
RESEARCH ARTICLE

Inter- and Intra-Observer Repeatability of
Quantitative Whole-Body, Diffusion-
Weighted Imaging (WBDWI) in Metastatic
Bone Disease
Matthew D. Blackledge1, Nina Tunariu1, Matthew R. Orton1, Anwar R. Padhani2, David
J. Collins1, Martin O. Leach1*, Dow-Mu Koh1

1 CR-UK Cancer Imaging Centre, Radiotherapy and Imaging Division, The Institute of Cancer Research and
The Royal Marsden NHS Foundation Trust, London, United Kingdom, 2 Paul Strickland Scanner Centre,
Mount Vernon Cancer Centre, Middlesex, United Kingdom

*Martin.Leach@icr.ac.uk

Abstract
Quantitative whole-body diffusion-weighted MRI (WB-DWI) is now possible using semi-

automatic segmentation techniques. The method enables whole-body estimates of global

Apparent Diffusion Coefficient (gADC) and total Diffusion Volume (tDV), both of which have

demonstrated considerable utility for assessing treatment response in patients with bone

metastases from primary prostate and breast cancers. Here we investigate the agreement

(inter-observer repeatability) between two radiologists in their definition of Volumes Of Inter-

est (VOIs) and subsequent assessment of tDV and gADC on an exploratory patient cohort

of nine. Furthermore, each radiologist was asked to repeat his or her measurements on the

same patient data sets one month later to identify the intra-observer repeatability of the

technique. Using a Markov Chain Monte Carlo (MCMC) estimation method provided full

posterior probabilities of repeatability measures along with maximum a-posteriori values

and 95% confidence intervals. Our estimates of the inter-observer Intraclass Correlation

Coefficient (ICCinter) for log-tDV and median gADC were 1.00 (0.97–1.00) and 0.99 (0.89–

0.99) respectively, indicating excellent observer agreement for these metrics. Mean gADC

values were found to have ICCinter = 0.97 (0.81–0.99) indicating a slight sensitivity to outliers

in the derived distributions of gADC. Of the higher order gADC statistics, skewness was

demonstrated to have good inter-user agreement with ICCinter = 0.99 (0.86–1.00), whereas

gADC variance and kurtosis performed relatively poorly: 0.89 (0.39–0.97) and 0.96 (0.69–

0.99) respectively. Estimates of intra-observer repeatability (ICCintra) demonstrated similar

results: 0.99 (0.95–1.00) for log-tDV, 0.98 (0.89–0.99) and 0.97 (0.83–0.99) for median and

mean gADC respectively, 0.64 (0.25–0.88) for gADC variance, 0.85 (0.57–0.95) for gADC

skewness and 0.85 (0.57–0.95) for gADC kurtosis. Further investigation of two anomalous

patient cases revealed that a very small proportion of voxels with outlying gADC values lead

to instability in higher order gADC statistics. We therefore conclude that estimates of

median/mean gADC and tumour volume demonstrate excellent inter- and intra-observer

PLOS ONE | DOI:10.1371/journal.pone.0153840 April 28, 2016 1 / 12

a11111

OPEN ACCESS

Citation: Blackledge MD, Tunariu N, Orton MR,
Padhani AR, Collins DJ, Leach MO, et al. (2016)
Inter- and Intra-Observer Repeatability of Quantitative
Whole-Body, Diffusion-Weighted Imaging (WBDWI) in
Metastatic Bone Disease. PLoS ONE 11(4):
e0153840. doi:10.1371/journal.pone.0153840

Editor: Xiaobing Fan, University of Chicago, UNITED
STATES

Received: July 24, 2015

Accepted: April 5, 2016

Published: April 28, 2016

Copyright: © 2016 Blackledge et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by Cancer
Research UK (CRUK) and the Medical Research
Council (grant numbers C1060/A10334 and C1060/
A16464 to MOL) (http://www.cancerresearchuk.org,
http://www.mrc.ac.uk). This work was also supported
by the National Institute for Health Research (NIHR)
through postdoctoral fellowship NHR011X to MDB
(www.nihr.ac.uk). MOL is an NIHR Senior
Investigator. The NHS funded the NIHR Biomedicine
Research Centre and the Clinical Research Facility in

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0153840&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.cancerresearchuk.org
http://www.mrc.ac.uk
http://www.nihr.ac.uk


repeatability whilst higher order statistics of gADC should be used with caution when ascrib-

ing significance to clinical changes.

