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Abstract
Colorectal carcinoma is one of the most common types of malignancy and a leading cause of cancer-related
death. Although clinicopathological parameters provide invaluable prognostic information, the accuracy of prog-
nosis can be improved by using molecular biomarker signatures. Using a large dataset of immunohistochemistry-
based biomarkers (n = 66), this study has developed an effective methodology for identifying optimal biomarker
combinations as a prognostic tool. Biomarkers were screened and assigned to related subsets before being
analysed using an iterative algorithm customised for evaluating combinatorial interactions between biomarkers
based on their combined statistical power. A signature consisting of six biomarkers was identified as the best
combination in terms of prognostic power. The combination of biomarkers (STAT1, UCP1, p-cofilin, LIMK2,
FOXP3, and ICOS) was significantly associated with overall survival when computed as a linear variable
(χ 2 = 53.183, p < 0.001) and as a cluster variable (χ 2 = 67.625, p < 0.001). This signature was also signifi-
cantly independent of age, extramural vascular invasion, tumour stage, and lymph node metastasis
(Wald = 32.898, p < 0.001). Assessment of the results in an external cohort showed that the signature was sig-
nificantly associated with prognosis (χ 2 = 14.217, p = 0.007). This study developed and optimised an innovative
discovery approach which could be adapted for the discovery of biomarkers and molecular interactions in a range
of biological and clinical studies. Furthermore, this study identified a protein signature that can be utilised as an
independent prognostic method and for potential therapeutic interventions.
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Introduction

Colorectal cancer is a common malignancy with a rela-
tively high mortality rate and a significant negative
impact on the quality of life of survivors [1]. Although
mortality rates of colorectal cancer have been declining
in developed countries as a result of significant devel-
opment in health care, deaths attributed to colorectal

cancer, already one of the highest contributors to
cancer-related mortalities, are expected to continue ris-
ing due to ageing and diet [2,3].
The main obstacle to better survival rates is the

molecular heterogeneity of colorectal cancer which is
reflected clinically through variations in tumour pro-
gression, prognosis, and response to treatment [4]. The
profiling of large sets of genes/proteins and the
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identification of molecular signatures are needed to
subtype colorectal cancer and manage patients accord-
ingly [5]. The molecular analysis of colorectal cancer
improves our understanding of tumourigenesis and
uncovers novel pathways, which can be utilised in
prognosis, screening, monitoring, and therapeutic
interventions [6,7].
Because of the complexity and the heterogeneity of

colorectal cancer, multiple biomarkers are needed for
the necessary prognostic power to accurately subtype
this disease. However, discovery of novel biomarkers
with high-order combinatorial interactions is extremely
challenging due to the combinatorial explosion (the
size of genomic/proteomic data and arbitrariness of
combinations) and constraints of multiple hypothesis
testing for significance evaluation [8].
This study has developed an effective method which

minimises the computational complexity to identify the
optimal prognostic combination from a large number of
biomarkers. This method comprises a screening process
to eliminate non-relevant targets, followed by a group-
ing stage whereby the remaining biomarkers are divided
into smaller subsets. Each subset is then incorporated
into an iterative algorithm which generates and evalu-
ates all biomarker combinations. Following this
method, the study has identified a biomarker signature
with a significant prognostic power to predict the over-
all survival of patients independent of established prog-
nostic parameters. Furthermore, important biological
pathways in colorectal cancer were revealed by ana-
lysing associations, expression patterns, and functional
interactions of these biomarkers.

Materials and methods

Discovery patient cohort
To assess the expression of biomarker targets, a large
and well-characterised patient cohort of primary colo-
rectal cancers was used. The cohort was retrospec-
tively acquired from the Grampian Biorepository
(www.biorepository.nhsgrampian.org), and only included
patients who had undergone surgery with curative intent
for primary colorectal cancers between 1994 and 2009,
at Aberdeen Royal Infirmary-NHS Grampian (Aberdeen,
UK). This study also followed the Reporting Recom-
mendations for Tumour Marker Prognostic Studies
(REMARK) guidelines [9] (checklist included in sup-
plementary material).
Only patients with Union for International Cancer

