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SUMMARY 

Chemical probes are essential tools for understanding biological systems and for 

target validation, yet selecting probes for biomedical research is rarely based on 

objective assessment of all potential probes. Here we describe the Probe Miner: 

Chemical Probes Objective Assessment resource – capitalising on the plethora of 

public medicinal chemistry data to empower quantitative, objective, data-driven 

evaluation of chemical probes. We assess >1.8m compounds for their suitability as 

chemical tools against 2,220 human targets and dissect the biases and limitations 

encountered. Probe Miner represents a valuable resource to aid the identification of 

potential chemical probes, particularly when used alongside expert curation. 
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INTRODUCTION 

Small-molecule chemical probes are important tools for exploring biological 

mechanisms and play a key role in target validation (Blagg and Workman, 2017; 

Bunnage et al., 2013; Frye, 2010; Workman and Collins, 2010). However, selection 

of chemical probes is largely subjective and prone to historical and commercial 

biases (Arrowsmith et al., 2015; Workman and Collins, 2010). Despite many 

publications discussing the properties of chemical probes and the proposal of ‘fitness 

factors’ to be considered when assessing chemical tools, scientists commonly select 

probes through web-based searchers or previous literature sources that are heavily 

biased towards older and often flawed probes, or use vendor catalogues that do not 

discriminate between probes (Arrowsmith et al., 2015; Blagg and Workman, 2017; 

Workman and Collins, 2010).  

 

The Chemical Probes Portal (Arrowsmith et al., 2015; 

http://www.chemicalprobes.org)  has been launched as a public, non-profit, expert-

driven chemical probe recommendation platform and this emerging resource is 

already contributing to improved chemical probe selection (Blagg and Workman, 

2017). However, expert curation, by definition, can be limited in its coverage and 

would benefit from a complementary, frequently updated, systematic, data-driven, 

objective and comprehensive approach that enables researchers to keep track of the 

fast-moving advances in chemical biology-relevant data at a scale difficult to reach 

with expert curation – allowing unbiased comparison of the quality of large numbers 

of probes. Recently, a scoring system to prioritise chemical tools for phenotypic 

screening based on expert weighting of public and highly-curated private databases 

was described (Wang et al., 2016). However, such resources are not available to the 

majority of translational researchers. A public resource that democratises 

comprehensive data-driven chemical probe assessment is still lacking and would 

greatly contribute to target validation and mechanistic studies performed outside 
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industry. Here, we analyse at scale the scope and quality of published bioactive 

molecules and uncover large biases and limitations of chemical tools and their 

representation in public databases. We provide the online Probe Miner: Chemical 

Probes Objective Assessment resource where we integrate large-scale public data to 

enable objective, quantitative and systematic assessment of chemical probes.  

 

RESULTS 

Probing the Liganded Proteome Using Public Databases 

An ambitious early grand challenge of chemical biology was to identify a chemical 

tool for each human protein (Schreiber, 2005; Workman and Collins, 2010). To 

assess the level of progress towards meeting this challenge, we first defined the set 

of 20,171 curated, validated human proteins in Uniprot (Uniprot Consortium, 2017).  

We then utilised the canSAR knowledgebase integration (Tym et al., 2016; 

http://cansar.icr.ac.uk) of major, curated, public medicinal chemistry data (including 

ChEMBL and BindingDB, see Methods) to determine the fraction of these proteins 

that are known to interact with small molecule compounds (Uniprot Consortium, 

2017; Tym et al., 2016). We find that only 11% (2,220 proteins) of the human 

proteome has been liganded (Figure 1A). This percentage is still very low even if we 

compare it to the 22-40% of the proteome that is estimated to be potentially 

druggable (Figure 1A; Bulusu et al., 2014; Finan et al., 2016; Tym et al., 2016). 

 

To be effective tools for mechanistic biological experiments and target validation, 

chemical probes must satisfy at least some basic criteria for the key properties 

(fitness factors) of potency, selectivity and permeability (Workman and Collins, 

2010). To assess how many of the compounds available in public databases would 

be useful in this context we establish key minimal criteria that should be satisfied: 1) 

Potency: 100 nM or better on-target biochemical activity or binding potency; 2) 
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Selectivity: at least 10-fold selectivity against other tested targets; and 3) 

Permeability: as no large-scale experimental measures of permeability are available, 

we use reported activity in cells (independent of the target and wherever available in 

our sources) as a proxy and set a minimum concentration requirement  of 10 µM 

(see Methods). It is important to stress that these three minimal requirement levels 

do not guarantee that a chemical tool would be suitable for biological investigation 

but all suitable tools should in principle meet these basic requirements. 

 

From the >1.8 million total compounds (TC) available in public databases, we find 

that only 355,305 human active compounds (HAC) have some acceptable level of 

biochemical activity (<10 µM; see Methods) reported against a human protein. Of 

these, 189,736 (10.5% TC, 53% HAC) have measured biochemical activity or binding 

potency of 100nM or better. However, when considering selectivity, we find that only 

93,930 compounds have reported binding or activity measurements against two or 

more targets. Of these, only 48,086 (2.7% TC, 14% HAC) satisfy both our minimal 

potency and selectivity criteria (Figure 1C). Thus, exploration of compound selectivity 

in the medicinal chemistry literature appears alarmingly limited (Figure S1). 

Moreover, we find that the compounds that satisfy our minimal potency and 

selectivity criteria allow the research community to probe only 795 human proteins 

(4% of the human proteome) and at best 18% of the estimated druggable proteome 

(Figures 1A-C). Finally, when additionally considering cellular potency of 10µM or 

better, we find that the number of minimal quality probes is reduced even further to 

2,558 (0.7% HAC). Under these combined criteria, based on the information 

available in public medicinal chemistry databases, compounds fulfilling minimum 

requirements would allow the research community to probe with real confidence only 

250 human proteins (Figure 1B). This represents an unacceptably low percentage 

(1.2%) of the human proteome.  
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The amount of information available for a given protein target will clearly impact any 

statistical analysis of its corresponding chemical tools. To assess the role of differing 

levels of experimental characterisation, we define the ‘Information Richness’ as 

follows: For each target, A, we collect all small molecules (C) shown to be active 

against this target. For each compound we then count the number of targets (T) 

against which it has been tested, regardless of activity level. Thus, the Information 

Richness is IRA= 𝑇!!!
!!!  (see Methods for details).  

 

As expected, we find large biases in the amount of data in public medicinal chemistry 

databases available for different protein targets. We also observe a wide range in the 

number of compounds fulfilling our minimum criteria across all the protein targets (0-

204; Figure S2).  For example, some targets have many well-characterised 

compounds, several of which fulfil our minimum criteria; e.g. the metalloprotease 

ADAM17 that has 1,433 active compounds of which 31 satisfy our minimal criteria. 

Other protein targets have large numbers of compounds with differing degrees of 

characterisation, yet few, if any, satisfy our minimal criteria; e.g. JAK1 has 1,560 

active compounds, none of which satisfy our minimal criteria with the data available 

(Figures S2 and S3).  

 

Several factors could influence the observed biases, for example the availability of 

selective probes varies significantly across the analysed protein targets (0-896 

selective compounds). The identification of selective probes may be simpler for some 

targets that have distinctive binding sites (e.g. PPARγ) and difficult for others that 

share closely similar binding sites with numerous family members (e.g. ABL1). 

Increasing the conduct and public availability of large-scale panel screens for many 

compounds against many targets will certainly help expand the information matrix 

required to identify good quality probes. Indeed, half of the 50 protein targets with the 
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greatest number of minimum quality probes are kinases, which frequently benefit 

from broad kinome selectivity screens and researchers’ and peer reviewers’ 

awareness that selectivity is a critical issue in this target class (Figure S2). However, 

this brute-force selectivity profiling approach alone is insufficient. Overall, we find 

poor correlation (R2 = 0.1) between the number of reported experimental 

measurements and the number of minimum quality probes (Figure S3). This finding 

indicates that our community needs to be smarter in designing and testing 

compounds – for example, optimising ligand efficiency for probes based on both 

molecular weight and lipophilicity may inherently improve selectivity (Hopkins et al., 

2014) – in addition to increasing the throughput of data generation. 

 

Probing Disease Genes 

Our systematic approach allows us to investigate, more globally, how well existing 

chemical tools equip us to probe mechanistically the function of disease genes – 

which is particularly important for therapeutic target validation. As an exemplar, we 

analyse data for a set of 188 cancer driver genes (CDG) with activating genetic 

alterations (Rubio-Perez et al., 2015) and examine the availability of minimal quality 

chemical probes for these drivers. We find that 73 (39% CDG) have already been 

liganded, and of these 25 (13% CDG) have chemical tools in public databases 

fulfilling minimum requirements of potency, selectivity and permeability (Table S1, 

Figure S4). This is a significantly higher fraction than we find across the proteome as 

a whole (1.2% as described earlier; Figure 1B). The reason for this elevated fraction 

is that the CDGs contain many long established disease genes that have been 

heavily investigated for chemical ligands. Nevertheless 87% of CDG do not have a 

minimum quality chemical tool (Table S1). Moreover, the vast majority of chemical 

tools concentrate on relatively few protein targets, further demonstrating the 

documented trend to focus research efforts in areas of science that are already well-

studied (Table S1, Figure S4; Edwards et al., 2011; Fedorov et al., 2010). This 
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analysis further uncovers a severe lack of chemical probe availability and significant 

bias where tools are available. 

