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Abstract 1 

 2 

Introduction: Radioimmunotherapy (RIT) with monoclonal antibodies and their 3 

fragments, labeled with radionuclides emitting -particles, -particles or Auger electrons 4 

have been used for many years in the development of anticancer strategies. While RIT 5 

has resulted in approved radiopharmaceuticals for the treatment of hematological 6 

malignancies, its use in solid tumors still remains more challenging.  7 

Areas covered: In this review we discuss the exciting progress towards elucidating the 8 

potential of current and novel radioimmunoconjugates and address the challenges for 9 

translation into clinical practice. 10 

Expert opinion: There are still technical and logistical challenges associated with the use 11 

of RIT in routine clinical practice, including development of novel and more specific 12 

targeting moieties, broader access to -emitters and better tailoring of pretargeting 13 

approaches. Moreover, improved understanding of the heterogeneous nature of solid 14 

tumors and the critical role of tumor microenvironment will help to optimize clinical 15 

response to RIT by delivering sufficient radiation dose even to more radioresistant tumor 16 

cells.  17 

 18 

Highlight box : 19 

• Systemic radiotherapy with radiolabeled immunoconjugates delivers a non-uniform, low 20 

dose rate irradiation over a prolonged period of time, in contrast to external beam 21 

radiotherapy 22 

• The opportunity of theragnostics, i.e. quantitative imaging of antibodies labeled with 23 

PET or SPECT radionuclides to predict subsequent therapeutic effects of an antibody 24 

radiolabeled with therapeutic  or  emitting radionuclides, significantly contributes to 25 

a personalized treatment delivery     26 

• Radioimmunotherapy is more successful in hematological cancers than in solid tumors 27 

• The choice of the radionuclide is of pivotal importance for therapeutic efficacy and 28 

radiation-related toxicity. 29 

• Modification of the antibody may improve the therapeutic window when tumor targeting 30 

is preserved, while blood clearance is accelerated.  31 

• Application of bispecific monoclonal antibodies, binding to both tumor antigens and 32 

haptens, allows faster targeting of rapidly clearing radiolabeled small molecules, 33 

thereby improving the therapeutic window of radioimmunotherapy. 34 

 35 

 36 

 37 
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1. Introduction 1 

Ionizing radiation is a double-edged sword since it has the mutagenic potential to promote 2 

cancer development, while also commonly used in the clinic to induce DNA damage to 3 

selectively kill tumor cells. Next to surgery, radiotherapy still remains the most effective 4 

form of cancer treatment [1]. There are two different types of ionizing radiation, 5 

electromagnetic radiation (photons, one of the types of ionizing radiation typically used for 6 

external beam radiotherapy, EBRT) and particle radiation, typically used in systemic 7 

radiotherapy with radionuclides, and in the case of protons and carbon ions also for 8 

EBRT. The different types of DNA damage induced by ionizing radiation have been widely 9 

characterized over the years [2]. Amongst the DNA insults caused by ionizing radiation, 10 

double-strand breaks (DSBs) and clustered damage are the most deleterious with the 11 

greatest mutagenic potential [3-6]. Clustered damage relates to the formation of two or 12 

more lesions within one or two helical turns of the DNA by a single radiation track [7]. The 13 

lesions that compose clustered damage can include not only DSBs, but also single-strand 14 

breaks (SSBs) in proximity to base lesions [8-11]. It has been hypothesized that clustered 15 

damage occurrence may increase with an increase in ionization potential. Approximately 16 

30% of the DSBs induced by low linear energy transfer (LET) ionizing radiation are 17 

complex due to the presence of additional breaks. This number rises to approximately 18 

70% when high-LET radiation is used instead [12]. The plethora and complexity of 19 

damage induced by different ionization density of radiation highlight the deleterious effects 20 

it poses to genomic DNA. 21 

The concept of radioimmunotherapy (RIT) emerged as an alternative to EBRT when the 22 

disease burden (e.g. radiosensitive tumors such as leukaemias and lymphomas) 23 

complicates treatment-planning options [13]. In RIT cytotoxic - or --particle emitters are 24 

delivered by targeting molecules (e.g. monoclonal antibodies (mAbs), small proteins) 25 

providing continuous radiation exposure specifically to tumor-associated antigens while 26 

sparing the surrounding non-targeted normal tissues. These compounds are systemically 27 

administered, permitting the radioimmunoconjugate when in contact with a tumor cell to 28 

specifically bind to a given antigen via a direct interaction with the targeting moiety. The 29 

absorbed high amounts of energy promote direct macromolecular damage as well as the 30 

generation of reactive oxygen species [14]. The delivery of radiation doses capable of 31 

inducing cellular death may also pose detrimental effects to normal tissues, highlighting 32 

the need for a targeting moiety to specifically recognize an antigen in order to maximize 33 

the dose deposition to the tumor cells, enhancing the therapeutic index [15]. Of note, the 34 

enhanced specificity attained with targeting moieties such as mAbs may also result in a 35 

delivery of irradiation doses to normal tissue due to the rather slow clearance of these 36 

molecules [16, 17]. 37 



 

5 

 

In 1950 when protein labeling with 131I was performed without any significant alterations in 1 

terms of specificity, Pressman and Korngold assessed the tumor-targeting potential of a 2 

131I-labelled BSA in osteosarcoma-bearing rats, confirming its specific uptake in the tumor 3 