Control (UICC) TNM stage I, stage II, or stage III
were included in the study (n = 650). Patients with

histological evidence of distant metastasis at diagnosis
or those who had received neoadjuvant chemotherapy
and/or radiotherapy were not included. The histopatho-
logical reporting of the resection specimens was per-
formed following the relevant guidelines from the
Royal College of Pathologists UK for the histopatho-
logical reporting of colorectal cancer excision speci-
mens which incorporated TNM version 5. Further
details of the histopathological processing of tissue
specimens are outlined in Supplementary materials
and methods.
The primary endpoint was overall survival which

was defined as the period from 28 days after the date
of surgery to the date of death from any cause. At the
date of final censoring of patient outcome data, there
had been no missing data in terms of follow-up and
patients who were still alive were censored.
The clinicopathological characteristics, the distribu-

tion of patients within each clinicopathological parame-
ter, and their association with survival in the discovery
cohort are outlined in supplementary material,
Table S1. The mismatch repair (MMR) protein status
for all tumours was assessed by immunohistochemistry
using antibodies to MLH1 and MSH2 [10]. At the time
of the censoring, there had been 309 (47.5%) deaths.
The median survival was 103 months (95% CI = 86–
120 months), the mean survival was 115 months (95%
CI = 108–123 months), and the median follow-up time,
calculated by the ‘reverse Kaplan–Meier’ method, was
88 months (95% CI = 79–97 months).
A tissue microarray was constructed from the pri-

mary colorectal tumours which also included 50 normal
colon mucosal samples (acquired from at least 10 cm
in distance from each tumour). The tissue microarray
included two representative 1 mm cores for each sam-
ple [11].
Ethical approval for the use of colorectal tissue sam-

ples was given by the Grampian Biorepository scientific
access group committee (tissue request no. TR000169).

Validation patient cohort
A publicly available dataset, accession number
GSE39582, was used as the validation cohort [12]. It
was accessed through the NCBI Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/). Data for
the following clinicopathological characteristics are
outlined in supplementary material, Table S2. For bet-
ter comparison with the discovery cohort, stage IV
cases (n = 60) and cases with no survival information
(n = 4) were excluded (i.e. 502 patients included).
There were 151 deaths (30.1%), the median survival
was 183 months (95% CI = 92–273 months), the
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mean survival was 130 months (95% CI = 121–
140 months), and the median follow-up time, calcu-
lated by the ‘reverse Kaplan–Meier’ method, was
73 months (95% CI = 69–77 months).
The expression values of genes (Affymetrix U133

Plus 2.0 chips) corresponding to the biomarker signa-
ture identified in the discovery cohort were obtained
using Geo2R (https://www.ncbi.nlm.nih.gov/geo/
geo2r/). Each probe ID was mapped to the Entrez gene
ID with the corresponding platform files. Only probes
that are unique to the target gene were used and, if
available, exemplar sequence probes were used. If
more than one probe was used for the same gene, the
expression values showing the most significant varia-
tions were used. To allow comparison with immuno-
staining scores, gene expression values were assigned
to one of the four categories based on three quartiles
(25th percentile, 50th percentile, and 75th percentile).
The validation cohort was used to evaluate the prog-

nostic performance of biomarkers signature after the
discovery process was completed. Therefore, only
values for genes in the signature were obtained and
evaluated in the validation cohort.

Biomarkers
The study used a series of biomarkers (n = 66) which
had been evaluated in the discovery patient cohort.
The names of proteins, associated pathways, immuno-
histochemistry platforms, methods of scoring, and
corresponding antibodies are all detailed in supple-
mentary material, Table S3. The biomarker list
includes targets which belong to key pathways impli-
cated in tumour progression such as immune response,
metabolism, cell cycle, proliferation, cytoskeleton, and
cell migration.
The majority of biomarkers were evaluated using

antibodies developed in our laboratory (n = 37), while
the remainder were assessed using commercially avail-
able antibodies (n = 29). All biomarkers were assessed
by immunohistochemistry, the majority of which were
stained using a DAKO autostainer (Dako EnVision™
system; Dako, Ely, UK), with the remaining stained
using either a Ventana BenchMark XT (Ventana Med-
ical Systems, Oro Valley, AZ, USA) or a Leica Bond
RX (Leica Biosystems, Wetzlar, Germany). Further
details of materials and methods are provided in Sup-
plementary materials and methods and supplementary
material, Tables S4–S6.
The immunostaining results were assessed by either

a semi-quantitative scoring system [10,11,13–15] or a
quantitative automated image analysis [16–18]. The
cores were recorded as missing if they were damaged/

folded during the staining process, or if they did not
contain tumour cells. Details of the immunohistochem-
istry assessment and scoring systems are provided in
Supplementary materials and methods.