Introduction
Studies conducted using the whole body DWI (WB-DWI) technique have shown high sensitiv-
ity for detecting bone marrow and soft tissue diseases, and high diagnostic accuracy for disease
staging [1–10]. Due to improved disease/background-tissue contrast on the high b-value
images, defining multiple Regions of Interest (ROIs) for tumour analysis throughout the body
is possible; a feat that has been enhanced by semi-automatic segmentation techniques [11,12].
These multiple ROIs may be combined to derive quantitative imaging biomarkers that reflect
the disease extent by quantifying the tumour total diffusion volume (tDV in milliliters), as well
as the global apparent diffusion coefficient (gADC) (in mm2/s), which reflects tissue cellularity
[9].

Initial work has demonstrated promising results that the tDV and gADC may be useful
for evaluating treatment response in patients with metastatic bone disease, where standard
morphological imaging is suboptimal [11]. Clearly, the ability to derive multiple quantita-
tive imaging biomarkers from a single radiological examination is highly attractive. How-
ever, current practice requires users to, at best, make use of semi-automatic tools to define
and correct ROIs defined in WB-DWI, or rely on manual ROI definition, both of which
are associated with errors and bias in the acquired biomarker values. Hence, knowledge
of the intra-observer repeatability and inter-observer agreement for tDV and gADC
derived fromWB-DWI is critical for wider adoption of the technique for disease response
evaluation.

The purpose of this study was to determine the inter- and intra-observer variability of two
radiologists (R1 and R2) in quantifying WB-DWI parameters (tDV, gADC and associated his-
togram distribution indices) in a cohort of patients with bone metastases by using a semi-auto-
matic segmentation technique. In this setting we consider whole-body imaging to cover a
fields-of-view that includes the neck, chest, abdomen and pelvis.

Materials and Methods

Ethics statement
The Royal Marsden Research and Ethics committee approved the study. As this was a retro-
spective evaluation of prospectively acquired data, signed informed consent was waived. All
patient information was de-identified and anonymised prior to analysis.

Study population
We retrospectively evaluated images of nine consecutive patients with metastatic bone dis-
ease who underwent WB-DWI examinations as part of routine clinical care and met our
inclusion criteria. Five patients had primary prostate cancer and four patients had primary
breast cancer (mean age = 52.4 years, range = 37–70 years). The inclusion criteria were: (1)
Patients with predominant metastatic bone disease demonstrated on CT, MRI, skeletal scin-
tigraphy and/ or 18FDG-PET, (2) Patients who showed recent disease progression, and were
about to commence anti-tumor treatment. Imaging was performed before commencement of
treatment.
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MRI technique
Images were acquired at two institutions (five patients at the first and four at the second) using
1.5T MR imaging systems (Avanto, Siemens Healthcare, Erlangen, Germany). Diffusion-
weighted MR images were acquired axially during free breathing from the skull vertex to mid-
thigh in each patient using the following imaging parameters: repetition time (TR) = 7100-
14800ms, echo time (TE) = 65–69.6ms, matrix size = 128x128-150x150, slice thickness = 5mm,
receiver bandwidth = 1628–1961 Hz/pixel, 4–7 signal averages, STIR fat suppression with an
inversion time (TI) of 180 ms, imaging field of view = 380–430 mm2 depending on patient size.
All images were acquired using 2 b-values (b = 50, 900 s/mm2) for calculation of ADCmaps
using mono-exponential fitting. The lower b-value of 50 s/mm2 was chosen to reduce perfusion
effects at the lower b-value and to provide radiologists with ‘black blood’ images [13]. Imaging
protocols were optimized to reduce geometric distortions associated with DWI and maintain
high SNR, high voxel resolution and uniform fat suppression using phantom and volunteer
studies [14].