 

Objective Assessment of Chemical Probes 

Given biases and limitations discussed above, it is imperative that researchers can 

comprehensively access all the data publicly available to facilitate objective and data-

driven analysis in order to select the best characterised chemical probes available for 

their protein target of interest – and also so they can also understand probe liabilities 

and limitations at the outset. To this end, we describe a scoring metric that utilises 

>3.9m bioactivity data points publicly available in canSAR (Tym et al., 2016) to 

enable rational prioritization of chemical probes.  

 

To create a metric that allows objective, data-driven ranking of all compounds tested 

for a particular protein target, we developed a set of six scores mirroring our 

previously described fitness factors (Workman and Collins, 2010). Namely, Potency 

Score, Selectivity Score, Cell Score, Structure-Activity Relationship (SAR) Score, 

Inactive Analog Score and PAINS Score (see Methods; Figure S5). For ease of use 

we predefine a default weighting of these scores – which emphasises the importance 

of potency and selectivity (see Methods). However, in addition, we also provide the 

facility for researchers to adapt and customise the weights to suit their own 

questions, expertise and preferences.  

 

Using our default scoring scheme allows us to highlight compounds that make good 

candidates for chemical probes, and defines their key limitations.  For example, we 

assessed 1,346 compounds for the class I PI3 kinase PIK3CB (Figure S6). The five 

highest ranking probes include the clinical candidate pictilisib or GDC-0941 (top rank; 

Folkes et al., 2008) and the frequently used probe PI-103 (2nd ranked; Raynaud et 

al., 2007; Figure 2 and Figure S6), both of which have been widely profiled in large 
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kinome panels. However, our assessment shows that both these compounds have 

certain selectivity liabilities due to cross-PI3K activity (Figure 2; Figure S6). The 

PIK3CB/PIK3CD inhibitor AZD-6482 ranks 10th (Figure 2), due to its partial PI3K 

selectivity towards PIK3CA and PIK3G (Andrs et al., 2015) and most other PIK3CB-

selective chemical series are also represented among the top scoring probes (Andrs 

et al., 2015). It is worth highlighting that Probe Miner can also be useful in 

disincentivising the use of low-quality or flawed chemical probes that continue to 

pollute the chemical biology literature (Arrowsmith et al., 2015). An example is 

LY294002 which is still widely used as a chemical tool inhibitor for PI3 kinase despite 

the fact that its weak potency and lack of selectivity have been widely communicated 

in reviews (Arrowsmith et al., 2015; Blagg and Workman, 2014). LY294002 ranks as 

63rd for PIK3CB in Probe Miner and we hope that its low ranking by objective 

assessment will further discourage the use of this historical but promiscuous 

compound as a probe for PI3 kinases. 

 

Furthermore, our systematic assessment of potential PIK3CB probes additionally 

highlights another set of interesting compounds with properties exemplified by 

canSAR1019166 (Sanchez et al., 2012). This ranks 3rd using our default scoring 

(Figure 2; Figure S6) and is both potent and, unlike pictilisib and PI-103, more 

selective for PIK3CB versus other PI3K proteins. Since no reports of screening 

canSAR1019166 against wider kinase panels are in the public domain as yet, other 

selectivity liabilities may emerge in future. Additionally, this compound may not be 

readily available commercially. There are also potentially important compounds 

whose broader biochemical characterisation is not captured in public medicinal 

chemistry databases, and it is thus not possible to appropriately assess them using 

our unbiased approach. For example, this is the case for the PIK3CB-selective 

clinical candidate GSK-2636771 (Andrs et al., 2015; Mateo et al., 2017) which is 

currently not highly ranked in our resource.  
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Probe Miner: A Public Resource for Objective Assessment of Probes 

To empower the community to utilise the data-driven approach we have created and 

made publicly available Probe Miner: Chemical Probes Objective Assessment 

resource (http://probeminer.icr.ac.uk; Figure 3). This is a user-friendly, interactive 

web-based resource that allows researchers access to the probe data and probe 

rankings for the selected protein target, as well as full customisation of the scoring 

criteria and the ability to deep-dive into the data. We will maintain Probe Miner and 

provide automatic updates following the release of new versions of the public 

databases that are integrated to ensure topicality. 

 

Probe Miner is a target-centric, systematic probe assessment resource. Accordingly, 

Probe Miner is designed to be searched by target. After selection of the desired 

protein target, we provide an interactive graphical overview page (Figure 3 and 

Figure S7-8) – note that Figure 3 shows the large-screen version but the website 

automatically adapts to multiple devices and screen sizes. The overview page 

comprises three major sections as follows: A) Summaries of the data and statistical 

analyses using our algorithm; including coloured icons that provide immediate visual 

indication of the overall quality and known or potential liabilities of compounds for the 

selected target. B) Easy-to-navigate distribution of the twenty highest ranking probes, 

as well as tools to customise the scores, weights and ordering of probes. C) A 

compound viewer interactively linked to the distribution which shows the chemical 

structure and key information for the probe, as well as the values of the six Score 

components as a radar plot. As Probe Miner is intended to complement expert-

curation in The Chemical Probes Portal, we highlight the compounds in our resource 

that are also assessed in the Portal and provide direct links to their individual pages 

at the Portal site. Figure 360 provides a detailed tutorial on how to navigate the 

resource. 
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It is important to stress that the selection of the ‘best’ probes must always be tailored 

to the scientific question under investigation and, therefore, the final decision on 

which tools to select must always be undertaken by the individual researcher. We 

provide our predefined default weightings for calculating the Global Score, which 

users may prefer for speed and convenience. However, for researchers who wish to 

modify ranking criteria and Score components, we provide a ‘Settings’ Panel which 

provides advanced options (Figure 3D and Figure S9; see Methods). Here, 

researchers can set the weights of each of the individual fitness factor Scores that 

contribute to the overall Global Score so that these can be adapted to individual user 

needs. Through the Settings panel (Figure 3D) researchers can also customise the 

display and also the ordering of probes (e.g. according to potency or selectivity) as 

required.  

 

From the Probe Miner overview page for a given protein target, researchers can 

navigate easily to individual probe pages (Figure 3E; Figure S10). These synopsis 

pages provide details of the chemical structure; physicochemical properties; and 

cross-references to key public resources, including canSAR, ChEMBL, BindingDB, 

The Protein Databank, and The Chemical Probes Portal; as well as also indicating 

synonyms for probes and commercial availability (Figure 3E; Figure S9). The raw 

data required to generate the Scores for the given probe are accessible here in a 

tabular format, together with the radar plot displaying the various Scores (from 0-1 

with 1 being the highest rating) in addition to the compound’s Probe Miner rankings. 

The full protein activity profile – the reported activity of the compound against all 

tested proteins as contained in canSAR – is also provided as a bar plot displaying 

the median biochemical activities or binding affinities on a logarithmic scale (e.g. 

pIC50 or pKd) for the compound. This enables a quick and easy overview of the 

selectivity of the compound for the target of interest.  
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To view all chemical probes for a given protein target, a Chemical Probes Table page 

in Probe Miner provides tabular access to all the assessed compounds for that 

target, together with the complete corresponding raw data. This facilitates filtering, 

and allows full download of all the data to enable the chemical biology community to 

further develop assessment and prioritisation methodologies (Figure S11).  

 

The power of our Probe Miner resource is the objective, systematic, regularly 

updated assessment that relies on public medicinal chemistry databases. However, 

as illustrated throughout our analysis, the inevitable limitations in data availability or 

curation can pose a significant challenge in some cases. We believe that arming 

researchers with all the available information and highlighting potential areas of error 

or bias is key to empowering them to make the best-informed decisions. Since 

selectivity is a particular concern with chemical probes (Arrowsmith et al., 2015; 

Blagg and Workman, 2017), in order to alert researchers to cases where this may be 

a problem, we have incorporated a red triangular ‘danger’ icon that warns 

researchers when a chemical probe appears to fail  the criterion of 10-fold selectivity 

against another protein based on the data available to the resource. The easy 

access we provide to the full protein activity profile at the respective chemical probe 

page enables a quick visual impression of the assessed selectivity of each chemical 

tool for the target of interest (Figure S9) while links to expert-curated Chemical 

Probes Portal are provided to draw attention to probes recommended by experts. 

