SUPPORTING INFORMATION

Exploiting Protein Conformational Change to Optimize Adenosine-Derived Inhibitors of HSP70

Matthew D. Cheeseman,¹ Isaac M. Westwood,^{1,2} Olivier Barbeau,¹ Martin Rowlands,¹ Sarah Dobson,^{1,2} Alan M. Jones,¹ Fiona Jeganathan,¹ Rosemary Burke,¹ Nadia Kadi,¹ Paul Workman,¹ Ian Collins,¹ Rob L. M. van Montfort,^{1,2} Keith Jones^{1,*}

¹ Cancer Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, U.K.

² Division of Structural Biology at The Institute of Cancer Research, London SW7 3RP, U.K.

Table of Contents

Commercially available adenosine analogues: S1-S3

Supporting Information Table S1: S4

NMR spectra of final compounds: S5-S11

Representative SPR sensorgrams and binding curves: S12-S13

Fo-Fc electron density figures for ligand-bound HSP72 structures: S14

Data collection and refinement statistics for HSP72 co-crystal structures with ligands: S15-S16

Co-crystal structure pictures highlighting key residues and overlays: S17-S19

Commercially available adenosine analogues

The following compounds were purchased from commercial suppliers and used without further purification.

Adenosine 1 was purchased from Sigma-Aldrich

Cordycepin S22 was purchased from Sigma-Aldrich

5'-Deoxyadenosine 2 was purchased from Carbosynth Limited

Vidarabine S23 was purchased from Sigma-Aldrich

L-Adenosine S24 was purchased from Carbosynth Limited

3-Deazaadenosine S26 was purchased from Carbosynth Limited

Nebularine S27 was purchased from Carbosynth Limited

8-Aminoadenosine 3 was purchased from Carbosynth Limited

Tubercidin 8 was purchased from Sigma-Aldrich

Toyocamycin 9 was purchased from Sigma-Aldrich

Sangivamycin 10 was purchased from Sigma-Aldrich

Entry	Compd.	Structure	pK _D ±SEM ^a	$K_D(\mu M)^b$
1	1		3.95±0.01	110
2	S23	$H_2N \xrightarrow{N = N}_{N = N} HO HO$	<3.00	>1000
3	2		3.88±0.02	130
4	S24		<3.00	>1000
5	S25	H ₂ N N HÖ OH	<3.00	>1000
6	S26		<3.00	>1000
7	S27		<3.00	>1000

^aAll results are quoted as the geometric mean \pm SEM of 3 independent experiments unless otherwise stated, pK_D=-log₁₀(K_D(μ M)*10⁻⁶). ^bAll values are quoted to 2 significant figures.

(2R,3R,4S,5R)-2-(6-amino-8-(methylamino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol 4

(2R,3R,4S,5R)-2-(6-amino-8-(dimethylamino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol **5**

(2R,3R,4S,5R)-2-(6-amino-8-methoxy-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol 6

(2R,3R,4S,5R)-2-(6-amino-8-(methylamino)-9H-purin-9-yl)-5-methyltetrahydrofuran-3,4-diol 7

4-amino-7-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-6-(methylamino)-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile **12**

4-amino-7-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-6-(methylamino)-7H-pyrrolo[2,3-d]pyrimidine-5-carboxamide **13**

4-amino-6-(benzylamino)-7-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-7H-pyrrolo[2,3-d]pyrimidine-5-carbonitrile **14**

(2R,3R,4S,5R)-2-(6-amino-8-(benzylamino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol 15

(2R,3R,4S,5R)-2-(6-amino-8-((quinolin-6-ylmethyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol 17

(2R,3R,4S,5R)-2-(6-amino-8-((4-chlorobenzyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol **18**

(2R,3R,4S,5R)-2-(6-amino-8-((4-fluorobenzyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol **19**

(2R,3R,4S,5R)-2-(6-amino-8-((4-methylbenzyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol **20**

(2R,3R,4S,5R)-2-(6-amino-8-((3,4-dichlorobenzyl)amino)-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol **21**

Representative SPR Sensorgrams and Binding Curves

Quinoline 17:

$$k_d = 0.45 \, s^{-1} \, (0.48 - 0.41 \, s^{-1}) \, r^2 = 0.98$$
$$t_{1/2} = 1.5 \, s \, (1.4 - 1.7 \, s)$$

Para-chloro 18:

$$k_d = 0.36 \, s^{-1} \, (0.41 - 0.31 \, s^{-1}) \, r^2 = 0.88$$
$$t_{1/2} = 1.9 \, s \, (1.7 - 2.2 \, s)$$

The 95% confidence intervals of the geometric means are quoted in parenthesis.

Fo-Fc electron density figures for ligand-bound HSP72 structures

Fo-Fc electron density maps (green) for HSP72-NBD ligand-bound structures contoured at 3s. A) Sangivamycin, compound 10. B) Compound 17 HSP72 (blue) is shown in a ribbon representation.