Image analysis and processing
Image analysis and processing was performed by two independent radiologists, R1 and R2,
with eight and four years’ experience in reading WB-DWI studies respectively using in-house
software developed with IDL (Exelis Visual Information Solution, Inc.). Semi-automatic seg-
mentation of disease in each patient was achieved via the following steps (see [11] for further
details):

1. Computed DWI (cDWI) [12] was used to visually maximize the contrast in the signal
between disease and background tissues as rendered on a maximum intensity projection
(MIP) display. A median computed b-value of 1070 s/mm2 (range 715–1660 s/mm2) was
required to obtain optimal visual contrast between disease and background tissues. This was
greater than the maximum acquired b-value (900 s/mm2).

2. A threshold was manually selected that provided an initial classification of disease from
background. A Markov random field prior model for the classification provided smoother
segmentation.

3. All segmentation results were visualized as individual regions of interest using a surface ren-
dered display on a MIP and/or multi-planar reformat viewer. Spurious regions of interest
(e.g. those outside the patient field-of-view) were manually removed or corrected by the
radiologists until they approved of the final disease classification/ segmentation.

4. Resultant regions were also manually corrected using the following exclusion criteria:
regions of necrosis with ADC> 2.0 × 10−3 mm2/s (T2 shine-through), regions that included
incomplete fat suppression and any regions above the C4 vertebra to avoid artefacts from
susceptibility effects or suboptimal fat suppression.

From the segmentation process described above (further detail provided in [11]), all the
regions of interest defined were used to compute the total disease volume (tDV) of metastatic
bone disease, which was reported in milliliters (ml), and then transformed via a log function to
reduce the scaling effects of errors (log-tDV). By transferring the regions of interest to the
ADC map, we also derived summary statistics for whole body gADC histogram analysis. For
each patient the following whole-body global ADC (gADC) statistics were calculated: gADC-
median, gADC-mean, gADC-variance, gADC-skewness, gADC-kurtosis along with the loga-
rithm of the total diffusion volume, log-tDV.
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Each radiologist performed the same analysis on all patients twice separated by one month
to minimize recall bias, so that both intra-observer and inter-observer repeatability could be
assessed in a joint model.

Statistical considerations
We applied the following mixed-effects model to our data:

Yijk ¼ mþ ai þ abij þ εijk

• i 2 {1,2,. . .,P} is the patient index

• j 2 {1,2} is the reader identity

• k 2 {1,2} is the kth measurement made by a particular reader on a certain patient

• Yijk is the observed WB-DWI metric of interest (e.g. gADC-median or log-tDV).

• μ is the true population mean for the metric

• ai* N(0, σa) denotes the true deviation from σ for the ith patient

• abij * N(0, σab) is the bias of the j
th reader when measuring a WB-DWI metric for the ith

patient.

• εijk * N(0, σεj) is a random error made by the reader when making their kth measurement of
the metric.

In this article we only describe data from two observers and therefore cannot obtain
observer population statistics. This imposes the following model constraint (see Shrout and
Fleiss [15] for more details):

abi1 þ abi2 ¼ 0

The (2P + 5) unknown parameters in this model are μ, ai, abi1 and the standard deviations
σa, σab and σεj. By obtaining the best fit for the parameters of this model from our data we
obtained estimates of both intra- and inter-reader repeatability simultaneously: Intra-observer
repeatability is identified as the last of the standard deviation parameters, σεj, which can be cal-
culated for each reader j, whereas inter-observer repeatability is attributed to the standard
deviation of the bias terms amongst both readers, σab. From these estimates we calculated the
Coefficient of Variation, CoV = σ/μ, which may in turn be converted into percentage repeat-
ability: 100% × 1.96 ×

p
2 × CoV (p< 0.05, two-tailed test). An important consideration when

performing such repeatability studies is an evaluation of how these variance terms compare
with the interpatient variability, σa: If the expected variation in a quantitative metric between
patients is small compared to the variability of the measuring process, it will likely be less useful
as a biomarker for measuring change in an individual patient. On the other hand, if the vari-
ability of a measurement process is relatively small compared with the distribution of observed
patient values, it provides evidence for robustness of the metric for detecting treatment effect
in an individual patient. For this reason we also reported the intra- and inter-observer Intra-
class Correlation Coefficients:

ICCintra
j ¼ s2

a

s2
a þ s2

εj
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ICCinter ¼ s2
a

s2
a þ s2

ab

An ICCinter value tending to 1 in this context indicates good agreement between observers
relative to the patient variation, whilst a value tending to 0 represents disagreement. An
ICCintra tending to 1 indicates that the repeatability of the jth reader was excellent whereas a
value of 0 means that the reader was in general not able to repeat the measurement
accurately.

Although classical inference may be used to estimate repeatability and ICC values, for
example, by using an ANOVA approach as outlined by Shrout and Fleiss [15], we based our
estimation on a Markov-Chain Monte-Carlo (MCMC) approach using Gibbs sampling.
This method has the added benefit that it provides a full estimation of the distributions for σ
and ICC given the data set. From these distributions we obtained the most probable value
for each repeatability metric (mode/peak of the distributions) and, more pertinently, estab-
lished 95% confidence intervals for these results, a value that is often unquoted in repeatabil-
ity study literature. Mode values of distributions were found using kernel density estimates
of all distributions (search grid size of 1000 using Silverman’s approximation for kernel
width and a down-sample of the MCMC train to 10,000 samples). Full implementation for
the Gibbs sampler is discussed in S1 Appendix. For comparison, we also calculated Bland-
Altman plots [16] for each of the parameters derived by each radiologist. Classical inference
of σεj was achieved by assuming a zero-mean difference for each WBDWI metric (see [16]
for details):

sεj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P

XP

i¼1
ðYij2 � Yij1Þ2

r

Results
Bar-plots for each of the WB-DWI metrics recorded by each observer are displayed in the left
column of Fig 1, providing a visual appreciation of the level of discrepancy observed between
repeat reading by the same radiologist and the level of agreement between radiologists. The
centre column of Fig 1 demonstrates the distributions for estimates of the inter-observer ICC
for each WB-DWI parameter, whilst the right column provides the distributions for estimates
of intra-observer ICC. Table 1 summarizes the inter-observer repeatability results, whilst
Table 2 provides results for the intra-observer repeatability of each reader. Fig 2 presents all
Bland-Altman plots for each WBDWI-derived parameter of interest, measured by each
observer. Classically derived calculations of intra-observer repeatability are provided in each
case. Figs 3 and 4 provide visual examples of the segmentation results for two of the patient
data sets (patient IDs 3 and 4 respectively).

From Table 1, it is clear that there was excellent inter-observer repeatability in median/
mean gADC and also for log-tDV estimates with repeatability of 5.5–9% (median slightly out-
performing mean). However, higher order gADC statistics (variance, skewness and kurtosis)
all demonstrated poorer inter-observer repeatability of over 20%. The same trend was observed
for the intra-observer repeatability results in Table 2 with repeatability values of the order of
5.5–13.5% for mean/median gADC and log-tDV estimates, and more than 30% for higher
order gADC statistics (except in the case of kurtosis for R1 who demonstrated approximately
8.5% repeatability). This trend is echoed in the ICC plots displayed in Fig 1 where estimates of
inter- and intra-observer ICC for mean/median gADC and log-tDV were greater than 0.97 in
all cases, whilst higher order gADC statistics demonstrated lower ICC values due to the poor
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performance of R2. The best ICC scores obtained were for log-tDV due the larger variation for
patient values compared to the mean and median gADC estimates. Classical measurements of
intra-observer repeatability σεj (Fig 2) were within the ranges expected by MCMC derived val-
ues (left column, Table 2). Furthermore, no linear trends were seen in the Bland-Altman plots
providing evidence for the Gaussian nature of repeat observer measurements.