Biomarker discovery methodology
Screening and grouping

Before applying the iterative algorithm, screening and
grouping analysis was performed on the initial series of
biomarkers (Figure 1). The screening process involved
assessing the survival association of each individual
biomarker and removing those with no prognostic
power. Then, the remaining biomarkers were assembled
into subsets based on a range of interrelationships: bio-
logical (homology/family, function, GO term, and path-
way analysis); clinical (i.e. whether higher expression
of biomarkers is associated with better or worse progno-
sis); and expression patterns (correlated biomarkers).
For the biological groupings, biomarkers can be rele-
vant in different pathways and therefore the same bio-
marker can be placed in different groups. Each subset
was then entered sequentially into the programme to
evaluate the best biomarker combination. This deliber-
ate screening and subgrouping of biomarkers improves
the probability of identifying robust combinations by
providing a biological and clinical framework for inter-
preting potential discoveries. Limiting the analysis to
smaller subsets of biomarkers also reduces the effect of
combinatorial explosion.

Combinatorial algorithm

The study developed an iterative algorithm to execute
the combinatorial analysis on biomarkers (n) and iden-
tify a combination (C*) with a number of biomarkers
(r) and a maximum combined fitness (f ). The fitness in
this study represents the prognostic performance of a
candidate combination and is mainly evaluated using
multivariate Cox regression models which include
established prognostic parameters: age, extramural
venous invasion (EMVI), lymph node stage and T
stage, or age and pathological classification parameter
which is based on lymph node stage, T stage, EMVI,
and tumour differentiation. The concordance index
score was used as a fitness score to evaluate the overall
performance of multivariate models (i.e. models which
include candidate combination and clinical prognostic
parameters), whereas the estimated coefficient, P value,
and hazard ratio (HR) (default) were each used as a fit-
ness score to determine the univariate and multivariate
performance of candidate combinations.
To facilitate a simple iterative evaluation of f, a

composite variable was computed through the multiple
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linear equation W1�X1þW2�X2…þWr �Xr: the
total sum of coefficients (W) multiplied by the immu-
nostaining scores (X) for each biomarker in a combina-
tion (coefficients are calculated using Cox regression
in a multivariate model which includes r biomarkers in
a candidate combination).
The combinatorial algorithm first generates bio-

marker combinations using itertools Python module.
For a number r ranging from 1 to n, and increasing by
step size s, the code computes every possible combina-
tion of r biomarker from the n list of targets included
in our study. We then applied a fitness function to
determine the best combination and the best fitness.
The number of combinations of r biomarkers is calcu-
lated by itertools function (itertools.combinations)
which uses the following formula: n!= r!� n� rð Þ!½ � :
r¼ 1,1þ s,…,n½ �,s� 1�n�1f g. The same process is

repeated until convergence. If s = 1, then combina-
tions will always have size n � 1 which means one
biomarker will be eliminated each iteration until con-
vergence. If the size of the initial population is small,
then larger step (s) is preferred because it minimises
the chances of getting trapped at local optimal. The
algorithm is outlined in Supplementary materials and
methods, and the details of the implementation code
are available at GitHub repository (https://github.com/
aibiologics/cancer_markers). Future modifications and
versions of the algorithm will be available at the same
GitHub address.

Data processing and statistical analysis

The immunostaining scores of biomarkers screened in
the discovery cohort were tabulated in an Excel
spreadsheet. SPSS (version 25; IBM, Portsmouth, UK)

Figure 1. Schematic flowchart of the discovery method used for identifying an optimal prognostic signature. All biomarkers were first
screened to determine their individual prognostic power. Then, only prognostic biomarkers were selected and were assembled into sub-
sets based on a range of interrelationships: biological, clinical, and statistical (correlation). The number (n) of subsets is dependent on
the size of data and number of markers and associated pathways (there were 12 subsets in this study). Each subset was entered into a
combinatorial iterative algorithm to identify the best biomarker combination based on a range of fitness measures: HR, combination
coefficient, number of biomarkers, multivariate model score, and performance in a validation cohort.
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and Python 3.8.6 were used for data analysis and
PyCharm Community Edition 2020.3.5 x64 for code
editing and testing. A probability value of ≤0.05 was
regarded as significant. Further details are outlined in
Supplementary materials and methods.