Moreover, our objective assessment performed at scale in Probe Miner can identify 

compounds that we rank as good potential probe candidates, but which are not 

currently curated in The Chemical Probes Portal so that they can be considered for 

evaluation at the Portal. We also highlight potential probes that are not commercially 

available so that vendors can consider them for inclusion in their catalogs.  
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To help address errors and inaccuracies in public databases, we carry out 

continuous curation of the data underlying our Probe Miner resource and have 

established an email address (chemprobes@icr.ac.uk) through which we can be 

contacted by any researcher who identifies such errors or inaccuracies affecting the 

objective assessment of chemical probes. Even high-quality public databases are not 

exempt from errors and inaccuracies that are extremely challenging to identify and 

fix. Data-driven approaches rely on the quality of the data they use and it is thus 

paramount that we as a community address the errors and inaccuracies in public 

databases in order to maximize the benefit derived from them.    

 

Comparing Probe Miner and The Chemical Probes Portal: 

Complementary and Synergistic Resources 

Using our predefined Global Score, we compare the top-ranked chemical probes in 

Probe Miner with the expert-curated probes available in The Chemical Probes Portal 

(Arrowsmith et al., 2015). For this analysis, we focus on the selective probes that are 

curated by The Chemical Probes Portal and that are assigned to no more than two 

targets within the Portal (data collected on 06/02/2017; see Figure S12 and 

Methods). Of the 133 probes in The Chemical Probes Portal on that date, 71 were 

associated with no more than 2 targets and recommended by experts (Rating ≥ 3; 

see Methods). We find that 46 of these 71 probes, corresponding to 45 targets, could 

be mapped to public databases. Using Probe Miner’s present weightings for the 

Global Score, 31 (67%) of the selected 46 Portal probes rank in the top 20 in Probe 

Miner and 18 (39%) rank among the top 5 (Figure S12 and Table S2). Our analysis 

of the 15 expert-recommended probes that fail to reach high rankings uncovers that 

the incompleteness of data available in public databases (often because the probe 

was published in a non-indexed journal) and also the inaccuracy of public data are 

the major limitations (Tables S2 and S3). As the purpose of our resource is to 
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complement The Chemical Probes Portal with strictly objective large-scale, data-

driven information, we explicitly exclude any curated probes that have no data in the 

underlying medicinal chemistry databases. However, as mentioned, we do provide a 

link to The Chemical Probes Portal in the features section of the target overview 

page to alert researchers when a target has probes in the Portal that might not be 

present in public medicinal chemistry databases. Moreover, to address the broader 

lack of coverage of chemical biology data in public medicinal chemistry databases, 

we are actively expanding the canSAR knowledgebase to curate key missing 

literature. In future this growing knowledgebase will further enhance our objective 

assessment and increase the overlap between our resource and The Chemical 

Probes Portal – which is itself also being extended through ongoing inclusion of 

additional probes.  

 

Importantly, our analysis highlights 193 compounds with high rankings (in the top 5) 

in Probe Miner that are not yet curated within The Chemical Probes Portal, and that 

may complement the tools recommended by the Portal to explore the corresponding 

protein targets of interest. This again highlights the clear synergy of combining the 

large-scale objective assessment of all available compounds with in-depth but only 

partially complete coverage of expert curation. To maximize this synergy, we are now 

collaborating with The Chemical Probes Portal to share information and, for example, 

to recommend probes identified by our objective assessment method for expert 

curation at the Portal (see example below). 

 

Use Cases: PARP-1, CHEK2, OPRK1 and ABCC8 

We have selected four use cases to illustrate the value and also current 

limitations of the Probe Miner resource. 
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PARP-1 

The cancer drug target poly(ADP-ribose) polymerase 1 (PARP1) DNA repair enzyme 

has five pan-PARP probes that are recommended by The Chemical Probes Portal. 

Olaparib, veliparib and niraparib are all highly ranked using Probe Miner’s predefined 

Global Score (Figure 3 and 4). However, key information is missing in public 

resources regarding the Portal-listed probes AZ0108 and E7449, the latter published 

in a journal not indexed in public databases (McGonigle et al., 2015). Accordingly, 

these two probes are not highly ranked in Probe Miner (Figure 4). On the other hand, 

our objective assessment resource identifies another probe that scores highly but 

has not yet been curated by The Chemical Probes Portal. This is NMS-P118, a 

recently published PARP1-selective inhibitor that was comprehensively screened for 

kinase selectivity (Papeo et al., 2015) – which is very important given reports of off-

target activity against kinases among PARP inhibitors (Antolín and Mestres, 2014). 

Therefore, NMS-P118 emerges as a potential candidate with which to probe 

specifically for PARP1 (Figure 4).  Based on our findings, we proposed NMS-P118 to 

The Chemical Probes Portal and this chemical probe is now under review for expert 

curation.   

 

CHEK2 

The serine/threonine-protein kinase CHEK2, a cell cycle checkpoint protein, 

exemplifies errors and limitations in the public medicinal chemistry data resources. 

For CHEK2, use of our Global Score initially failed to prioritise the selective chemical 

probe CCT241533 (Caldwell et al., 2011) – which is expert-curated in The Chemical 

Probes Portal – while ranking as the highest-scoring chemical tool the very broadly 

characterised but promiscuous kinase inhibitor sunitinib. We found that CCT241533 

had fallen foul of a series of errors and missing data in public medicinal chemistry 

databases. Most significantly, the affinity of CCT241533 for CHEK2 had been 
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wrongly curated in ChEMBL, making the probe appear non-selective (Figure S13). 

We reported this error to ChEMBL and it has now been corrected in both ChEMBL 

and our canSAR database. As a result, CCT241533 now ranks as the third highest-

scoring probe in Probe Miner (Figure 4).  

 

In considering examples like this, it is important to note that our Selectivity Score 

balances the contribution of actually measured selectivity and also the extent of 

characterisation for potential off-targets. For example, if one probe appears selective 

but has only been tested against two off-targets, while another probe is not 

completely selective but has been tested against hundreds of targets, then our 

Selectivity Score may reward the more widely characterised probe (see Methods for 

details). This is the case in our analysis of sunitinib as a probe. The very thorough 

characterisation of sunitinib against the kinome is the key factor that results in it 

ranking as the top probe when using our predefined weightings for the Global Score 

(see Methods and Figure S14-S18). This further emphasizes the importance of 

carefully evaluating all data available – and, importantly, of expert curation where 

possible – before selecting any chemical probe, regardless of its ranking in Probe 

Miner. 

 

Furthermore, selectivity information is inconsistently reported in public databases 

making the data difficult to automatically extract and compare (e.g selectivity is 

sometimes reported as % inhibition or activity at different concentrations, or even oC 

from Differential Scanning Fluorimetry measurements, rather than bioactivity or 

binding affinity measured in molar concentrations). Our Probe Miner algorithm 

currently uses only selectivity data reported in molar concentrations. Although 

interpretable to a human expert, there is no globally applicable computational method 

to convert % inhibition data to comparable IC50 at scale. Consequently, where 

selectivity data are captured as % inhibition, as for CCT241533 which was tested 
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against a panel of 85 kinases, these data are not incorporated into our current 

Selectivity Score.  

 

OPRK1 

The use of more than one chemical probe with different chemotypes is strongly 

recommended for mechanistic studies and target validation (Blagg and Workman, 

2017). Accordingly, our third use case example, the Kappa opioid receptor OPRK1, 

illustrates how Probe Miner can be used to identify second probes and potentially 

contribute to increase the completeness of The Chemical Probes Portal.  

 

For OPRK1 there is only one chemical probe currently covered in the Portal, namely 

the natural product agonist salvinorin A. While Probe Miner also identifies salvinorin 

A as the highest-ranking probe for OPRK1, it also identifies chemically distinct 

probes for this target such as the drug ICI-199,441 (Weerawarna et al., 1994) which 

is a potent, selective and commercially available agonist and can thus be used in 

conjunction with salvinorin A to probe the biology of the OPRK1 receptor (Figure 4). 

Thus we have recommended the OPRK1 chemical probe ICI-199,441 for 

consideration by The Chemical Probes Portal for expert review that would 

complement our large-scale, data-driven objective assessment in Probe Miner while 

increasing the coverage of OPRK1 inhibitors by the Portal. 

 

ABCC8 

ABCC8 (ATP-binding cassette sub-family C member 8) functions as a modulator of 

ATP-sensitive potassium channels and insulin release and serves as an example of 

how Probe Miner’s broader coverage across the whole liganded proteome can be 

used to aid in the prioritization and selection for expert curation of probes for targets 

that are currently not yet included in The Chemical Probes Portal. Our objective 
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assessment of ABCC8, a subunit of the beta-cell ATP-sensitive potassium channel 

(KATP), identifies the inhibitory, antidiabetic drugs glyburide and repaglinide as the 

highest-ranking probes (Coghlan et al., 2001). These two agents are commercially 

available and could be thus be readily used to probe for this ion channel while 

waiting for more in-depth expert curation of probes for this target at the Portal.  