[18, 19]. The first clinical trial using this radioligand in patients with metastatic melanoma 4 

showed a complete remission in one patient [20]. Kőhler and Milstein’s development of 5 

the hybridoma technique permitted the production and isolation of pure human mAbs 6 

against a single epitope. This resulted in the identification of several antigens that could 7 

be targeted for cancer treatment such as surface antigen CD20 e.g. highly expressed in 8 

non-Hodgkin’s lymphoma (NHL) patients and not expressed in stem cells, and 9 

carcinoembryonic antigen (CEA) a common feature of colorectal cancer [21, 22]. Since 10 

then, hematological malignancies have become favorable targets for RIT due to their 11 

sensitivity for radiation and the broad variety of expressed antigens on their cellular 12 

surface, including CD5, CD22 and CD45 in acute lymphoblastic leukemia (ALL), CD15 13 

and CD33 in acute myeloid leukemia (AML), as well as CD19-22 in NHL [13, 23]. 14 

Moreover, the antigen CD20 highly expressed in B-cell associated malignancies (e.g. in 15 

more than 90% of B-cell lymphoma cases), but not in plasma cells or non-lymphoid 16 

normal tissues, provides the importantly required tumor specificity for RIT. So far, two 17 

radiolabelled anti-CD20 antibodies have been approved for clinical use, and proven 18 

effective in the treatment of B-cell NHL, namely 90Y-ibritumomab tiuexetan (Zevalin) and 19 

131I-tositumomab (Bexxar). The latter requires pre-therapy imaging in order to establish 20 

the dose to be delivered [24], whereas 90Y-ibritumomab is typically administered at a dose 21 

of 14.8 MBq/kg, being reduced to 11.1 MBq/kg if the platelet counts are below 150,000. 22 

Furthermore, to avoid severe bone marrow toxicity the use of these tracers is not 23 

recommended in patients where the bone marrow involvement is more than 25% [25]. 24 

Experimental and clinical evidence suggest that radioconjugates targeting CD20 can 25 

significantly decrease disease progression [26, 27]. Treatment of NHL patients with 90Y-26 

ibritumomab tiuexetan led to a greater absorbed dose in the tumor when compared to 27 

normal tissues such as the liver, and thus increased the therapeutic index and treatment 28 

response [28]. Moreover, the effect of 90Y-ibritumomab tiuexetan (Zevalin) and 131I-29 

tositumomab (Bexxar) have been reported to improve the overall (60-80%) and complete 30 

response rates (15-40%) in relapsed NHL patients when compared to treatment with 31 

unlabeled antibodies [26, 27]. Even though encouraging results were observed with 131I-32 

tositumomab (Bexxar), this radioimmunoconjugate is no longer available in the U.S., since 33 

its production has been discontinued [29]. In the case of 90Y-ibritumomab tiuexetan 34 

(Zevalin), as reviewed by Rizzieri, this radioimmunoconjugate has shown promise for the 35 

treatment of NHL patients in comparison to EBRT, with trial results showing that this 36 

radioimmunoconjugate is an efficient therapeutic option for those patients who are 37 
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resistant to chemotherapy and rituximab (anti-CD20 antibody) [26, 30, 31]. It is believed 1 

that with an increase in awareness of the therapeutic benefits of this strategy, 90Y-2 

ibritumomab tiuexetan will assume a more prominent role in the treatment options of NHL 3 

patients [30]. Janik et al. have also reported the clinical use of 90Y-daclizumab, an anti-4 

CD25 monoclonal antibody, which was resulted in responses in 50% of the treated 5 

patients with relapsed NHL [32]. 6 

Unfortunately, despite the success of radioconjugates targeting antigens in hematological 7 

malignancies, RIT treatment of solid tumors still remains a challenge. Their greater 8 

radioresistance and limited capacity of penetration by large molecules such as mAbs 9 

impact on the treatment efficacy. The use of RIT is thought to be better suited to treat 10 

small-volume metastatic and post-surgery residual disease rather than a stand-alone 11 

therapeutic strategy in wide-spread metastatic disease. In comparison to EBRT, RIT has 12 

the ability to treat not only residual tumor in surgical resection margins, but also systemic 13 

malignancy (e.g. bone metastases) and tumor cells in circulation. 14 

 15 

2. Choice of the radionuclide 16 

RIT efficacy is inherently related to the capacity of the chosen isotope to incur DNA 17 

damage to the cells beyond their repair capacity. Depending on the nature of the 18 

radionuclide, the type and severity of the induced damage is quite diverse. Damage 19 

induction is dependent on the radiation quality or linear energy transfer (LET), which 20 

refers to the amount of deposited energy per unit track length (Figure 1) [12, 33, 34]. 21 

Conventionally, the radioisotopes of choice are - or Auger electron emitters (Table 1). 22 

The emitters (e.g. 131I, 90Y, 177Lu, 188Re, 186Re and 67Cu) produce low-LET radiation of 23 

approximately 0.2 keV/m with a range of 0.5-12 mm in tissue, and energies between 30 24 

keV and 2.3 MeV, in the form of -particles, internal conversion electrons, and or X-rays. 25 

These forms of radiation are commonly referred to as sparsely ionizing radiation, where 26 

the long range allows for energy deposition in neighboring non-targeted cells: ‘crossfire 27 

effect’. Conversely, it must also be considered that the range in tissue will have damaging 28 

effects on the surrounding normal tissues, increasing non-targeted toxicity, thus it is 29 

imperative to consider normal tissue toxicity when determining the therapeutic 30 

radionuclide to use. Moreover, sparsely ionizing radiation typically induces less complex 31 

damage, where 70% of the insults induced to the genomic DNA of cells are a direct result 32 

of the production of OH radicals, highlighting the importance of normal oxygen conditions 33 

to enhance radiation damage [35-37]. Therefore, high levels of hypoxia within the tumor 34 

mass will dramatically reduce the level of radiation damage incurred to the cells using 35 

such radioisotopes. In addition, the tumor microenvironment has a significant influence on 36 
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the delivery of the radioconjugates to the cancer cells. The combination of reduced blood 1 

flow and increased interstitial fluid pressure will increase the hypoxic levels within the 2 

tumor, ultimately resulting in a reduction in tumor uptake or a potential heterogeneous 3 

distribution of the conjugate across the tumor burden, concomitantly with an increase in 4 

radioresistance due to the lack of oxygen [38]. The most promising use for -emitters in 5 