Results

Screening and grouping of biomarkers
Survival associations of biomarkers and optimal cut-
off points are shown in supplementary material,
Table S7. In the initial biomarker population (n = 66),
28 showed significant univariate association with sur-
vival and were retained for combinatorial analysis
while 38 biomarkers were excluded from further anal-
ysis. The majority of biomarkers (n = 19) had high
expression that was associated with better survival,
while the remaining biomarkers had high expression
that was associated with poor survival. The best per-
formance of biomarkers as an individual prognostic
parameter (i.e. the ability to distinguish between prog-
nostic groups, chi-square value, P value, HR, and
finally the prognostic independence in relation to clini-
cal parameters) was observed in relation to CD3,
FOXP3, ICOS, CYP8B1, CYP39A1, LIMK2, PTEN,
STAT1, and UCP1. The expression profiles of bio-
markers in primary tumour, normal colonic mucosa,
and in different tumour stages are highlighted in Sup-
plementary materials and methods, Supplementary
results, and supplementary material, Figure S1 and
Table S7.
Before performing any combinatorial analysis on

the remaining biomarkers, they were assembled into
subsets. Pathway and GO term analysis showed that
biomarkers could be incorporated into six biomarker
subsets: metabolism, immune response, response to
environment, development, cell death and prolifera-
tion, and amalgamation group (adhesion and migra-
tion, signalling, phosphorylation, and cytoskeleton)
(supplementary material, Figure S2). SPATA2L was
excluded due to lack of association with any of the
above pathways. Correlation analysis identified four
main groups of correlated biomarkers (supplementary
material, Figure S3). Based on their survival associa-
tion (i.e. association of higher expression or lower
expression with better or worse survival), biomarkers
were divided into two subsets: the majority of bio-
markers (n = 19) with higher expression that is associ-
ated with better prognosis and a smaller group (n = 8)
mainly composed of cytochromes P450, with higher
expression that is associated with worse prognosis

(supplementary material, Table S8). Therefore, the
iterative algorithm was performed on each of the six
biological/pathways subsets, the four main correlations
subsets, and the two subsets based on the direction of
survival associations. Analysis was also performed on
proteins from associated subsets such as response to
microenvironment and immune response.

Optimal biomarker signature
Running the iterative algorithm employing a range of
parameters and manually evaluating the solutions
based on predetermined criteria (supporting informa-
tion material and methods S2), an optimal biomarker
combination was identified from the biological sub-
set: ‘response to environment’ (supplementary mate-
rial, Figure S2). The biomarker signature consists of
six biomarkers: FOXP3, ICOS, LIMK2, p-cofilin,
STAT1, and UCP1. The signature is represented by a
composite variable computed with the following
equation: �0:148�FOXP3�0:158� ICOS�0:091�
LIMK2þ0:137�p-cofilin�0:038�STAT1�0:164�
UCP1 (each biomarker is replaced by its corresponding
immunostaining score). The composite variable (com-
puted with the above linear formula) was divided into
five different patient groups using four cut-off points of
equal percentiles. The signature composite variable was
significantly associated with survival (χ2 = 53.183,
p<0.001; Figure 2). There were significant differences
in prognosis between group 1 and group 3 (HR =
2.422, 95% CI = 1.475–3.977, χ2 = 13.442, p<0.001),
group 1 versus group 4 (HR = 3.061, 95% CI = 1.866–
5.021, χ2 = 21.646, p<0.001), and group 1 versus
group 5 (HR = 4.383, 95% CI = 2.708–7.095, χ2 =
43.098, p<0.001).
Hierarchical cluster analysis was also performed to

evaluate the expression profile of biomarkers in the
above signature. Five prognostic cluster groups with
significant differences in survival were identified based
on their expression patterns and survival associations
(χ2 = 67.625, p < 0.001; Figure 3). Tumours dis-
playing stronger or higher expression of these bio-
markers were associated with better prognosis relative
to the those with weaker expression. The median sur-
vival of patients was undefined (i.e. if the cumulative
survival is more than 50% of patients at the last time
point, the median survival cannot be calculated) for
group 1 (n = 181), 103 months (95% CI = 73–
133 months) for group 2 (n = 101), 53 months (95%
CI = 30–76 months) for group 3 (n = 84), 51 months
(95% CI = 18–84 months) for group 4 (n = 69), and
28 months (95% CI = 13–43 months) for group
5 (n = 43). The HR of the patients in cluster group
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5 (the worst group in terms of survival) was 4.678
(95% CI = 3.005–7.284) relative to group 1 which
has the best prognosis (Figure 3).
Multivariate analysis using four models showed that