 

Taken together, these four use cases discussed above represent typical scenarios 

that highlight the synergy and complementarity of the Probe Miner and Chemical 

Probes Portal resources in chemical probe selection.  

 

 

DISCUSSION 

Chemical probes are an essential part of functional genome annotation, mechanistic 

exploration of biology and disease, and validation of drug targets – but there are 

serious issues with their quality, selection and use (Blagg and Workman, 2017). 

Herein, we report: 1) our data-driven, unbiased, objective analysis of large-scale 

public data to catalogue currently available tools and evaluate potential chemical 

probes; 2) our exemplification of the utilization and value of the approach as well as 

the limitations imposed by the current nature of the underlying data; and 3) our 

description of the use of Probe Miner – which we have made freely available to the 

research community as a public resource to facilitate the identification and 

prioritisation of potential chemical probes that should be evaluated further 

(Arrowsmith et al., 2015; www.chemicalprobes.org).  

 

Through our systematic analysis of >3.9 million experimental activities for >1.8 

million compounds in curated public medicinal chemistry databases, we provide 

objective, data-driven systematic scoring of 355,305 compounds against 2,220 

human protein targets. Using our data-driven assessment, we provide quantitative 
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data demonstrating the extent to which the majority of human proteins lack minimal 

quality small-molecule chemical tools that are needed to probe their function. In 

addition, our demonstration of gaps in the description and characterisation of 

chemical tools in public databases highlights especially the extent of our limited 

knowledge of chemical tool selectivity and also uncovers large historical biases in the 

reported exploration of chemical space and the polypharmacology of active 

compounds – resulting in the inequality of available minimal quality probes that we 

identify. It is therefore paramount that the chemical biology community improves the 

quality and especially the degree of broad characterisation of currently available 

chemical tools across multiple targets, and in addition also continues the discovery 

and characterization of tools for as yet non-probed proteins. 

 

Thus while recognizing that the number, quality and proteome-wide coverage of 

chemical probes will increase with time – especially the important factor of degree of 

selectivity profiling – Probe Miner provides additional and distinct resource that will 

be useful both today and in the future to help empower researchers to select the best 

tools available for biomedical research. We believe that our systematic, objective 

assessment resource – derived from the underlying, evolving large-scale medicinal 

chemistry data – is an important addition to the toolbox for chemical probe 

prioritization. Probe Miner can be used by the community to fill the gap while expert-

curation approaches such as The Chemical Probes Portal expand into protein 

families that have not yet been covered, and can also be employed to help prioritize 

probes for subsequent expert curation and assessment at the Portal or by individual 

researchers. However, we show that our unbiased large-scale approach, which 

benefits from regular, automatic updates, will be especially powerful when combined 

with the complementary expert-curated assessments provided by The Chemical 

Probes Portal (Arrowsmith et al., 2015; www.chemicalprobes.org). When used 

together with the experience, knowledge and opinion of the individual investigator, 
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Probe Miner and the Portal provide both the breadth and depth required to make 

informed choices on the selection of chemical probes. In practice, individual 

researchers may in some cases have to make the choice between a well-

characterized but not optimally selective probe versus a less well-characterized but 

seemingly selective one, as illustrated by examples shown, but the combined 

resources help ensure that investigators are fully aware of available knowledge and 

gaps therein. Note also that, in any case, expert guidelines recommend the 

combined use of at least two chemical probes from distinct chemotypes, together 

with at least one inactive control compound (Blagg and Workman, 2014; Workman 

and Collins, 2010). Overall, Probe Miner and The Chemical Probes Portal have 

complementary strengths which will make their continued combined use synergistic 

and mutually beneficial to the user community. 

 

Probe Miner represents, to our knowledge, the first publicly available resource 

enabling objective, data-driven, systematic assessment of chemical tools. We 

demonstrate that our objective data-driven prioritization of chemical tools aligns well	
  

with expert recommendation from The Chemical Probes Portal when both 

approaches have access to the same information. However, we also uncover 

incompleteness, inaccuracies and inconsistencies of data deposited in public 

databases that limit the full benefit of our large-scale objective approach. An 

important point to note is that the public databases used in this analysis were 

developed mainly for medicinal chemistry applications and, accordingly, many 

chemical biology publications are not covered. Moreover, we have identified an error 

in public databases that has now been corrected (Figure S13) and also found several 

inaccuracies, particularly regarding the annotation of cell-based EC50 values and 

biochemical IC50 values, as well as inconsistencies regarding the deposition of 

selectivity data in public databases (Table S3).  Therefore, there is a great need to 

better capture and curate medicinal chemistry and chemical biology information from 
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the literature in public knowledgebases if we are to make the most of these 

expensively generated data. Such improvements will also allow further evolution of 

Probe Miner algorithm over time. 

 

We stress that our Probe Miner resource can be used with a predefined weighting of 

fitness factors – in which measures of biochemical activity/binding potency and 

selectivity, as well as surrogate measures of cell permeability, are given greater 

weighting in the overall Global Score.  The preset default weightings for assessing 

and ranking chemical probes may be especially useful for biomedical scientists who 

are not chemical biology or medicinal chemistry experts – which represents a large 

and  important  community that was highlighted recently as requiring advice and 

user-friendly resources when selecting chemical tools for exploring biology and 

conducting target validation (Blagg and Workman, 2017). Alternatively, the weighting 

of different criteria can be customised according to individual researchers’ views and 

needs. For example, expert users may wish to alter the weighting of fitness factors to 

suit their own experience and opinion. Or they may wish to vary the weightings of 

different factors to see how this affects the ranking of probes. 

 

In conclusion, we demonstrate here that objective, quantitative, data-driven large-

scale assessment based on public data can contribute to improving overall 

evaluation and prioritization of chemical probes. We propose that our new Probe 

Miner resource represents a valuable contribution for the identification of potential 

chemical probes, particularly when used alongside expert curation. 

 

 

SIGNIFICANCE 

The selection of appropriate chemical probes is essential for mechanistic biological 

investigation and target validation – but continues to be largely biased and subjective 
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and does not benefit from the large-scale data available in public databases. Here, 

we analyse statistically >1.8 million compounds and >2,200 human targets. Our 

objective study provides insights and patterns that can be used objectively in 

assessing and selecting chemical probes. It also uncovers significant biases in the 

exploration of chemical probes in public databases. To enable an objective and 

quantitative assessment of chemical probes, we have developed data-driven probe 

scoring metrics aligned to key properties or fitness factors. To empower the 

community to utilise this knowledge, we have also developed the Probe Miner 

resource (http://probeminer.icr.ac.uk) to enable public access to this information and 

algorithm in a user-friendly framework. We demonstrate how our objective 

assessment generally aligns with expert recommendation from The Chemical Probes 

Portal when the information in public databases is available and accurate, and also 

provides synergistic benefits – for example, through its scale, objectivity and lack of 

bias, and also its quantitative nature. Importantly, we provide examples showing how 

our data-driven assessment can inform selection of probes for expert curation. Thus 

Probe Miner represents a valuable resource to empower the chemical biology and 

general research community towards the selection of high quality chemical probes 

for mechanistic studies and target validation. 
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FIGURE LEGENDS 

Figure 1. Global analysis of chemical probes as described in public databases 

uncovers major limitations and biases. (A) Infographic showing a human silhouette 

representing the human proteome and areas indicating: the proportion of the 

proteome estimated to be druggable but currently unliganded (green; Finan et al., 

2016; Tym et al., 2016); the proportion found to have been already liganded (purple; 

see Methods); and the proportion that can be studied currently with chemical tools 

fulfilling minimum requirements of potency, selectivity and permeability (red; see 

Methods). (B) Venn diagram illustrating the proportion of the 2,220 liganded human 

protein targets that can be studied with chemical tools fulfilling minimum 

requirements of potency, selectivity and permeability. (C) Venn diagram illustrating 

the number of chemical compounds fulfilling minimum requirements of potency, 

selectivity and permeability. 

 

Figure 2. Chemical probe cards for highest-ranked PIK3CB compounds in Probe 

Miner, comprising the chemical structure and the radar plot with the corresponding 

chemical probe scores. Probes also curated by The Chemical Probes Portal include 

their expert ratings in a 4-star format and, when compound is not 10-fold selective 

against another protein, a danger icon (red triangle) is shown to alert the researcher 

that there might be selectivity liabilities when using those compounds as PIK3B 

chemical probes. 