Ligand	Compound 10	Compound 17 5AR0	
PDB ID	5AQZ		
Crystals			
Space group	P2.2.2.	P2.2.2.	
Lattice constants		12[2]2]	
a (Å)	47 94	68 94	
h (Å)	89.50	70.21	
c (Å)	96.92	84 77	
a (°)	90	90	
β(°)	90	90	
γ (°)	90	90	
Data collection			
Beamline	Diamond 104-1	Diamond 124	
Date of data collection	29-09-2012	08-12-2012	
Wavelength (Å)	0.9200	0.0686	
Resolution range (Å)	48 46-1 65	46 49-1 90	
(highest-resolution shell values)	(1.68-1.65)	(1 94-1 90)	
Observations	283187 (10299)	(1.)+-1.)0)	
Unique reflections	50487 (2381)	25878 (919)	
Completeness (%) - Inner shell	99.7	99.7	
Average	99.1	89.3	
Outer shell	97.1	51.1	
Multiplicity	56(43)	58(36)	
B (%)	9.9 (198)	13.6 (113)	
$I/\sigma(I)$	53(03)	44(0.6)	
Mean $I/\sigma(I)$	71(05)	7 7 (1 7)	
$CC_{1/2}^{a}$	0.997(0.334)	0 993 (0 400)	
Average Mosaicity (°)	0.55	0.15	
Structure Solution and			
Refinement			
No. of copies in ASU	1	1	
No. of amino acids	390	379	
No. of water molecules	432	203	
No. of chloride ions	0	1	
No. of ethylene glycol molecules	4	0	
No. of glycerol molecules	0	3	
No. of DMSO molecules	0	2	
R-factor (%)	18.6	17.3	
R _{free} (%)	22.1	21.0	
Ramachandran plot			
Favored (%)	99.0	99.2	
Outliers (%)	0.0	0.0	
RMSD bonds (Å)	0.010	0.010	
RMSD angles (°)	1.01	1.00	

Data collection and refinement statistics for HSP72 co-crystal structures with ligands.

^a Half-dataset correlation coefficient, see: Karplus, P. A.; Diederichs, K. Linking Crystallographic Model and Data Quality. *Science* **2012**, *336*, 1030-1033.

References for X-ray Materials and Methods:

Kabsch, W. Xds. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2010, 66, 125-132.

Evans, P. Scaling and assessment of data quality. *Acta Crystallogr. Sect. D: Biol. Crystallogr.* **2006**, 62, 72-82.

Winn, M. D.; Ballard, C. C.; Cowtan, K. D.; Dodson, E. J.; Emsley, P.; Evans, P. R.; Keegan, R. M.; Krissinel, E. B.; Leslie, A. G.; McCoy, A.; McNicholas, S. J.; Murshudov, G. N.; Pannu, N. S.; Potterton, E. A.; Powell, H. R.; Read, R. J.; Vagin, A.; Wilson, K. S. Overview of the CCP4 suite and current developments. *Acta Crystallogr. Sect. D: Biol. Crystallogr.* **2011**, *67*, 235-242.

McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J. Phaser crystallographic software. *J. Appl. Cryst.* **2007**, 40, 658-674.

Emsley, P.; Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr. Sect. D: Biol. Crystallogr.* **2004**, 60, 2126-2132.

Bricogne, G.; Blanc, E.; Brandl, M.; Flensburg, C.; Keller, P.; Paciorek, W.; Roversi, P.; Sharff, A.; Smart, O. S.; Vonrhein, C.; Womack, T. O. *BUSTER version 2.11.4. Cambridge, United Kingdom: Global Phasing Ltd.*, **2012**.

Adams P. D., Afonine P. V., Bunkóczi G., Chen V. B., Davis I. W., Echols N., Headd J. J., Hung L.-W., Kapral G. J., Grosse-Kunstleve R. W., McCoy A. J., Moriarty N. W., Oeffner R., Read R. J., Richardson D. C., Richardson J. S., Terwilliger T. C., Zwart P. H. PHENIX: a comprehensive Pythonbased system for macromolecular structure solution. *Acta Crystallogr.* **2010**, D66, 213–221

Smart, O. S.; Womack, T. O.; Sharff, A.; Flensburg, C.; Keller, P.; Paciorek, W.; Vonrhein, C.; Bricogne, G. *Grade, version 1.2.1. Cambridge, United Kingdom: Global Phasing Ltd.*, http://www.globalphasing.com, 2012.

Bruno, I. J.; Cole, J. C.; Lommerse, R. S.; Rowland, R.; Taylor, R.; Verdonk, M. L. Isostar: A library of information about non-bonded interactions. *J. Comp.-Aided. Mol. Des.* **1997**, 11, 525-537.

Davis, I. W.; Leaver-Fay, A.; Chen, V. B.; Block, J. N.; Kapral, G. J.; Wang, X.; Murray, L. W.; Arendall, W. B., 3rd; Snoeyink, J.; Richardson, J. S.; Richardson, D. C. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. *Nucleic Acids Res.* **2007**, 35, W375-W383.

Potterton, E.; McNicholas, S.; Krissinel, E.; Cowtan, K.; Noble, M. The CCP4 molecular-graphics project. *Acta Crystallogr D Biol Crystallogr* **2002**, *58*, 1955-7.

Complete Binding Contacts of Nucleoside ligands for HSP70

Figure S1 All Close Contacts in the Sangivamycin 10/HSP72-NBD Co-Crystal Structure

All distances are in Angstoms. The red spheres represent water molecules

Figure S2 All Close Contacts in the Quinoline 17/HSP72-NBD Co-Crystal Structure

All distances are in Angstoms. The red spheres represent water molecules

Figure S3 Overlay of ADP/Pi HSP-72 NBD co-crystal structure (copper) and Sangivamycin 10 HSP72 NBD co-crystal (white) highlighting all key binding residues

Figure S4 Overlay of ADP/Pi HSP-72 NBD co-crystal structure (copper) and 8-Quinoline **17** HSP72 NBD co-crystal (grey) highlighting all key binding residues

Figure S5 Overlay of Sangivamycin **10** HSP-72 NBD co-crystal structure (white) and 8-Quinoline **17** HSP72 NBD co-crystal (grey) highlighting all key binding residues