Examining two outlier patient cases may elucidate reasons for the reduced performance of
higher order gADC statistics. Fig 3 illustrates results for Patient 3, for whom there was signifi-
cantly large variation in the estimates of gADC variance, skewness and kurtosis of ADC distri-
butions by R2. It is clear from this example that there was disagreement in assessing the disease
state in a lumbar vertebra (indicated by an arrow). Although the inclusion of this site by R2
had little impact on mean/median ADC or log-tDV values, the slightly higher ADC of this
lesion lead to instability of the higher order ADC statistics. This was again observed in Fig 4,
which illustrates detailed results for patient 4. Although this patient demonstrated very low
variation in the mean/median ADC and log-tDV, the inclusion of relatively few voxels with
high ADC values resulted in unstable higher order ADC statistics. These examples highlight
that although ADC histograms may be useful for visual interpretation of ADC changes follow-
ing therapy, the use of histogram statistical descriptors should be treated with caution, as these
may be unstable, particularly in the setting of heterogeneous disease.

Discussion
Our data show that there is excellent inter- and intra-observer repeatability for estimates of
global mean/median apparent diffusion coefficient (gADC) and also for estimates of logarithm
of the tumour diffusion volume (log-tDV) derived from whole body DWI in patients with met-
astatic bone disease. On the other hand, higher order histogram statistics (variance, skewness
and kurtosis) derived from gADCmeasurements demonstrate poorer reproducibility due to
their sensitivity to outliers. We therefore recommend prudence when ascribing significance to

Fig 1. All results for the first radiologist (R1) are displayed in red and those for the second (R2) displayed in green. Left column: Bar plots of all
parameters estimated in this study. Centre column: Posterior distributions for the inter-observer repeatability estimated using MCMCmethods. Mode values
for the histogram are displayed in bold along with the 95% range for the distribution in parentheses (2.5% - 97.5%). Right column: Posterior distributions of
the intra-observer ICC values for each parameter. Mode values for the histogram are displayed in bold along with the 95% range for the distributions in
parentheses. Note the differences in the intra-observer ICC results for higher-order ADC distribution moments (variance and above). This was largely due to
the variation observed in patients 3 and 4 (observed on the bar plots). ADC variance performs especially poorly in these results (ICC = 0.81/0.64), whilst the
inter- and intra-observer repeatability is excellent for log-tDV (ICC = 0.99) and mean/median gADC estimates (ICC = 0.97/0.98). R1 also demonstrated good
results for gADC skewness and kurtosis parameters (ICC = 0.96/0.99), but this was not the case for R2 (ICC = 0.85).

doi:10.1371/journal.pone.0153840.g001

Table 1. A summary of the inter-observer repeatability results. All values in bold represent the mode estimate from the estimates distribution of each
metric, with 95% confidence intervals displayed in parentheses. All measurements assume ADC units of 10−3 mm2/s and estimates of σab andCoV are dis-
played following multiplication by a factor 100 for clarity. Note that the percentage repeatability indicates the change in each parameter that would be needed
for statistically significant change. Whilst repeatability is excellent for mean/median gADC and log-tDV estimates, poorer reproducibility is found for higher
order gADC statistics.

WB-DWI parameter σab (×100) (95% CI) CoV (×100) (95% CI) % Repeatability (95% CI)

Median gADC 1.81 (0.89–3.72) 1.98 (0.97–4.13) 5.48 (2.70–11.5)

Mean gADC 2.39 (1.27–4.81) 2.54 (1.34–5.13) 7.05 (3.72–14.2)

log-tDV 13.2 (5.99–30.1) 3.19 (1.40–8.05) 8.84 (3.88–22.3)

gADC variance 0.95 (0.41–2.02) 13.6 (5.97–31.1) 37.8 (16.6–86.1)

gADC skewness 6.32 (2.73–16.7) 9.09 (3.52–29.8) 25.1 (9.77–82.7)

gADC kurtosis 33.7 (13.9–71.6) 8.81 (3.46–19.4) 24.4 (9.59–53.9)

doi:10.1371/journal.pone.0153840.t001

A User Repeatability Study of QuantitativeWBDWI

PLOS ONE | DOI:10.1371/journal.pone.0153840 April 28, 2016 7 / 12



changes induced by treatments to higher order histogram statistics of gADC distributions, par-
ticularly when volumes of interest (VOIs) are prescribed by different observers, or the same
observer at different times [11].

