained fromthe VCF files and lifted tothe
hg19 reference genome using the rtracklayer R package v.1.54.0 (ref. %),
Variants were splitinto clonal (thatis, presentin all samples) and sub-
clonal mutations (that is, present in a subset of samples) in cancer,
as well as a set of mutations present in any of the adenomas. Patients
were further splitinto MSIand MSS tumours. The dndscv model (dndscv
R package v.0.1.0)* was fit separately for each of the four mutation
sets. For this, default parameters apart from deactivated removal of
tumours due to the number of variants were used. In addition to global
dN/dS estimates of the fitted models, dN/dS estimates of CRC-specific
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driver mutations fromIntOGen** were obtained with the ‘genesetdnds’
function of dndscv.

Gene essentiality analysis

Cancer dependency profiles were downloaded from https://depmap.
org/broad-sanger/ (version used: CRISPRcleanR_FC.txt) and scaled
as previously described®®, making the median essentiality scores of
previously known essential and non-essential genes equalto-1and 0,
respectively. The mutational status of selected putative cancer driver
genes used to produce the box plots in Supplementary Fig. 20, and to
test differential gene essentiality across mutant versus WT cell lines,
was obtained from Cell Model Passports®.

Insitu mutation detection

BaseScope in situ mutation detection was performed as previously
described®, using mutation-specific probes designed and provided
by the manufacturer. Data were assessed manually: a tumour gland
was denoted as ‘mutant’ if at least one cell in the gland had detected
expression of the mutant transcript, otherwise it was classified as ‘wild
type’ for that mutation.

Spatial computational inference

Inference of evolutionary dynamics using spatially resolved genomic
datawas performed by Bayesian fitting of a spatial agent-based model of
clonalevolutionto the observed molecular data. The model described
growth, death, physical dispersion and mutation of individual tumour
glands, and was a substantial modification of the framework previ-
ously described inref.*.. Full details are provided in the Supplementary
mathematical note.

Transcriptomic and epigenetic characterization of selected
clones

Differential expression analysis was run using DESeq2 (ref.*), compar-
ing RNA samplesin inferred selected regions with all other samples
from that tumour. Analysis was also rerun with random shuffling of
sample labelling to filter for the signal of the selected subclone, and
genes found to be differentially expressed in more than 5% of shuf-
fled analyses were excluded. Volcano plots of significant differentially
expressed genes were plotted with EnhancedVolcano v.1.12.0 (ref. %8)
(Supplementary Fig. 25a). To perform gene set enrichment analysis®
allremaining genes were ordered by DESeq2’s test statistic, and enrich-
ment of Gene Ontology annotations, KEGG pathways and Hallmark
pathways was tested for (FDR < 0.05) using gseGO, gseKEGG and GSEA,
respectively, from ClusterProfiler®. Significant results are shown in
Supplementary Fig. 26.

We also performed differential ATAC-seq peak analysis between
selected subclones and background clones. To assess the subclonality
of ATAC-seq peaks while controlling for purity, alog-ratio test from
DESeq2 was used to compare a ‘full model’ of ‘- purity + clone’ to a
‘reduced model’ of ‘~ purity’. ATAC-seq peaks were considered to be
significantly altered in selected clones when the adjusted P value was
below 0.05 (Supplementary Fig. 25b).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Gene expression data, somatic mutation calls (VCFs from
Mutect2+Platypus), copy number calls (Sequenza and QDNAseq),
fraction of mutated microsatellites (MSlsensor), ATAC-seq insertion
sites and allele counts of somatic SNVs in all sample types are avail-
able at Mendeley (https://doi.org/10.17632/7wx3chtsxx.2). Sequence
data (processed BAM files) have been deposited at the European

Genome-phenome Archive (EGA), whichis hosted by the EBland CRG,
under study no. EGAS00001005230. Access to these datais restricted
and subject to application. Source data are provided with this paper.
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signal (P<0.05). MedPval =median p-value from forest of 100 trees,
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Extended DataFig. 8 | Bayesian inference framework for cancer dynamicsin
spaceand time. a, Schematicrepresentation of the spatial cellular automaton
model of tumour growth. b, Instance of simulation of aneutrally expanding
cancer withasingle ‘functional’ clone (blue, top), and corresponding

neutral mutation lineages (bottom). ¢, Simulation of atumour containing a
differentially selected subclone (red, top) and corresponding neutral mutation
lineages (bottom). d, Simulation with two branching subclonal selection
events. e, Inthis neutral simulation we illustrate peripheral versus exponential
growthand the effects on lineage mixing. f, Spatial sampling annotated during

tissue collection for tumour C539 and corresponding simulated spatial sampling.
g, Real data from patient C539 (top) versus simulated datafromaninstance
selected by the inference framework (bottom). h-i, Inference framework based
on Approximate Bayesian Computation - Sequential Monte Carlo (ABC-SMC)
allows for (h) model selection and (i) posterior parameter estimation given

the data. Inthis casebirthrates.2isthe birth rate of the selected subclone,
clone_start_times.2isthe time whenthe subclone arose during the growth of
the tumour, push_power.lis the coefficient of boundary driven growth and
mutation_rateis therate of accumulation of mutations per genome per division.



Expression of most genes not
related to tumour evolutionary history

Few genes with patterns
of heritable expression

Al_G8  — -
Shape of phylogenetic 211 gg — —
tree reveals selection ACGE  — n
A1_G3*
A1_GY*  — -
A1ZG10"  n— —
A1 — —
B1_G3  m— -
I I
— —
— —
— —-—
* - —
D1_G4 - —
- - -
Most putative subclonal driver D1G10 : -_
mutations are not under selection C1_G1 - —
C1-G5* u —
C1_G3 - —
DODODIVIN NI
dXOVODIVIU CANSLNINEY, .
' YXOVOVIDIT [ MENENENLN AN 1
i i
DNA RNA

Tumour evolutionary history  Current transcriptional phenotype

Extended DataFig. 9| Visual schematicillustrating the mainresults.
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phylogenetic tree). Matched RNA-sequencing found few genes with heritable
expression patterns (middle; bars represent expression level), with the
expression of most genes not detectably related to tumour evolutionary
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selection. Sample names and bars are coloured according to region-of-origin.
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