RIT lies with their ability to bypass tumor antigen heterogeneity and non-homogeneous 6 

penetration of intact mAbs. The most clinically relevant -emitters that have been used 7 

so far in more than 95% of RIT trials are 131I, 90Y, 177Lu and 186Re [39-43]. These isotopes 8 

are readily available, have favorable emission characteristics, and adjustable 9 

radiochemistry facilitating conjugation with mAbs. For example, 131I is inexpensive and has 10 

the advantage of being used for both single-photon emission computed tomography 11 

(SPECT) imaging and therapy, including treatment of thyroid cancer and malignancies 12 

such as NHL and AML [24, 44]. The commonly utilized radiochemistry for radioiodination 13 

has the disadvantage of leading to rapid de-iodination of the 131I-labelled proteins that 14 

undergo endocytosis, being quickly degraded and released into the bloodstream as 131I-15 

tyrosin and free 131I [15, 45]. Alternative chemistry can help preventing such effect [46]. 16 

Furthermore, the 131I decay originates a high frequency of -rays, which can be toxic to 17 

surrounding tissues and which require radiation safety procedures for both patient’s 18 

relatives and healthcare practitioners, potentially requiring longer hospitalization times. 19 

Alternatively, 90Y has been used exclusively for therapeutic purposes, being almost a pure 20 

--emitter [47]. The higher energy characteristic of the --particles resulting from the decay 21 

of 90Y leads to 70% of their energy being deposited outside small tumors, making 90Y-22 

labelled mAbs unsuitable for the treatment of small malignant lesions [48]. Moreover, even 23 

though 90Y residualizes more readily than 131I within the cancer cells following 24 

endocytosis, unchelated 90Y has affinity for bone leading to relatively high radiation doses 25 

to the bone marrow, causing myelosuppression, and therefore increasing normal tissue 26 

toxicity [26, 49].  27 

Given that solid tumors are typically poorly oxygenated, emitters represent a valid 28 

alternative for RIT treatment of such tumors. These isotopes are capable of generating 29 

high-LET radiation of 50-230 keV/m, with energies ranging from 5 to 9 MeV (e.g. 225Ac, 30 

211At, 212Bi, 213Bi and 212Pb) [50, 51]. These particles have a much shorter range in tissue 31 

(typically 50-100 m) when compared to -particles, reducing toxicity to neighboring cells 32 

and increasing the number of ionizations per track. Ultimately, such emitters generate 33 

clustered radiation damage independently of the oxygenation status of the tumors, as 34 

highlighted by Wulbrand et al. [52]. Additionally, emitters can prove useful in the 35 

treatment of small-volume disseminated disease, which only require low numbers of 36 
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particles traversing the cell nucleus (one to three) to completely eradicate the cells [53]. 1 

Furthermore, emitters have a greater relative biological effectiveness (RBE) when 2 

compared to -emitters, leading to greater levels of unrepaired DNA damage, which in 3 

turn results in a more prominent level of cell killing for the same delivered dose [50, 51, 4 

54]. 5 

Moreover, Auger-electron emitters such as 125I, 111In, 67Ga and 195mPt have also been used 6 

for RIT. These isotopes emit intermediate-LET radiation (4-26 keV/m) with energies 7 

between 1 eV and 1 keV, and a range lower than 1 m in tissue. This leads to an intense 8 

energy deposition in the nanometer scale, making these radionuclides ideal candidates for 9 

the treatment of single or clusters of cells, minimizing ‘crossfire’ toxicity [55, 56]. However, 10 

given the ultralow range of Auger-electrons, internalization and transport into the nucleus 11 

is key to achieve an effect by DNA damage induction, which may also translate into higher 12 

activities being required for treatment [57, 58]. As an example, 111In-labeled anti-prostate-13 

specific membrane antigen antibody J591 was assessed during a phase1 study in 14 

castrate metastatic prostate cancer, with the conjugate being well tolerated by the patients 15 

[59]. 16 

The choice of the optimal radionuclide for RIT is inherently dependent on the practical 17 

considerations related to its specific application. Therefore, apart from physical 18 

characteristics (e.g. half-life (T1/2), type of emission(s), energy of the radiation(s), daughter 19 

product(s), method of production, and radionuclide purity) it is also necessary to consider 20 

the biochemical characteristics (e.g. selective concentration and prolonged retention in the 21 

tumor, minimum uptake in normal tissues, metabolism of the antigen-targeting molecule 22 

complex) that may aid or limit the anti-cancer effects of RIT. For instance, the radiation 23 

effects may be enhanced by the retention of the radionuclide within the lysosomes or 24 

storage proteins, or dramatically reduced if the radionuclide is quickly cleared from the 25 

cells, potentially also enhancing normal tissue toxicity. Antigens such as CD5, CD22 or 26 

PSMA, which are rapidly internalized, and subsequently catabolized by cancer cells, also 27 

may lead to a quick dissociation of the attached radionuclide. Therefore, molecules 28 

targeting such antigens are preferentially conjugated with residualizing radiometals such 29 

as 177Lu, 90Y and 213Bi. These are retained within the cells leading to a continuous 30 

radiation exposure. Cells excrete radionuclides more promptly when non-residualizing 31 

radionuclides such as radioiodides are combined with fast internalizing targets. Therefore, 32 

antigens that have a prolonged retention on the cellular membrane may be better 33 

candidates for radiolabelling with non-residualizing radionuclides, promoting a prolonged 34 

exposure [15]. 35 

 36 
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3. Antigens and targeting molecules  1 