 

Figure 3. Probe Miner resource. Snapshot of the overview and chemical tool pages 

of the resource using the human PARP1 protein as an example. (A) summaries of 

the data and statistical analyses using our algorithm. Coloured icons provide 

immediate visual indication of the overall quality and liabilities of compounds for this 

target and a link to The Chemical Probes Portal is provided when this target has 

expert-curated compounds in the Portal. (B) Easy-to-navigate distribution of the 
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twenty top ranking probes. (C) A compound viewer interactively linked to the 

distribution which shows the chemical structure and key information for the probe, as 

well as the values of the six score components as a radar plot. Compounds also 

expert curated by The Chemical Probes Portal are highlighted in blue and links to the 

Portal are also provided (D) Easy-to-navigate settings panel to enable customisation 

of Global Score, displays and rankings. (E) Individual chemical probe pages where 

detailed information is provided including links to other resources, commercial 

availability, raw data to generate the scores and a target profile to provide an 

overview of compound selectivity (further details in Figures S7-S11).  

 

Figure 4. Analysis of the ranking of chemical probes for the targets PARP1, CHEK2 

and OPRK1. On top, Venn diagram comparing the PARP1 chemical probes 

recommended by The Chemical Probes Portal (see Methods) and the Probe Miner 

resource as ranked by the predefined Global Score. Chemical structures are 

displayed, as well as names, radar plot showing the six Chemical Probe Scores, The 

Chemical Probes Portal reviewers’ rating and Probe Miner ranking when available. 

On the bottom, highest-ranked probes for CHEK2 and OPRK1. 
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STAR METHODS 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources should be directed to and will be fulfilled by the Lead 
Contact, Bissan Al-Lazikani (Bissan.Al-Lazikani@icr.ac.uk). 
 
 
METHOD DETAILS 
 
Definitions	
  
During	
  this	
  work	
  we	
  have	
  used	
  the	
  following	
  definitions:	
  
	
  
• Target.	
  Human	
  protein	
  that	
  is	
  known	
  to	
  interact	
  with	
  a	
  chemical	
  compound.	
  	
  
	
  
• Reference	
   Target.	
   Since	
   a	
   chemical	
   compound	
   can	
  bind	
   to	
  multiple	
  protein	
   targets	
   and	
  we	
   score	
   each	
  
compound-­‐target	
   pair,	
   the	
   reference	
   target	
   is	
   defined	
   as	
   the	
   target	
   of	
   the	
   compound	
   that	
   is	
   being	
  
evaluated.	
  

	
  
• Potency	
  Score.	
  Score	
  that	
  measures	
  the	
  potency	
  of	
  the	
  biochemical	
  interaction	
  between	
  each	
  compound-­‐
target	
  pair.	
  

	
  
• Selectivity	
  Score.	
  Score	
  that	
  measures	
  the	
  selectivity	
  of	
  each	
  compound-­‐target	
  pair.	
  Selectivity	
  is	
  one	
  of	
  
the	
   most	
   important	
   properties	
   that	
   a	
   chemical	
   tool	
   should	
   fulfil	
   in	
   order	
   to	
   be	
   useful	
   to	
   study	
   the	
  
biological	
   function	
   and	
   therapeutic	
   potential	
   of	
   a	
   specific	
   protein	
   (Frye,	
   2010;	
   Workman	
   and	
   Collins,	
  
2010).	
  However,	
   it	
   is	
   challenging	
   to	
  measure	
  due	
   to	
   large	
  biases	
   in	
   the	
  number	
  of	
   targets	
   screened	
   for	
  
each	
  compound	
  (Figure	
  S14)	
  and	
  thus	
   the	
  selectivity	
  score	
  balances	
  our	
  actual	
  knowledge	
  of	
  selectivity	
  
with	
  the	
  amount	
  of	
  selectivity	
  information	
  that	
  is	
  actually	
  available.	
  	
  

	
  
• Cell	
  Score.	
  Since	
  no	
  large-­‐scale	
  experimental	
  measure	
  of	
  permeability	
  is	
  available,	
  we	
  use	
  cellular	
  activity	
  
as	
  a	
  proxy.	
  Accordingly,	
  the	
  Cell	
  Score	
  is	
  a	
  binary	
  score	
  that	
  measures	
  whether	
  a	
  given	
  chemical	
  molecule	
  
is	
  known	
  to	
  be	
  active	
  in	
  cells,	
  and	
  thus	
  accounts	
  not	
  only	
  for	
  the	
  permeability	
  but	
  also	
  for	
  the	
  solubility	
  
and	
  cell	
  activity	
  fitness	
  factors	
  because	
  when	
  a	
  compound	
  is	
  active	
  in	
  a	
  cell	
  line	
  assay	
  we	
  assume	
  it	
  fulfils	
  
minimum	
   requirements	
   of	
   permeability	
   and	
   solubility	
   to	
   modulate	
   the	
   target	
   of	
   interest	
   in	
   cells	
  
(Workman	
  and	
  Collins,	
  2010).	
  

	
  
• SAR	
  Score.	
  Structure-­‐Activity	
  Relationships	
  (SAR)	
  increase	
  confidence	
  that	
  the	
  biological	
  effect	
  of	
  a	
  given	
  
chemical	
  tool	
  is	
  achieved	
  via	
  the	
  modulation	
  of	
  the	
  reference	
  target.	
  Accordingly,	
  the	
  SAR	
  score	
  is	
  a	
  binary	
  
score	
  measuring	
  whether	
  there	
  are	
  (SAR	
  Score	
  =	
  1)	
  known	
  SAR	
  for	
  the	
  compound-­‐reference	
  target	
  pair	
  
(Workman	
  and	
  Collins,	
  2010).	
  

	
  
• Inactive	
  Analog	
  Score.	
  Inactive	
  analogs	
  can	
  be	
  useful	
  controls	
  to	
  rule	
  out	
  off-­‐target	
  effects.	
  Therefore,	
  the	
  
Inactive	
   Analog	
   Score	
   is	
   a	
   binary	
   score	
   measuring	
   whether	
   there	
   are	
   known	
   inactive	
   analogs	
   for	
   the	
  
compound-­‐reference	
  target	
  pair	
  (Workman	
  and	
  Collins,	
  2010).	
  

	
  
• PAINS	
   Score.	
   Pan-­‐assay	
   interference	
   compounds	
   (PAINS)	
   are	
   those	
   that	
   interfere	
   with	
   the	
   detection	
  
methods	
   of	
   screening	
   assays	
   and	
   are	
   thus	
   problematic	
   artefacts	
   that	
   have	
   been	
   identified	
   to	
   be	
  widely	
  
used	
   in	
  many	
  scientific	
  publications	
  as	
  chemical	
   tools,	
   thus	
   leading	
   to	
   the	
  wrong	
  conclusions	
  (Baell	
  and	
  
Walters,	
   2014).	
   There	
   are	
   several	
   computational	
  methods	
   that	
   can	
  be	
  used	
   to	
  predict	
   PAINS	
   and	
  other	
  
potentially	
   problematic	
   functional	
   groups	
   in	
   biomedical	
   and	
   cell-­‐based	
   chemical	
   tools	
   (Huggins	
   et	
   al.,	
  
2011).	
   However,	
   none	
   of	
   the	
   available	
   computational	
  methods	
   is	
   exempt	
   of	
   limitations,	
   among	
   them	
   a	
  
considerable	
  number	
  of	
  false-­‐positives	
  (Capuzzi	
  et	
  al.,	
  2017;	
  Huggins	
  et	
  al.,	
  2011).	
  Accordingly,	
  the	
  PAINS	
  
Score	
   measures	
   whether	
   a	
   compound	
   is	
   predicted	
   to	
   be	
   PAINS-­‐free	
   using	
   the	
   substructure	
   filters	
  
proposed	
   by	
   Baell	
   et	
   al.	
   (see	
   Methods)	
   as	
   a	
   pragmatic	
   means	
   to	
   alert	
   users	
   to	
   the	
   potential	
   risk	
   of	
  
functionality	
   in	
   the	
   molecule	
   that	
   may	
   cause	
   misleading	
   effects	
   in	
   biochemical	
   or	
   cell-­‐based	
   assays.	
  