this biomarker signature was independently prognostic
in relation to clinical and pathological parameters
(Tables 1 and 2). In the first model, the biomarker sig-
nature was significantly associated with survival inde-
pendent of age, T stage, lymph node stage, and EMVI
(linear variable; Wald = 32.898, p < 0.001 and cluster
variable; Wald = 34.014, p < 0.001). Further analysis
also showed the signature was significantly independent
of age, EMVI, and UICC stage in the second multivari-
ate model (linear variable; Wald = 29.438, p < 0.001
and cluster variable; Wald = 28.081, p < 0.001), and
independent of age and the pathological risk parameter
in the third model (linear variable; Wald = 35.607,
p < 0.001 and cluster variable; Wald = 36.620,
p < 0.001). Finally, in the fourth model, a multivariate
analysis was performed using only parameters that
would be available at pre-tumour resection (i.e. biopsy
stage where no pathological information is available
about tumour stage, lymph node metastasis, or EMVI).
In this model, the signature was highly significant and
was the best prognostic indicator compared to age, ana-
tomical site of tumour, and tumour differentiation (lin-
ear variable; Wald = 51.359, p < 0.001 and cluster
variable; Wald = 65.708, p < 0.001).
The composite biomarker signature developed using

the discovery cohort was next applied to the external

validation cohort to stratify patients into prognostic
groups. The signature variable was significantly associ-
ated with survival (χ2 = 14.217, p = 0.007; supplemen-
tary material, Figure S4) and was prognostically
independent in a multivariate model including age,
tumour stage, and lymph node stage (Wald = 9.849,
p = 0.043) and a model including age and TNM stage
(Wald = 13.077, p = 0.011).
The relationships between the biomarker signature and

clinicopathological parameters were also investigated
(supplementary material, Figures S5, Figure S6, and
Table S9). A proportion of patients, classified based on
clinically established pathological parameters, would have
different prognosis using the biomarker signature (supple-
mentary material, Figure S5 and Table S9). Groups 1 and
2 identified through the biomarker signature as good
prognostic groups include 35% of patients who are classi-
fied as high risk based on the established pathological
evaluation. Similarly, the prognostic evaluation of a pro-
portion of patients using tumour stage, lymph node
involvement, or UICC stage would be significantly differ-
ent if the biomarker signature is considered (supplemen-
tary material, Figure S6, Table S9, and Table S10).

Discussion

Colorectal cancer is a common tumour with an inci-
dence rate that is rising and with a mortality rate that

Figure 2. Survival plots of the biomarker signature represented using a linear combination. A signature variable was calculated using the
following linear equation: �0:148� FOXP3�0:158� ICOS�0:091� LIMK2þ0:137�p-cofilin�0:038�STAT1�0:164�UCP1. Five
groups were computed using four cut-offs points at equal percentiles. Group 1 was used as the reference group for comparison with
groups 2–5. Group 1 versus group 2, p = 0.084, χ2 = 2.978, HR = 1.595 (95% CI = 0.930–2.737); group 1 versus group 3, p < 0.001,
χ2 = 13.442, HR = 2.422 (95% CI = 1.475–3.977); group 1 versus group 4, p < 0.001, χ2 = 21.646, HR = 3.061 (95% CI = 1.866–
5.021); group 1 versus group 5, p < 0.001, χ2 = 43.098, HR = 4.383 (95% CI = 2.708–7.095).
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is still relatively high [2]. There have been consider-
able improvements to our understanding of the molec-
ular pathways underpinning the development and
progression of colorectal cancer [5,19]. However, only
a small number of biomarkers (e.g. KRAS mutations,
BRAF mutations, and microsatellite instability status)
have been translated into routine clinical practice.