Ideally, the optimal antigen for RIT should be highly expressed (typically >100,000 sites 2 

per cell) in tumor cells but not in normal tissues, which will maximize the delivery of 3 

radiation dose specifically to the tumor [15]. Currently, the most frequently used targeting 4 

moieties for RIT are mAbs since a broad variety of therapeutic mAbs are available in the 5 

clinic [60]. Targets include the CD antigens; glycoproteins; enzymes such as prostate-6 

specific membrane antigen (PSMA); blood vessel components like the vascular 7 

endothelial growth factor receptor (VEGFR); and cell-membrane receptors involved in the 8 

transduction of multiple signaling pathways such as the human epidermal growth factor 9 

receptor 2 (HER2) [15]. Clinical RIT trials in patients with solid tumors involved a wide 10 

variety of cancers including brain, colorectal, head and neck, renal or breast. In these 11 

trials whole antibodies (immunoglobulin G, IgG, 150 kDa) were used due to their 12 

availability and increased tumor uptake observed in preclinical models [21, 26, 31, 61-67].  13 

A plethora of preclinical studies suggest that radioimmunoconjugate-based treatments can 14 

significantly decrease disease progression (see Table 2). For instance, Song et al. have 15 

studied the effect of anti-EGFR-targeted RIT in esophageal squamous cell carcinoma 16 

(OSCC) models using 177Lu-cetuximab. This study has shown that animals receiving RIT 17 

treatment with 177Lu-cetuximab exhibited a significant inhibition in tumor growth, followed 18 

by a reduction in [18F]-FDG tumor uptake compared to the control group [68]. 19 

Timmermand et al. have reported the effective therapeutic use of the murine 11B6 20 

antibody (m11B6), targeting human kallikrein-related peptidase 2 (hK2) radiolabelled with 21 

177Lu in subcutaneous prostate cancer xenografts [69]. The mice treated with 10, 19 or 36 22 

MBq of 177Lu-m11B6 survived for 88 to 120 days compared to an average of 39 days in 23 

the control group. The doses deposited in the tumor were estimated to be between 48 and 24 

180 Gy, with bone marrow absorbed doses ranging between 4.5 and 16 Gy. Furthermore, 25 

225Ac -particle based RIT targeting PSMA on prostate cancer cells, led to complete 26 

remission in two patients with metastatic castration-resistance prostate cancer [70]. 27 

Encouragingly, these results point towards a novel strategy for prostate cancer treatment 28 

with theoretically tolerable adverse effects. Furthermore, head and neck squamous cell 29 

carcinoma was more efficiently treated with 90Y-cetuximab when compared to unlabeled 30 

cetuximab in UM-SCC-22B xenografts [71]. Impressive results have been observed when 31 

trastuzumab radiolabelled with 211At promoted complete responses in SKOV-3 xenografts 32 

in comparison to unlabeled trastuzumab [72]. Moreover, several studies have reported the 33 

use of the same -emitter coupled to MX35 F(ab')2, for the treatment of ovarian cancer, 34 

leading to a phase 1 clinical trial [73-78].Additionally, Derrien et al. tested the use of an 35 

anti-CD138 antibody radiolabelled with an -emitter (213Bi) to perform RIT in a mouse 36 

model of ovarian peritoneal carcinomatosis, a pathology currently lacking effective 37 
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treatment regimens. The authors demonstrated that selective irradiation of tumor cells 1 

overexpressing the CD138 antigen, increased the overall survival to approximately 70% 2 

after 90 days, compared to a median survival of 68 days in the control group [79]. These 3 

results indicate a potential therapeutic approach of using -emitting radionuclides based 4 

RIT for the treatment of epithelial ovarian carcinoma. Chevallier et al. have also reported 5 

that RIT was well tolerated during a dose-escalation phase 1 study involving the use of 6 

90Y-labelled anti-CD22 epratuzumab tetraxetan in adults with refractory or relapsed B-cell 7 

acute lymphoblastic leukemia [80]. 8 

The slow blood clearance of intact IgG antibodies results in a prolonged blood circulation, 9 

leading to high tumor accumulation, concomitantly with an increased radiation exposure of 10 

the red marrow, potentially resulting in unwanted myelosuppression (reduction in platelets 11 

and white blood cells as well as red blood cells) and accumulation in critical organs such 12 

as the liver, when long-lived isotopes are used for radiolabelling [81, 82]. Therefore, 13 

antibody fragments (F(ab’)2, F(ab′), Fab; 110-55 kDa),  single-chain variable fragments 14 

(scFv; 25 kDa) or engineered protein scaffolds including diabodies (dimers of scFv; 50 15 

kDa) or affibody molecules (6-7 kDa) have been investigated as alternatives in animal 16 

models, intending to increase tumor penetration and to reduce the time required for blood 17 

clearance [83-85]  18 

The divalent constructs have shown faster blood clearance with higher tumor retention 19 

when compared to monovalent proteins [86]. Their faster blood clearance is inherently 20 

related to their smaller size and lack of the Fc portion of the IgG responsible for binding to 21 

the neonatal Fc receptor and increased blood retention [25]. Subsequently, when 22 

compared to mAbs, antibody fragments reduce the dose delivered to the red marrow, 23 

permitting an escalation of the total activity delivered to the tumor. Smaller protein 24 

scaffolds are also superior in terms of traversing the vascular channels, accelerating 25 

tumor targeting and providing more attractive tumor-to-normal tissue ratios. Faster 26 

clearance from the blood allows for a more rapid delivery of the radioactivity to the tumor 27 

cells, providing higher dose-rates for efficient cell killing [87]. However, it limits the 28 

timeframe for target interaction, leading in turn to lower overall tumor uptake when 29 

compared to IgG constructs [81]. Furthermore, the faster delivery rates are concomitant 30 

with rapid excretion rates of a large proportion of the injected dose, requiring then injection 31 

of higher amounts of radioactivity, which can in turn result in increased renal toxicity rates. 32 