However,	
  to	
  reduce	
  the	
  impact	
  of	
  false-­‐positives	
  we	
  give	
  this	
  PAINS	
  Score	
  a	
  low	
  weighting	
  in	
  the	
  default	
  
Global	
  Score	
  to	
  avoid	
  deprioritising	
  otherwise	
  promising	
  molecules.	
  Still,	
  it	
  is	
  worth	
  highlighting	
  that	
  the	
  
PAINS	
  Score	
  is	
  a	
  prediction	
  calculated	
  using	
  only	
  one	
  computational	
  method.	
  Thus,	
  we	
  enable	
  researchers	
  
to	
   set	
   the	
  weight	
   of	
   the	
   PAINS	
   Score	
   in	
   the	
   Global	
   Score	
   according	
   to	
   their	
   expert	
   judgement	
   and	
   the	
  
specific	
   assay	
   that	
   they	
   are	
   using.	
   Moreover,	
   researchers	
   can	
   also	
   remove	
   the	
   PAINS	
   Score	
   from	
   the	
  
calculation	
  of	
  the	
  Global	
  Score	
  by	
  setting	
  the	
  weight	
  to	
  0.	
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• Potency	
  Score.	
  We	
  consider	
  bioactivity	
  data	
  on	
  compound-­‐target	
  pairs	
  integrated	
  in	
  the	
  knowledgebase	
  
canSAR	
  (that	
  integrates	
  high	
  quality	
  bioactivity	
  data	
  from	
  CHEMBL	
  and	
  BindingDB)	
  (Gaulton	
  et	
  al.,	
  2016;	
  
Gilson	
  et	
  al.,	
  2016)	
  where	
  the	
  target	
   type	
   is	
  a	
  protein,	
   the	
  protein	
   is	
  human	
  as	
  defined	
  by	
   its	
  associated	
  
Uniprot	
   ID	
  and	
  the	
  units	
  can	
  be	
  transformed	
  to	
   ‘nM’	
  (Consortium,	
  2017;	
  Tym	
  et	
  al.,	
  2016).	
  We	
  calculate	
  
the	
  median	
   of	
   all	
   the	
   reported	
   values	
   for	
   each	
   compound-­‐target	
   pair	
   distinguishing	
  between	
   ‘=’	
   and	
   ‘>’	
  
values	
   and	
   transform	
   them	
   into	
   pActivity	
   values	
   (-­‐log(Activity[Molar])).	
   We	
   consider	
   active	
   all	
  
compounds	
  with	
  a	
  median	
  pActivity	
  below	
  10,000	
  nM.	
  Compounds	
  with	
  conflicting	
  ‘=’	
  and	
  ‘>’	
  data	
  for	
  the	
  
same	
   target	
   are	
   considered	
   inactive.	
  Given	
   that	
  only	
  0.7%	
  of	
  bioactivities	
   are	
  below	
  100	
  picomolar	
  but	
  
they	
  strongly	
  bias	
  the	
  normalisation	
  of	
  the	
  potency	
  score,	
  these	
  activity	
  values	
  (pActivity	
  >	
  10)	
  are	
  given	
  a	
  
value	
  of	
  10.	
  	
  For	
  all	
  the	
  compound-­‐target	
  pairs	
  considered	
  as	
  active,	
  the	
  potency	
  score	
  is	
  calculated	
  as	
  the	
  
normalization	
  of	
   the	
  pActivity	
  values	
   in	
  a	
   scale	
   from	
  0	
   (pActivity	
  =	
  5)	
   to	
  1	
   (pActivity	
  ≥	
  10).	
  There	
  have	
  
been	
  arguments	
  against	
  any	
  numerical	
  aggregation	
  of	
  potency	
  values	
  due	
  to	
  their	
  wide	
  variation	
  across	
  
biological	
   systems	
   and	
   technologies,	
   but	
   the	
   proposed	
   alternative	
   uses	
   subjective	
   expert	
   weighting	
   of	
  
several	
  databases	
  including	
  highly	
  curated	
  proprietary	
  databases	
  that	
  are	
  not	
  widely	
  accessible	
  (Wang	
  et	
  
al.,	
  2016).	
  We	
  have	
  thoroughly	
   investigated	
  cases	
  where	
  a	
  wide	
  distribution	
  of	
  potency	
  values	
  has	
  been	
  
reported,	
  such	
  as	
  nilotinib	
  (CHEMBL255863;	
  Wang	
  et	
  al.,	
  2016).	
  We	
  identify	
  that	
  these	
  wide	
  distributions	
  
are	
  often	
  due	
  to	
   inaccuracies	
   in	
  the	
  annotation	
  of	
  cellular	
  EC50	
  values	
  as	
  biochemical	
   IC50	
  values	
  and	
  the	
  
annotation	
   of	
   data	
   from	
  mutants	
   as	
   wild	
   type	
   proteins	
   (Gaulton	
   et	
   al.,	
   2016).	
   We	
   have	
   calculated	
   the	
  
Median	
  Absolute	
  Deviation	
  (MAD)	
  of	
   the	
  potency	
  median	
  calculated	
   for	
  each	
  compound-­‐target	
  pair	
  and	
  
we	
  identify	
  that	
  these	
  large	
  variations	
  affect	
  only	
  a	
  very	
  small	
  number	
  of	
  compounds	
  (3.6%;	
  Figure	
  S15).	
  
We	
  provide	
   the	
  MAD	
  to	
   facilitate	
   the	
   identification	
  of	
   cases	
  where	
   this	
  wide	
  distribution	
  may	
  affect	
   the	
  
reported	
  performance	
  of	
  the	
  chemical	
  tool.	
  These	
  results	
  support	
  the	
  use	
  of	
  high	
  quality	
  public	
  databases	
  
for	
  the	
  assessment	
  of	
  chemical	
  tools	
  and	
  highlight	
  the	
  need	
  to	
  better	
  curate	
  these	
  high	
  quality	
  databases	
  
to	
  make	
  the	
  most	
  of	
  this	
  expensively	
  generated	
  data.	
  

	
  
• Selectivity	
  Score.	
  For	
  each	
  compound,	
  we	
  calculate	
  a	
  different	
  selectivity	
  score	
  for	
  each	
  of	
  the	
  proteins	
  it	
  
interacts	
  with	
   (median	
  pActivity	
  >	
  5)	
   considering	
   all	
   of	
   their	
   compound-­‐target	
   interactions.	
   In	
  order	
   to	
  
balance	
   the	
   actual	
   knowledge	
   of	
   selectivity	
  with	
   the	
   amount	
   of	
   information	
   available	
   (Figure	
   S14),	
   the	
  
Selectivity	
  Score	
  is	
  composed	
  by	
  three	
  different	
  factors	
  in	
  an	
  attempt	
  to	
  reflect	
  our	
  limited	
  cataloguing	
  of	
  
selectivity	
  following	
  the	
  formula	
  below:	
  	
  

	
  

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦  𝑆𝑐𝑜𝑟𝑒 =   
𝐹𝑖𝑟𝑠𝑡  𝐹𝑎𝑐𝑡𝑜𝑟 + 𝑆𝑒𝑐𝑜𝑛𝑑  𝐹𝑎𝑐𝑡𝑜𝑟!"#$%&'()  !"#  !"#$%! + 𝑇ℎ𝑖𝑟𝑑  𝐹𝑎𝑐𝑡𝑜𝑟  

3 	
  

	
  
The	
  First	
  Factor	
  accounts	
  for	
  the	
  actual	
  knowledge	
  of	
  selectivity.	
  In	
  order	
  to	
  calculate	
  the	
  First	
  Factor,	
  the	
  
number	
  of	
  off-­‐targets	
  that	
  the	
  compound	
  has	
  been	
  screened	
  against	
  is	
  calculated	
  first,	
  without	
  including	
  
the	
   target	
  being	
  evaluated.	
   Second,	
   the	
  median	
  pActivity	
  values	
  are	
  used	
   to	
  discern	
  whether	
   there	
   is	
   at	
  
least	
  10-­‐fold	
  selectivity	
  (1	
  log	
  unit)	
  between	
  the	
  potency	
  of	
  the	
  compound	
  for	
  the	
  reference	
  target	
  and	
  the	
  
potency	
  for	
  each	
  off-­‐target	
  (pActivityReferenceTarget	
  –	
  pActivityOff-­‐Target	
  ≥	
  1).	
  The	
  10-­‐fold	
  selectivity	
  cut-­‐off	
  has	
  
been	
   previously	
   used	
   as	
   the	
   minimum	
   selectivity	
   requirement	
   to	
   consider	
   that	
   a	
   chemical	
   probe	
   is	
  
selective	
  (Oprea	
  et	
  al.,	
  2009).	
  If	
  there	
  is	
  10-­‐fold	
  selectivity	
  between	
  the	
  potency	
  of	
  the	
  compound	
  for	
  the	
  
reference	
  target	
  and	
  the	
  potency	
  of	
  the	
  off-­‐target,	
  this	
  off-­‐target	
  is	
  considered	
  a	
  selective	
  off-­‐target	
  (Figure	
  
S16).	
   Next,	
  we	
   calculate	
   the	
   number	
   of	
   selective	
   off-­‐targets.	
   The	
   First	
   Factor	
   of	
   the	
   Selectivity	
   Score	
   is	
  
obtained	
   by	
   dividing	
   the	
   number	
   of	
   selective	
   off-­‐targets	
   by	
   the	
   total	
   number	
   of	
   off-­‐targets,	
   using	
   the	
  
following	
  equation:	
  

	
  

𝐹𝑖𝑟𝑠𝑡  𝐹𝑎𝑐𝑡𝑜𝑟 =   
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  10_𝑓𝑜𝑙𝑑  𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒  𝑜𝑓𝑓_𝑡𝑎𝑟𝑔𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑜𝑓𝑓_𝑡𝑎𝑟𝑔𝑒𝑡𝑠 	
  

	
  
Therefore,	
  if	
  a	
  compound-­‐reference	
  target	
  interaction	
  is	
  at	
  least	
  10-­‐fold	
  selective	
  against	
  any	
  other	
  target,	
  
the	
  value	
  of	
  the	
  first	
  factor	
  will	
  be	
  1.	
  In	
  contrast,	
  if	
  the	
  compound-­‐target	
  interaction	
  of	
  interest	
  is	
  not	
  10-­‐
fold	
  selective	
  against	
  any	
  other	
  compound-­‐target	
  interactions,	
  the	
  first	
  factor	
  will	
  be	
  lower	
  than	
  1	
  (Figure	
  
S16).	
  If	
  there	
  is	
  no	
  information	
  regarding	
  any	
  off-­‐target,	
  the	
  Selectivity	
  Score	
  is	
  set	
  to	
  0.	
  	