Therefore, there is a clear requirement to identify
molecular signatures that are clinically useful in
improving the accuracy of prognosis and potentially
applied as tools for screening, early diagnosis, and
therapy of colorectal cancer [6,7].
In this study, a set of novel biomarkers was assessed

by immunohistochemistry using well-characterised

Figure 3. Hierarchical cluster analysis and survival plots of the biomarker signature. (A) Graphical representation of the expression level
of biomarkers is shown in the left-hand panels. The right-hand panels show the results of the hierarchical cluster analysis presented as
a dendrogram with five groups. Biomarkers are represented in columns and individual cases in rows. (B) Survival plots of prognostic
groups identified through the biomarker signature. Group 1 was used as the reference group for comparison with the other groups
(groups 2–5). Group 1 versus group 2, p = 0.001, χ2 = 10.693, HR = 1.911 (95% CI = 1.289–2.835); group 1 versus group
3, p < 0.001, χ2 = 38.382, HR = 3.107 (95% CI = 2.112–4.571); group 1 versus group 4, p < 0.001, χ2 = 32.243, HR = 3.007 (95%
CI = 2.005–4.510); group 1 versus group 5, p < 0.001, χ2 = 54.454, HR = 4.678 (95% CI = 3.005–7.284).
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cohort of colorectal cancers. The results of immuno-
staining provided valuable insight into the expression
profiles of proteins, many of which are studied for the
first time in colorectal cancer. Significant patterns of
increased and decreased expression were observed for a
number of biomarkers in primary colorectal cancer com-
pared to normal colonic mucosa. A number of proteins
showed significant univariate association with overall
survival: CDX2, cytochrome P450, LMK2, PTEN,
STAT1, T-cell markers, and UCP1. This is consistent
with previous studies implicating these biomarkers in
tumour progression and prognosis [10,15,16,18,20–22].
Due to the large number of molecules that can be

classified as a biomarker, an extremely large number of
combinations would have to be evaluated to identify
the relevant combination. This study developed an
effective approach for performing combinatorial analy-
sis and the selection of optimal prognostic combina-
tions. The method consists of a screening and grouping
analysis, which is designed to minimise the ‘combinato-
rial explosion’ and reduce the false discovery rate. The
screening restricts the combinatorial analysis to bio-
markers with significant individual performance [23].
The grouping step further reduces the number of poten-
tial combinations by allocating targets into smaller sub-
sets based on their biological relationships, clinical
associations, and expression patterns. This also provides
a clinical, biological, and molecular framework for
interpreting biomarker combinations within each subset.
The second element of the discovery approach

involves inputting each biomarker subset into a combi-
natorial programme, which computes all combinations
using itertools Python module and assesses their prog-
nostic power. Using this method, the optimal solution
is found when using the global approach (generating
all combinations with the formula n!= r!� n� rð Þ!½ �,
where the number of marker r in each combination
ranging from 1 to all markers in subset [n]). This
approach is computationally intensive and may not be
possible with larger number of variables. Therefore,
this study customised the algorithm to incorporate a
gradient approach whereby one biomarker is removed
at each stage meaning combinations will always have
size n� 1. The gradient approach is much quicker, but
the solution is not the best, as the algorithm is nor-
mally trapped at local optimum. In addition to gradient
and global parameters, the programme incorporated a
wide range of parameters for missing interpolation,
multivariate and univariate analysis, model versus sin-
gle variable evaluation, and internal validation. This
algorithm provides a comprehensive exploration of
data and can efficiently generate solutions that can be
relevant in a wide range of biomarker studies.

However, additional customisation, optimisation, and
more automation are needed to improve the efficiency
and applicability of the algorithmic programme. Spe-
cific consideration is needed to the computation of the
composite variable which is currently calculated using
either a linear equation or a clustering. Alternative
methods can be easily implemented using a range of
multidimensionality reduction methods such as factor
analysis and structural equation modelling. Another
issue is the identification of an optimal number of
groups (i.e. optimal dichotomisation of the patients) and
cut-off points. In this study, to avoid bias, the variables
were all dichotomised using the same method
(i.e. equal binning).
Using the above algorithm, the study identified a

prognostic biomarker signature which can divide
tumours into different risk subtypes in terms of out-
come. The biomarker signature comprised of proteins
with complex biological and functional networks
mainly associated with immune response, cytoskeletal
organisation, and metabolic pathways (Figure 4). The
relationships between molecules across these different
pathways illustrate the complex nature of microenvi-
ronment, especially the immune response and its
impact on the outcome of tumour.
The expression of certain proteins can signify