Therefore, in the clinical setting, antibody fragments have not been as successful as 33 

initially anticipated, possibly due to a mismatch between the fragment of choice and the 34 

radionuclide [25]. Affibody molecules have also been recently investigated. Their high 35 

target specificity (nM-pM range) and small molecular weight make them ideal candidates 36 

for imaging agents and therapy delivery platforms, allowing for rapid blood clearance and 37 
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favorable tumor uptake when conjugated with radioisotopes. However, their predominant 1 

renal excretion and retention of the radioactive metabolites in the proximal tubular cells 2 

results in a high kidney accumulation of radioactivity over time. Interestingly, recent data 3 

suggest that the overall reduction in dose delivered to the kidney is of two-fold, which may 4 

not be sufficient to limit potential long-term renal-associated side effects in clinical studies 5 

[25, 88, 89]. On the other hand, it has been reported that pre-dosing with cationic amino 6 

acids might significantly reduce the uptake of radiolabelled Fab in the kidneys in 7 

preclinical models, allowing for an activity escalation without increasing renal toxicity [25, 8 

88, 89]. Moreover, dosimetry estimation studies in mouse xenografts have shown that 9 

188Re-labelled affibody molecules specifically targeting the HER2 receptor can deliver 79 10 

Gy to the tumor, without exceeding the limiting doses delivered to the kidneys or bone 11 

marrow [90]. Encouragingly, Tolmachev et al. also conjugated the molecule to an albumin-12 

binding domain (ABD) and showed further reduction in renal uptake of HER2-targetting 13 

affibody molecules, whilst permitting the delivery of therapeutic doses of 177Lu. Treatment 14 

of SKOV-3 microxenografts (high-HER2 expression) with 17 or 22 MBq of 177Lu-CHX-A”-15 

DTPA-ABD-(ZHER2:342)2 prevented the formation of tumors in contrast to the mice receiving 16 

placebo or 177Lu-labelled non-specific affibody molecules [91, 92]. In addition, the same 17 

group has also evaluated another affibody-based construct, ZHER2:2891-ABD035-DOTA 18 

(ABY-027), radiolabeled with 177Lu in HER2-expressing cells and SKOV-3 xenografts, 19 

suggesting this radioconjugate has potential for therapeutic intervention [93]. Despite the 20 

fact that affibody molecules show promise, further investigations of the use of such 21 

targeting moieties for RIT applications are required. 22 

Furthermore, the applicability of dual-receptor targeted RIT was assessed by Razumienko 23 

et al. in breast cancer xenografts using bispecific radioimmunoconjugates (bsRICs) 24 

targeting both the HER2 and EGFR receptors [94]. These bsRICs comprised of 25 

trastuzumab Fab fragments and the EGF ligand labeled with either 111In or 177Lu. Both 26 

radioimmunoconjugates were found to bind in vitro with high specificity to HER2 and 27 

EGFR, presenting higher cytotoxic effects when compared to monospecific 28 

radioconjugates. The tumor uptake of 177Lu-labelled bsRICs was 2-fold greater than with 29 

monospecific radioconjugates, additionally reducing tumor growth in both trastuzumab-30 

sensitive MDA-MB-231/H2N and trastuzumab-resistant TrR1 tumors. This therapeutic 31 

regimen could become an alternative for patients with trastuzumab-acquired resistance. 32 

Other groups have also explored the use of cell-penetrating peptides to transport the 33 

radionuclides across the cellular membrane since they might facilitate RIT delivery to 34 

molecules localized in the cell nucleus such as H2AX, a known DNA DSB biomarker. In 35 

fact, antibodies targeting this biomarker were conjugated with a TAT peptide and 36 

radiolabelled with 111In. Internalization of this radioconjugate was confirmed in a panel of 37 
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breast cancer cell lines. Moreover, the use of 111In-H2AX-TAT was reported to delay 1 

tumorigenesis in genetically engineered mice of neuT-overexpressing breast cancer; by 2 

targeting the early onset of DNA damage formation, characteristic of cancer development 3 

[95]. 4 

 5 

4. Considerations for RIT in solid tumors 6 

One of the reasons why RIT has mainly been a successful treatment approach for 7 

hematological cancers lies with the fact these cancers are typically more radiosensitive 8 

than solid tumors. Additionally, the high cost of RIT trials, limitations involving access to 9 

such form of therapy, and issues regarding eligibility criteria, are main reasons why the 10 

majority of RIT clinical trials for the treatment of solid tumors have not progressed beyond 11 

Phase I/II trials. Many clinical trials failed due to the treatment regimen being established 12 

without taking into consideration dosimetry and radiobiology [62, 96, 97]. For example, 13 

90Y-Pentumomab administered to patients with ovarian carcinoma, led to no increase in 14 

survival rates or time to relapse compared to the standard treatment most likely because 15 

the radiation doses were too low to promote tumor cell killing [98]. In addition, it is possible 16 

that the -particles due to their range in tissue did not deposit the majority of the dose 17 

within the tumor, contributing to normal tissue toxicity, together with the hematological 18 

toxicity caused by slow blood clearance when full IgG antibodies are utilized as targeting 19 

moieties. It is therefore essential to account for the sensitivity of tumor cells during 20 

treatment planning, which can be described by well established  ratios [99]. Typically, 21 

high  ratios characterize tissues with low repair capacity, and low ratios are 22 

representative of moderately radiosensitive tissues (e.g. solid tumors) [99]. These ratios 23 

are conventionally used in the clinic with the linear quadratic model. This mathematical 24 

model has become the model of choice for bio-effect estimation in radiotherapy since its 25 

introduction around 1980. Computed with the linear quadratic model, the  ratios can be 26 

used to describe the repair capacity of the different tissues, assisting in the estimation of 27 

dose prescriptions required to guarantee tumor control and prevent normal tissue 28 

complications [99].  29 

In order to maximize the effect of RIT it is necessary to better understand the radiobiology 30 

involved in this therapeutic approach. RIT is usually characterized by a non-uniform and 31 

low-dose rate irradiation, in contrast to conventional EBRT. Low-dose rate irradiations can 32 

be compared to fractionated radiotherapy, since in both cases the irradiated cells can 33 

repair the radiation-induced damage, being therefore necessary to account for dose and 34 

fractionation-dose related effects when optimizing RIT treatment regimens. Consequently, 35 

it is imperative to determine the absorbed dose delivered to the tumor burden, in order to 36 
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achieve more prominent patient responses following RIT. In conventional EBRT, doses in 1 

the order of 50 Gy are usually necessary to achieve clinical response in multiple forms of 2 

cancer, such as breast, lung, and colorectal [100]. The doses delivered by RIT are 3 

typically in the order of 1.8 Gy to 33 Gy, and therefore not sufficient to promote cell killing 4 

capable of eradicating the disease [101]. Calculating the total dose delivered by RIT to the 5 

tumor can be quite challenging due to the formation of non-uniform energy deposits. 6 