  
	
  
The	
  second	
  factor	
  of	
  the	
  score	
  is	
  a	
  measure	
  of	
  the	
  amount	
  information	
  available	
  regarding	
  selectivity.	
  This	
  
second	
   factor	
  distinguishes	
  between	
  compounds	
   that	
  have	
  an	
  equal	
   first	
   factor	
  but	
  have	
  been	
  screened	
  
against	
  a	
  (very)	
  different	
  number	
  of	
  targets.	
  Moreover,	
  it	
  also	
  balances	
  the	
  actual	
  knowledge	
  of	
  selectivity	
  
–	
  measured	
  by	
  the	
  first	
  factor	
  –	
  with	
  the	
  amount	
  of	
  information	
  available	
  regarding	
  selectivity	
  that	
  can	
  be	
  
very	
   different	
   between	
   different	
   compounds,	
   challenging	
   their	
   comparison	
   (Figures	
   S16	
   and	
   S17).	
   In	
  
order	
   to	
   calculate	
   it,	
   we	
   have	
   developed	
   a	
   measure	
   of	
   selectivity	
   information	
   that	
   we	
   have	
   termed	
  
Selectivity	
   Information	
  Richness	
   (SIC).	
  The	
  SIC	
   is	
  calculated	
  as	
   the	
  summary	
  of	
   the	
  differences	
  between	
  
the	
  median	
  pActivity	
  of	
  the	
  reference	
  target	
  and	
  the	
  pActivity	
  of	
  each	
  off-­‐target	
  minus	
  one:	
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𝑆𝐼𝐶 =    𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦!"#$%&  !"  !"#$%$&# − 𝑝𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦!""_!"#$%&  ! − 1
!"#$%&  !"  !""!!"#$%!&

!!!

	
  

	
  
The	
  above	
  approach	
  enables	
  the	
  evaluation	
  of	
  the	
  selectivity	
  information	
  from	
  the	
  10-­‐fold	
  selectivity	
  cut-­‐
off	
   in	
   order	
   to	
   distinguish	
   selective	
   from	
   non-­‐selective	
   information	
   that	
   will	
   be	
   positive	
   and	
   negative,	
  
respectively	
  (Figure	
  S17).	
  Therefore,	
  in	
  the	
  final	
  summary	
  unselective	
  data	
  compensate	
  for	
  selective	
  data.	
  
Interestingly,	
  the	
  SIC	
  could	
  also	
  be	
  regarded	
  as	
  the	
  number	
  of	
  selectivity	
  units	
  from	
  the	
  given	
  compound-­‐
protein	
   interaction.	
   To	
   calculate	
   the	
   Second	
   Factor	
   of	
   the	
   Selectivity	
   Score,	
   the	
   SIC	
   is	
   divided	
   by	
   the	
  
number	
  of	
  targets	
  that	
  would	
  be	
  modulated	
  at	
  the	
  same	
  time	
  since	
  there	
  is	
  not	
  10-­‐fold	
  selectivity	
  between	
  
them,	
   therefore	
   the	
  number	
  of	
  not	
  10-­‐fold	
  selective	
  off-­‐targets	
  plus	
   the	
   target	
  of	
   interest,	
   following	
   this	
  
formula:	
  

	
  
𝑆𝑒𝑐𝑜𝑛𝑑  𝐹𝑎𝑐𝑡𝑜𝑟 =   

𝑆𝐼𝐶
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑛𝑜𝑡  10 − 𝑓𝑜𝑙𝑑  𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒  𝑜𝑓𝑓_𝑡𝑎𝑟𝑔𝑒𝑡𝑠 + 1	
  

	
  
This	
   division	
   enables	
   reduction	
   the	
   SIC	
   of	
   compound-­‐target	
   interactions	
   that	
   are	
   very	
   high,	
   as	
   the	
  
compound	
   has	
   been	
   screened	
   against	
   a	
   very	
   large	
   number	
   of	
   off-­‐targets,	
   but	
   represent	
   suboptimal	
  
compounds	
  to	
  probe	
  for	
  the	
  target	
  of	
  interest	
  as	
  they	
  inhibit	
  several	
  other	
  targets	
  with	
  similar	
  or	
  higher	
  
affinity	
  (Figure	
  S18).	
  	
  
	
  
The	
  second	
  factor	
   is	
   finally	
  normalized	
  within	
  each	
  target	
  as	
  we	
  observe	
  that	
  different	
   targets	
  can	
  have	
  
very	
  different	
  SIC	
  ranges.	
  The	
  main	
  reason	
  for	
  this	
  is	
  that	
  there	
  are	
  target	
  families	
  such	
  as	
  kinases	
  where	
  
family-­‐wide	
   profiling	
   is	
   very	
   common	
  while	
   this	
   is	
   not	
   common	
   for	
   other	
   target	
   families	
   and	
   a	
   global	
  
normalization	
  would	
  profoundly	
  bias	
  the	
  results.	
  	
  
	
  
Finally,	
   the	
   last	
   factor	
  measures	
   the	
  percentage	
  of	
   the	
  proteome	
   that	
   the	
   compound	
  has	
  been	
   screened	
  
against,	
  which	
  is	
  generally	
  very	
  low,	
  with	
  the	
  following	
  formula:	
  	
  

	
  
𝑇ℎ𝑖𝑟𝑑  𝐹𝑎𝑐𝑡𝑜𝑟 =   

𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑜𝑓𝑓_𝑡𝑎𝑟𝑔𝑒𝑡𝑠 + 1
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑙𝑖𝑔𝑎𝑛𝑑𝑒𝑑  𝑡𝑎𝑟𝑔𝑒𝑡𝑠	
  

	
  
Therefore,	
  this	
  Third	
  Factor	
  serves	
  as	
  a	
  reminder	
  that	
  the	
  selectivity	
  of	
  chemical	
  tools	
  is	
  generally	
  a	
  major	
  
unknown.	
  Ultimately,	
  the	
  three	
  factors	
  are	
  added	
  and	
  the	
  final	
  score	
  is	
  normalized	
  (Equation	
  1).	
  Overall,	
  
the	
  Selectivity	
  Score	
  is	
  able	
  to	
  balance	
  different	
  aspects	
  of	
  selectivity;	
  however,	
  	
  how	
  compounds	
  screened	
  
against	
  a	
  very	
  different	
  number	
  of	
   targets	
  should	
  be	
  prioritized	
  remains	
  a	
  difficult	
  question.	
  Our	
  aim	
   in	
  
developing	
   the	
   selectivity	
   score	
   was	
   to	
   prioritize	
   compounds	
   and	
   facilitate	
   the	
   evaluation	
   of	
   the	
  
information	
   available	
   but	
   the	
   final	
   decision	
   should	
   always	
   be	
   taken	
   by	
   the	
   researcher	
   after	
   careful	
  
evaluation	
  of	
  available	
  information	
  and	
  tailored	
  to	
  the	
  requirements	
  of	
  the	
  specific	
  question.	
  	
  

	
  
	
  
• Cell	
   Score.	
  To	
  calculate	
   the	
  Cell	
   Score	
  we	
  compute	
   the	
  median	
  of	
   all	
   compound	
  –	
   cell	
   line	
  bioactivities	
  
reported	
   in	
   canSAR	
   that	
   can	
   be	
   transformed	
   to	
   ‘nM’	
   (Tym	
   et	
   al.,	
   2016).	
  We	
   consider	
   a	
   compound	
   has	
  
positive	
   Cell	
   Score	
   (Score	
   =1)	
   if	
   it	
   is	
   active	
   in	
   at	
   least	
   one	
   cell	
   line	
   considering	
   a	
   cut-­‐off	
   of	
   10,000	
   nM	
  
(median	
  pActivity	
  >	
  5).	
  This	
   cut-­‐off	
   is	
   set	
   to	
  minimise	
   the	
   risk	
  of	
   considering	
  non-­‐specific	
  drug	
   toxicity	
  
that	
  may	
   lead	
  to	
  cell	
  death	
  at	
  high	
  concentrations.	
  Compounds	
  that	
  have	
  activity	
  values	
   less	
  potent	
  that	
  
the	
  cut-­‐off	
  or	
  that	
  have	
  not	
  been	
  tested	
  in	
  cell	
  line	
  assays	
  are	
  given	
  a	
  Cell	
  Score	
  value	
  of	
  0.	
  