Table 2. A summary of the intra-observer repeatability results. All values in bold represent the mode estimate from the estimates distribution of each
metric, with 95% confidence intervals displayed in parentheses. All measurements assume ADC units of 10−3 mm2/s and estimates of σεj andCoV are dis-
played following multiplication by a factor 100 for clarity. Whilst repeatability is excellent for mean/median gADC and log-tDV estimates, we observe a trend
for poor reproducibility in higher order gADC statistics. In general, Reader 2 (R2) has worse performance than Reader 1 (R1). R1 demonstrated good repro-
ducibility for gADC kurtosis measurements.

WB-DWI parameter σεj (×100) (95% CI) CoV (×100) (95% CI) % Repeatability (95% CI)

Median gADC R1 1.79 (1.29–3.65) 1.96 (1.40–4.04) 5.44 (3.89–11.2)

R2 1.90 (1.36–3.83) 2.10 (1.48–4.27) 5.82 (4.11–11.8)

Mean gADC R1 2.16 (1.54–4.42) 2.32 (1.62–4.69) 6.43 (4.49–13.0)

R2 1.99 (1.42–4.03) 2.09 (1.49–4.32) 5.79 (4.13–12.0)

log-tDV R1 18.2 (12.9–35.6) 4.29 (2.86–9.61) 11.9 (7.92–26.6)

R2 21.1 (14.8–39.2) 4.92 (3.28–10.8) 13.6 (9.08–30.0)

gADC variance R1 1.05 (0.75–2.27) 15.7 (10.5–34.2) 43.6 (29.2–94.9)

R2 1.51 (1.05–2.68) 22.2 (14.5–43.1) 61.6 (40.2–119.)

gADC skewness R1 10.8 (7.72–20.7) 15.2 (9.05–40.2) 42.2 (25.1–111.)

R2 20.9 (15.4–34.3) 31.3 (17.9–70.1) 86.6 (49.5–194.)

gADC kurtosis R1 11.7 (8.54–24.3) 3.12 (2.08–6.60) 8.63 (5.75–18.3)

R2 54.1 (38.9–98.0) 13.7 (9.51–26.8) 37.9 (26.4–74.2)

doi:10.1371/journal.pone.0153840.t002

Fig 2. Bland-Altman plots for each parameter of interest, demonstrating the intra-observer repeatability for each of theWBDWImetrics of interest.
Results for Reader 1 are plotted on the left in red and those for Reader 2 on the right in green. In all cases there is little evidence of any correlation between
differences in repeat estimates of each parameter (vertical axis) and average value (horizontal axis). Estimates of Intra-observer repeatability, σ, are shown
on each plot and 95% repeatability intervals (±1.96σ) are represented as dashed horizontal lines.

doi:10.1371/journal.pone.0153840.g002
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Although the inter- and intra-observer repeatability for estimates of log-tDV was poorer
compared to mean/median ADC estimates, we believe a high ICC (0.99) indicates that the level
of agreement in baseline log-tDV is large enough to warrant use of the segmented tumour vol-
ume as a feasible biomarker in WB-DWI studies. Indeed the prognostic value before treatment
of tDV is now being investigated in detail with promising results in prostate cancer [17]. Fur-
thermore, we demonstrate that the use of Markov-Chain Monte-Carlo (MCMC) estimation
methods are highly attractive for repeatability studies: They provide full descriptions of results
including all confidence intervals, especially in the case of ICC measures where confidence
intervals can be hard to achieve [15]. We note, however, that this is not the only way to calcu-
late confidence intervals and other methods could be considered [18].

There are limitations to our current study.