Therefore, some cells may receive high doses while others remain unirradiated. Dose 7 

fractionation could in principle counteract such issue due to improvements in distribution 8 

of the tracer, leading to a more homogeneous absorbed dose across the tumor burden. 9 

So, to accurately estimate the required dose for particular patient it would be helpful to 10 

acquire anatomical (CT or MRI) and molecular (PET or SPECT) scans. Assessment of the 11 

distribution of the tracer within the tumor and its pharmacokinetic profile could help to 12 

estimate the delivered dose per patient when applying RIT. Recently, Schwart et al. have 13 

reported studies where imaging with 124I-labelled antibodies strengthened a potential role 14 

of image-based dosimetry to optimize RIT treatment schedules of patients with either 15 

renal or colorectal cancer, and guaranteed the appropriate dose delivery to the tumor 16 

whilst sparing normal tissues [102].  17 

 18 

5. Strategies to improve RIT efficacy in treating solid tumors 19 

Several strategies and approaches have been considered to improve the delivery and 20 

efficacy of RIT when treating solid tumors, including the use of non-conventional 21 

radionuclides. For diagnostic purposes, 89Zr, 124I or 111In are the most frequently used 22 

isotopes for antibody labeling, as the decay time is ideal for PET and SPECT imaging, 23 

respectively. For therapy however, the majority of studies rely on the use of 131I, 177Lu and 24 

90Y. The conventional workflow requires a radionuclide ( or + emitter) to be used to 25 

evaluate the expression of the target antigen, dosimetric estimations, metabolic and 26 

clearance rates, and a radionuclide (- or -emitter) to be used for therapy. The use of a 27 

radionuclide with favorable decay characteristics allowing for both efficient therapy and 28 

imaging would be therefore ideal [103]. For example, 47Sc ideally fits into such category, 29 

being a -emitter (T1/2: 3.35 d; E-: 162 keV; E: 159 keV), permitting radionuclide imaging 30 

and tumor therapy similarly to the clinically established 177Lu (T1/2: 6.65 d; E-: 134 keV; 31 

E: 113, 208 keV). More recently, efforts have been put into facilitating the availability of 32 

47Sc, and into the development of radiochemistry allowing its conjugation to targeting 33 

moieties [104-106]. Additionally, the fact that 212Pb, and 225Ac/213Bi can be produced by 34 

generators, might justify further investments in order to facilitate their availability making 35 

these isotopes attractive alternatives for -emitter based RIT [107-110]. Furthermore, 36 
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203Pb can be used as a matched SPECT imaging partner for 212Pb, minimizing the 1 

challenges associated with the preclinical evaluation of biodistribution and targeting 2 

assays performed with 212Pb-radiolabeled molecules [111]. 3 

In order to improve tumor targeting, an approach known as pretargeting has also been 4 

investigated. This strategy involves the separate administration of the targeting mAb, 5 

which is allowed to accumulate in the tumor followed by injection of the radionuclide 6 

conjugated with to a small molecule that binds to the mAb (hapten). Apart from concerns 7 

regarding the dose delivered to the kidneys due to excretion of the radionuclide, several 8 

preclinical and clinical studies have highlighted the benefit of such strategy in improving 9 

tumor uptake [112]. Such therapeutic approach was assessed in prostate cancer PC3 10 

xenografts using the trivalent bispecific antibody TF12 (anti-TROP2 × anti-HSG 11 

[histamine-succinyl-glycine]) followed by 177Lu-labeled diHSG-peptide (IMP288). Mice 12 

receiving 2 or 3 cycles of pretargeted RIT presented a median survival of >150 days, 13 

compared to 76 days observed in the control mice [113, 114]. Additionally, Schoffelen et 14 

al. have reported the clinical results obtained using pretargeted RIT in colorectal 15 

carcinoma patients using a bispecific mAb targeting the carcinoembryonic antigen (CEA) 16 

[115]. The utilized bispecific mAb (TF2) is a humanized tri-Fab molecule, comprising two 17 

anti-CEA Fab fragments, and one Fab fragment recognizing the hapten peptide (IMP288) 18 

radiolabelled with 111In (imaging) or 177Lu (therapy). This study demonstrated the feasibility 19 

and safety of utilizing pretargeted RIT for rapid and specific tumor targeting in CEA-20 

expressing CRC patients [115]. Salaun et al. have also assessed the utility of anti-CEA 21 

pretargeted RIT in rapidly progressing metastatic medullary thyroid carcinoma (MTC) 22 

patients through a prospective multicenter trial [116, 117]. In addition, in this case the 23 

doubling time of serum biomarkers was correlated with clinical outcome. In total, 42 24 

patients were treated with anti-CEA mAb followed by injection of 131I bivalent hapten (1.8 25 

Gb/m2) 4-6 days later. Overall, pretargeted RIT led to a disease control rate of 76.2% with 26 

manageable hematological toxicity in progressive MTC, and increased serum biomarker 27 

doubling time was correlated with overall survival [116]. Bodet-Milin et al. reported the 28 

utility of pretargeted immuno-PET with 68Ga-IMP288 and the anti-CEA bispecific mAb 29 