whether a specific immune response has either a pro-
tumour or anti-tumour effects. In our signature, the
expression of STAT1 and FOXP3 is the main indica-
tor of anti-tumour response through sustaining T-cell
population which is tumour suppressive [24,25]. On
the other hand, the expression of ICOS, its association
with FOXP3, and its effect on tumour progression are
far more complicated. While some studies presented
ICOS as a negative predictor of prognosis especially
in FOXP3+ T-regs cells, others demonstrated that
higher ICOS expression was associated with better
survival in colorectal cancer and lung cancer, when its
expression is examined in the context of T-helper
(Th1)/cytotoxic T lymphocytes and in the context of
higher CD3 expression rather than T-regs [16,26–28].
The association of this biomarker signature with sur-

vival is also affected by rearrangements in the cyto-
skeleton which is closely linked to the immune
response in tumour microenvironment [29]. Higher
expression of LIMK2 and p-cofilin has been associated
with anti-tumour effect through inhibition of stem cell
proliferation and tumour cells invasiveness [18]. Fur-
thermore, this signature has a metabolic characteristic
which is an established pathway in carcinogenesis [5].
Positive outcome was observed in tumours with higher
expression of uncoupling proteins implicated in mito-
chondrial dysfunction and ATP production [15,30,31].
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Multivariate analysis confirmed the biomarker sig-
nature was prognostically independent of current
prognostic methods that are used clinically. There
were significant differences in the risk groups of the
biomarker signature in terms of median survival and
HR. The biomarker signature also showed there
could be significant improvement to the accuracy of
risk classifications compared to current pathological
parameters (tumour differentiation, tumour stage,
lymph node stage, and EMVI). Therefore, this signa-
ture can potentially be incorporated in the clinical
practice as a complimentary factor to the current
prognostic methods.
This biomarker signature is even more relevant at

the biopsy stage where it demonstrated a strong perfor-
mance compared to all prognostic parameters that
would be available at that stage. This is currently
important in rectal cancer due to the increasing use of
neoadjuvant therapy followed by either active surveil-
lance follow-up or salvage surgery [32]. Prognostic
molecular tools could be essential for determining ini-
tial treatment for cases based on biopsies.
Furthermore, the biomarker signature was prognosti-

cally significant in MMR-proficient tumours, which

represents the majority of colorectal cancer. Most of
the existing and ongoing immunotherapies (e.g. anti-
CTLA4 and anti-PD1) are directed towards MMR-
defective tumours [33]. Therefore, the identification of
subsets of MMR-proficient tumours with specific
molecular signatures will help guide potential treatment
strategies and novel targeted therapies in this group.
The findings of this study might be limited by the

inclusion of biomarkers with different scoring methods
(quantitative versus semi-quantitative) and hence the
resulting dichotomisation of quantitative scores might not
accurately mirror the semi-quantitative scores of negative,
weak, moderate, and strong. Moreover, the algorithm and
corresponding codes need further customisation and opti-
misation before efficiently identifying optimal combina-
tions without manual adjustments of input and
parameters based on outputs. The code is publicly avail-
able on GitHub to use, optimise, adapt, comment upon,
and provide feedback. Future modifications and new ver-
sions of the code will be available at the following
GitHub address (https://github.com/aibiologics/cancer_
markers).
To conclude, this study has developed an effective

exploratory method with a range of algorithmic

Figure 4. Network node analysis of known and predicted interactions between proteins in biomarker signature. The network was built using
STRING (https://string-db.org/) and KEGG mapper (https://www.genome.jp/kegg/mapper.html). Search is performed using multiple proteins
and listing their names (FOXP3, ICOS, LIMK2, CFL1 [symbol of p-cofilin], STAT1, and UCP1). IL6 was added to the list for its known interac-
tion with all involved pathways. Network type: full network; meaning of network edges: evidence; active interaction sources: text-mining,
experiments, databases, co-expression, neighbourhood, gene function, and co-occurrence; minimum required interaction scores: medium
confidence. The number of interactions can be adjusted up and down depending on how many interactions are required.
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parameters designed to identify optimal combinations
of biomarkers based on their prognostic power in terms
of subtyping tumours prognostically. Using this
method, a novel biomarker signature with strong prog-
nostic power in colorectal cancer was identified. This
signature could potentially act as a prognostic parameter
which is complimentary to the existing prognostic
methods. Furthermore, the findings further highlight the
molecular complexity of cancer and its microenviron-
ment and provide a panel of actionable targets that can
be manipulated therapeutically to supress tumour
progression.
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