1. This was a retrospective study in a small (N = 9), heterogeneous patient population in twin
centers (breast & prostate cancer; with patients at various points in their therapies): Future
work to define repeatability for individual disease types at the same time points in their ther-
apies could provide additional meaningful information. Nonetheless, we found good inter-

Fig 3. Coronal maximum intensity projection (MIP) of a patient diagnosed with metastatic prostate cancer (b = 900 s/mm2 images). Suspected
regions of malignancy have been segmented twice (denoted M1 and M2) by each radiologist (denoted R1 and R2) and displayed as red surfaces. The mean
ADC value, μ, along with the standard deviation, σ, for each lesion is displayed. It is clear that in general there is good visual agreement between readers of
where the disease resides. However, a metastatic site in the lumbar spine (arrow) was not included by R1, as it was thought to represent inactive disease.
This disagreement has lead to significantly reduced ICC values in this study demonstrating the sensitivity of high order ADC summary statistics to outliers.

doi:10.1371/journal.pone.0153840.g003
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and intra-observer repeatability in the mean and median gADC values, which is highly
encouraging. Furthermore, our results are in agreement with excellent repeatability found
for whole-body ADC estimates in patients diagnosed with multiple myeloma [19].

2. Our current study was confined to evaluating inter-observer and intra-observer errors, and
did not incorporate repeated patient measurement to evaluate data acquisition

Fig 4. Top row: Coronal maximum intensity projection (MIP) of a patient diagnosed with metastatic breast cancer (b = 900 s/mm2 images). Regions
of malignancy have been defined twice (denoted M1 and M2) by each radiologist (denoted R1 and R2) and displayed as red surfaces. There is good visual
agreement between readers of where the disease resides. Bottom left: Kernel density plots of ADC values obtained within regions of interest by each
radiologist. The region of the distribution enclosed by the solid black box is demonstrated in more detail in the bottom right. The kernel density plots show
excellent agreement between the ADC distributions as a whole. However, the presence of a few additional voxels with high ADC in the first measurement by
second radiologist (R2/M1) has lead to poor intra-observer repeatability for this radiologist in the higher order ADC statistics of standard deviation, skewness
and kurtosis.

doi:10.1371/journal.pone.0153840.g004

A User Repeatability Study of QuantitativeWBDWI

PLOS ONE | DOI:10.1371/journal.pone.0153840 April 28, 2016 10 / 12



contributions and biological variation induced by therapies. These additional sources of var-
iability will impact adversely on the reproducibility of measurements and their magnitude is
currently being evaluated, which would inform the design of multi-centre trials evaluating
the prognostic value and therapeutic efficacy prediction of WB-DWI. The impact of these
sources of variation has to be understood in the context of observed changes in the median
ADC which can be up to approximately 80% in patients responding to treatment [11].

3. Our current tumour segmentation technique is semi-automatic, which can be time consum-
ing, especially when multiple, discontinuous lesions are present, and leads to subjectivity in
results. Although fully automatic segmentation strategies for WB-DWI may provide a
means of reducing the errors associated with VOI definitions explored in this research, such
techniques are still in their infancy and it is expected that expert user-interaction will still be
required to delineate disease in patient studies. This will necessitate solid and common
training in the use of tools such as ours.

4. Only two radiologists from the same institution were enrolled in this study; a future exten-
sion to this work could consider the results from a greater number of clinicians experienced
with WBDWI. We expect that this could reduce the range of derived confidence intervals in
estimates of inter-observer ICC for each of the parameters evaluated.

5. A multi-center trial, enrolling a larger patient cohort and using scanners from multiple MR
manufacturers could modify the confidence intervals in estimates of ICC and related
parameters derived in this pilot study.

The emergence of new, targeted therapy has brought optimism for the treatment of meta-
static bone disease, which can prolong patient survival and prevent adverse skeletal events
[20,21]. However, the inability to identify patients who are not benefitting from such often-
costly treatments remains an important clinical challenge. There is thus an urgent need for
accurate, quantifiable prognostic and response biomarkers in patients diagnosed with bone
metastases. Observer variability makes an important contribution to the repeatability of imag-
ing biomarkers. The current study shows that using WB-DWI, measurement of the disease
extent (tDV) and the associated mean or median gADC value has low intra- and inter-observer
variability, making it a potential technique for the evaluation of treatment response in bone
metastases in the skeleton. It is likely that WB-DWI measurements have the potential to be bio-
markers of tumour response in bone metastases.
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