(TF2) in medullary thyroid carcinoma (MTC), as an optimization strategy for clinical 30 

optimization of pretargeting parameters [118]. The same group utilized a similar strategy 31 

to optimize the delivery of pretargeted RIT in in CEA-expressing advanced lung cancer 32 

patients [119].  33 

Preclinical evaluation of 86Y- or 177Lu-DOTA-Bn binding scFv C825/GPA33 IgG bispecific 34 

immunoconjugates showed promising results in SW1222 colorectal carcinoma xenografts, 35 

with 9 out of 9 mice having a complete response following 66.6 or 111 MBq of the 36 

radioconjugate [85]. Houghton et al. reported the applicability of a bioorthogonal reaction 37 
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between transcyclooctene (TCO) and tetrazine (Tz), to specifically target pancreatic 1 

cancers expressing the carbohydrate antigen 19.9 (CA19.9) utilizing a fully human mAb 2 

(5B1). This antibody was modified with a TCO and used as the targeting vector, followed 3 

by administration of 64Cu-NOTA-PEG7-Tz for PET imaging. This approach revealed a 25-4 

fold lower total body dose in Capan-2 orthotopic models compared to 89Zr-labelled 5B1, 5 

highlighting the potential of pretargeting [120]. The same approach also showed benefit in 6 

SW1222 human colorectal carcinoma xenografts [121]. 7 

As mentioned above, the tumor microenvironment impacts on the delivery of 8 

radioconjugates to cancer cells [38]. To overcome microenvironment-related hurdles, 9 

antiangiogenic agents targeting VEGF or its receptor have been used to normalize the 10 

tumor vasculature, enhancing the efficiency of RIT, as reported by the growth inhibition 11 

induced in SKOV-3 cells when exposed to 131I-bevacizumab (anti-VEGF antibody) [122]. 12 

Contrastingly, Desar et al. and Muselaers et al. have reported that the use of agents such 13 

as sorafenib (VEGFR inhibitor) leads to increased vasculature disruption and necrosis in 14 

renal cell cancer patients, resulting in reduced tumor uptake of 111In-bevacizumab and 15 

111In-girentuximab (anti-carbonic anhydrase IX mAb), without alterations in target antigen 16 

expression [123, 124]. More work is required in addressing the potential utility of VEGFR 17 

as a target for RIT. Moreover, Myiamoto et al. reported the benefits of mild hyperthermia 18 

in enhancing the delivery of cetuximab (EGFR mAb) in pancreatic cancer, where an 19 

increase in tumor accumulation was observed in BxPC-3, Capan-1, and in Ope-xeno 20 

xenografts, accompanied by a decrease in tumor volume [125]. Such strategy could be 21 

employed to enhance RIT delivery using cetuximab as the targeting moiety. The use of 22 

biological agents has also been equated with the purpose to modulate the expression of 23 

the target antigen, and therefore maximizing the dose delivery to cancer cells. Aquino et 24 

al. have reviewed the effect of drugs (e.g. 5-fluorouracil), cytokines (e.g. interferons or 25 

interleukin-6), differentiating agents (e.g. sodium butyrate) and protein kinase inhibitors 26 

(e.g. staurosporine) in up-regulating the expression of CEA [126-129]. 27 

 28 

6. Conclusions 29 

In this review we have discussed the current status of RIT and ongoing research aiming to 30 

improve RIT delivery and the use of this therapeutic strategy to tackle pathologies lacking 31 

efficient therapeutic alternatives. Undoubtedly, after many years of intense research there 32 

are still technical and logistical challenges associated with the use of RIT in routine clinical 33 

practice, including development of novel and more specific targeting moieties, broader 34 

access to -emitters and better tailoring of pretargeting approaches.  35 

Tumor specificity of novel RIT approaches could be assessed through radiolabelling the 36 

targeting molecules used for RIT with PET radioisotopes. Quantitative analysis of PET 37 
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images may provide complementary information about the pharmacokinetics of the 1 

radioconjugate and help to more precisely estimate tumor dosimetry leading to better 2 

understanding of how to accurately design the RIT regimen (single vs. fractionated dose).  3 

However, we believe that the major hurdle that needs to be overcome to further enhance 4 

the clinical response to RIT is delivering sufficient radiation dose to kill more radioresistant 5 

tumor cells. Given the complicated tumor microenvironment and overall complexity of RIT, 6 

resolving these issues would be beneficial and allow for higher tumor dose delivery while 7 

sparing normal radiosensitive tissues.  8 

In conclusion, clearly there is a need for more RIT clinical trials addressing the treatment 9 

efficacy of targeting specific antigens particularly in solid tumors, but the encouraging 10 

preclinical and clinical data highlight the potential usefulness of targeted intraperitoneal 11 

and systemic radiotherapy to treat a wide variety of different cancers. 12 

  13 
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7. Expert opinion 1 

 2 

Radioimmunotherapy (RIT) has been successfully developed for treatment of patients with 3 

hematological malignancies, in particular non-Hodgkin’s lymphoma. Using monoclonal 4 

antibodies labeled with --emitting radionuclides, durable clinical responses were 5 

achieved. Although the RIT approach results in clinically meaningful responses in these 6 

patients, the radiopharmaceuticals approved for this indication failed to become widely 7 

used therapies as the impact on patient survival was judged to be limited as compared to 8 

other treatment options. Financial implications are also thought to impact on the use of 9 

RIT in NHL, given the importance of reimbursement for such treatments. Combined with a 10 

lack of treatment sites, these points highlight a necessity for financially viable solutions 11 

encouraging such treatment approaches [130]. For solid tumors, RIT has been less 12 

successful and research has not resulted in an approved therapeutic radiopharmaceutical. 13 

This is due to a number of factors, of which the lower sensitivity of solid tumors to 14 

radiation is of major importance. Furthermore, in most trials several approaches to 15 

optimize the efficacy of RIT have been applied. The use of antibody fragments rather than 16 

whole IgG molecules results in faster clearance from non-target tissues, limiting the 17 

radiation dose to normal organs. Unfortunately, targeting of tumors is also generally lower, 18 

which means that there is no major effect on the therapeutic window (anti-tumor effect vs. 19 

radiation-induced side effects). Pretargeted radioimmunotherapy (PRIT) approaches hold 20 

major promise for improvement. In PRIT, the tumor is first targeted with an unlabeled 21 

multivalent antibody that has affinity for a tumor antigen as well as a small molecule. After 22 

allowing this molecule to target the tumor and clear from normal tissues, the radiolabeled 23 

small molecule targets to the antibody on the tumor, while being cleared fast from normal 24 

tissues. PRIT allows fine-tuning approach by antibody modifications, optimization of 25 

dosing regimens as well as the use of more effective radionuclides for therapy ( instead 26 

of --emitters). This flexibility to optimize treatment is on one side an asset, but also 27 

makes development and translation not straightforward, more complicated and more 28 

costly. Additionally, development of this technology must be performed in carefully 29 

selected patients. This is of importance as (P)RIT yields optimal results in patients with 30 

small volume disease which is not rapidly progressive. Radiation doses to bulky disease 31 

are generally not sufficient to induce durable responses. Patient selection can be 32 

improved by using the theranostic concept, exploiting the strengths of molecular imaging 33 

with immunoSPECT or immunoPET for detection, characterization and quantification of 34 

antigen expression on tumors, to depict normal organ uptake and to perform dosimetric 35 

analysis, estimating the radiation dose to the tumor lesions and normal organs. As it is 36 

apparent that patients may experience more benefit from combination of treatment 37 
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modalities, further research is needed to investigate potential synergic effects of (P)RIT 1 

with anti-cancer drugs or external beam radiotherapy. 2 

  3 
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TABLES 1 

 2 

Isotope 
Half-life 

(T1/2) 

Maximum 

energy (keV) 

Maximum 

range (m) 

Emission 

type 

-emitters (LET: 0.2 keV/m)

90Y 2.67 d 2280.0 11300 - 

131I 8.02 d 606.31 2300 -,  

177Lu 6.65 d 498.3 1800 -,  

67Cu 61.83 h 577.0 2100 -,  

186Re 3.72 d 1069.5 4800 -,  

188Re 17.01 h 2120.4 10400 -,  

Auger emitters (LET: 4-26 keV/μm) 

111In 2.80 d 26 17 Auger,  

67Ga 3.26 d 9.6 3 Auger, -,  

195mPt 4.02 d 64 76 Auger 

125I 59.41 d 31.7 20 Auger,  

emitters (LET: 50-230 keV/μm) 

213Bi 45.59 min 8400 90 , -,  

212Bi 60.54 min 7800 100 , -,  

211At 7.21 h 7500 80 , EC 

212Pb§ 10.64 h 7800 100 , -,  

225Ac 9.92 d 8400 90 , -,  

227Th 18.7 d 7400 70 , -, 

 3 

Table 1. Radioisotopes used in RIT (§: 212Pb is not a direct -emitter but it decays to the 4 

-emitter 212Bi). EC: Electron capture. Adapted with permission from [53]. 5 
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Target 

Antigen 

Targeting 

Moiety 
Radionuclide Model Reference 

hK2  murine Ab 177Lu Prostate cancer [69] 

CD138 mAb 213Bi Ovarian carcinoma [79] 

EGFR mAb 177Lu OSCC [68] 

TROP-2 mAb 177Lu Prostate cancer [113, 114] 

GPA33 mAb 177Lu/86Y Colorectal cancer [131] 

NaPi2b F(ab')2 211At Ovarian cancer [84] 

PSMA mAb 177Lu Prostate cancer [66] 

HER2 mAb 212/213Bi Colon adenocarcinoma [67] 

HER2 Affibody 177Lu Ovarian carcinoma [90, 132] 

HER2 mAb 212Pb Colon adenocarcinoma [108] 

CD138 mAb 131I Breast carcinoma [133] 

HER2 mAb 227Th Breast carcinoma [134] 

FR F(ab')2 131I Ovarian cancer [83] 

EGFR mAb 177Lu Epidermoid carcinoma [135] 

MUC1 mAb 177Lu Breast carcinoma [136] 

HER2 mAb 177Lu Breast carcinoma [137] 

PD-L1 mAb 111In Breast carcinoma [138] 

HER2/EGF bsRICs 177Lu/111In Breast carcinoma [94] 

EGFR mAb 213Bi Bladder carcinoma [139] 

L1CAM mAb 177Lu Ovarian cancer [140] 

ROBO1 mAb 90Y Small cell lung cancer [141] 

TfR mAb 90Y Pancreatic cancer [142] 

Lewis Y mAb 177Lu Colon carcinoma [143] 

 1 

Table 2. Examples of preclinical RIT studies in solid tumors since 2010. 2 

 3 
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FIGURES 1 

 2 

Figure 1: The mAb (targeting moiety) conjugated with a radionuclide (DNA damaging 3 

agent) is injected into the blood stream recognizing the cells expressing the target 4 

antigen. The characteristic decay of the radionuclide will generate radiation with different 5 

energies and ranges in tissue. -emitters (A) produce densely ionizing high-LET radiation, 6 

with MeV energies and m range in tissue, causing complex DNA damage leading to 7 

prominent cell killing due to unrepaired damage. --emitters (B) generate low-LET 8 

radiation with keV-MeV energies and mm range in tissue (potential ‘crossfire’ toxicity), 9 

generally referred to as sparsely ionizing (few ionizations per track), leading to low-10 

complexity DNA damage, more readily repaired by the DNA repair machinery. Auger-11 

emitters (C) produce intermediate-LET radiation with energies between 1 eV and 1 keV, 12 

and sub-m range in tissue, with an intense energy deposition over a short range, 13 

challenging the cellular repair capacity. 14 