	
  
• SAR	
  Score.	
  To	
  calculate	
  the	
  SAR	
  Score	
  we	
  first	
  calculate	
  the	
  level	
  1	
  of	
  the	
  scaffold	
  tree	
  for	
  all	
  compounds	
  
in	
   canSAR	
   as	
   it	
   has	
   been	
   described	
   to	
   have	
   advantages	
   over	
   other	
   scaffold	
   definitions	
   (Langdon	
   et	
   al.,	
  
2011).	
  Next,	
  we	
  consider	
  a	
   compound-­‐reference	
   target	
  pair	
  has	
  SAR	
   (SAR	
  Score	
  =	
  1)	
   if	
   there	
   is	
   at	
   least	
  
another	
  compound	
  reported	
  in	
  the	
  same	
  publication	
  (identical	
  PubMedID)	
  with	
  the	
  same	
  level	
  1	
  scaffold	
  
active	
  against	
  the	
  reference	
  target	
  (pActivity	
  >	
  5).	
  

	
  
• Inactive	
  Analog	
   Score.	
  The	
   Inactive	
  Analog	
  Score	
  measures	
  whether	
   there	
  are	
  compounds	
  sharing	
   the	
  
level	
  1	
  scaffold	
  with	
  the	
  compound	
  being	
  evaluated	
  that	
  are	
  reported	
  to	
  be	
  inactive	
  (pActivity	
  <	
  5)	
  for	
  the	
  
reference	
  target.	
  	
  

	
  
• PAINS	
   Score.	
  We	
  apply	
  PAINS	
   rules	
   to	
   filter	
   compounds	
   that	
   are	
  given	
  a	
  PAINS	
  alert	
  by	
  giving	
   them	
  a	
  
PAINS	
  score	
  of	
  0	
  (Baell	
  and	
  Walters,	
  2014).	
  

	
  
• Global	
   Chemical	
   Probe	
   Score.	
   The	
   Global	
   Chemical	
   Probe	
   Score	
   is	
   a	
   combination	
   of	
   the	
   previous	
   6	
  
Chemical	
   Probe	
   Scores	
   with	
   customizable	
   weights	
   to	
   allow	
   chemical	
   biologists	
   to	
   prioritize	
   the	
   best	
  
chemical	
  tools	
  for	
  the	
  specific	
  requirements	
  of	
  their	
  experiments.	
  We	
  have	
  predefined	
  weights	
  for	
  a	
  case	
  
where	
   selectivity	
   is	
   twice	
   as	
   important	
   as	
   potency,	
  which	
   in	
   turn	
   is	
   twice	
   as	
   important	
   as	
   cell	
   activity,	
  
which	
   in	
   turn	
   is	
   twice	
  as	
   important	
  as	
  SAR,	
   inactive	
  analogs	
  and	
  PAINS	
  scores.	
  However,	
  we	
  stress	
   that	
  



	
   36	
  

different	
  proposed	
  experimental	
  cases	
  will	
  require	
  different	
  weights	
  of	
  these	
  scores	
  in	
  order	
  to	
  access	
  the	
  
best	
   probes.	
   We	
   do	
   not	
   think	
   that	
   there	
   is	
   a	
   unique	
   Global	
   Score	
   applicable	
   to	
   all	
   chemical	
   biology	
  
experiments	
  and	
  accordingly	
   the	
  weights	
   for	
  each	
  of	
   the	
   scores	
   can	
  be	
  personalised	
   for	
   individual	
  user	
  
needs	
  in	
  the	
  website	
  resource.	
  Note	
  that	
  it	
  is	
  unfortunately	
  not	
  possible	
  to	
  fairly	
  compare	
  our	
  Global	
  Score	
  
to	
  the	
  recently	
  developed	
  TS	
  score	
  for	
  prioritisation	
  of	
  chemical	
  tools	
  for	
  phenotypic	
  screening	
  as	
  TS	
  uses	
  
expert	
  weighting	
   of	
   several	
   databases,	
   including	
   highly-­‐curated	
   proprietary	
   databases	
   for	
  which	
  we	
   do	
  
not	
  have	
  access	
  (Wang	
  et	
  al.,	
  2016).	
  The	
  Global	
  Score	
  has	
  the	
  following	
  formula	
  (for	
  pre-­‐defined	
  weights	
  a	
  
=	
  8,	
  b	
  =	
  4,	
  c	
  =	
  2,	
  d	
  =	
  e	
  =	
  f	
  =	
  1):	
  

	
  
𝐺𝑙𝑜𝑏𝑎𝑙  𝑆𝑐𝑜𝑟𝑒 =

𝑎   ∙ 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦!"#$% + 𝑏   ∙ 𝑃𝑜𝑡𝑒𝑛𝑐𝑦!"#$% + 𝑐   ∙   𝐶𝑒𝑙𝑙!"#$% + 𝑑   ∙   𝑆𝐴𝑅!"#$% + 𝑒   ∙   𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝐴𝑛𝑎𝑙𝑜𝑔𝑠!"#$% +   𝑓   ∙   𝑃𝐴𝐼𝑁𝑆!"#$%
𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓

	
  

	
  
• Commercial	
  Availability.	
  Commercial	
  availability	
  is	
  not	
  reported	
  as	
  a	
  score	
  because	
  we	
  believe	
  that	
  this	
  
would	
  discourage	
   the	
  supply	
  of	
   the	
  best	
   chemical	
   tools	
  and	
  does	
  not	
   represent	
  an	
   inherent	
  property	
  of	
  
compounds.	
  However,	
  we	
   recognise	
   that	
   knowing	
  whether	
   a	
   chemical	
   tool	
   is	
   commercially	
   available	
   is	
  
important	
  for	
  chemical	
  tool	
  selection	
  and	
  thus	
  we	
  provide	
  this	
  information	
  in	
  each	
  chemical	
  tool	
  synopsis	
  
page.	
  We	
   consider	
   a	
   compound	
   is	
   commercially	
   available	
   if	
   it	
   is	
   present	
   in	
   the	
   catalogue	
  of	
   eMolecules	
  
(https://www.emolecules.com/)	
  that	
  comprises	
  over	
  8	
  million	
  compounds	
   from	
  a	
  network	
  of	
  suppliers.	
  
To	
   identify	
   if	
   a	
   compound	
   is	
   present	
   in	
   the	
   eMolecules	
   database	
   we	
   use	
   UniChem	
   cross-­‐references	
  
(Chambers	
  et	
  al.,	
  2013).	
  

	
  
	
  
	
  
Development	
  of	
  the	
  Probe	
  Miner:	
  Chemical	
  Probes	
  Objective	
  Assessment	
  Resource	
  
We	
  have	
  developed	
  an	
  open	
  website	
  (http://probeminer.icr.ac.uk)	
  using	
  PHP,	
  HTML	
  and	
  jQuery	
  JavaScript	
  
library	
  to	
  enable	
  public	
  access	
  to	
  the	
  Probe	
  Miner	
  resource	
  as	
  a	
  framework	
  for	
  chemical	
  probe	
  prioritization	
  
using	
  data	
  integrated	
  from	
  publicly	
  available	
  knowledgebases.	
  	
  
	
  
	
  
• Target	
  Icons	
  	
  
To	
  facilitate	
  a	
  rapid	
  and	
  intuitive	
  evaluation	
  of	
  chemical	
  probe	
  quality	
  we	
  have	
  adapted	
  the	
  chemical	
  probe	
  
scores	
  to	
  a	
  binary	
  representation	
  and	
  developed	
  a	
  set	
  of	
  icons	
  that	
  can	
  be	
  shown	
  in	
  colour	
  or	
  in	
  grey	
  scale	
  
depending	
  on	
   the	
   chemical	
   tool	
   fulfilling	
   certain	
   criteria.	
  These	
   icons	
   are	
  displayed	
   in	
   each	
   chemical	
   tool	
  
synopsis	
  page	
  (Figure	
  S10).	
  Moreover,	
  in	
  order	
  to	
  facilitate	
  a	
  target’s-­‐eye	
  view	
  of	
  chemical	
  tool	
  quality	
  using	
  
these	
   icons,	
   the	
  number	
  of	
  probes	
   fulfilling	
   these	
  criteria	
   is	
  also	
  displayed	
  below	
  the	
   icons	
   in	
  each	
  Target	
  
Overview	
  page	
  (Figure	
  S8a).	
  A	
  description	
  of	
  each	
  icon	
  can	
  be	
  found	
  in	
  the	
  following	
  table:	
  
	
  
	
  

Icon	
  Name	
   Description	
   Image	
  

Target	
  Selectivity	
  

	
  
Exemplified	
  by	
  an	
  histogram	
  icon,	
  it	
  shows	
  whether	
  a	
  
compound	
  inhibiting	
  this	
  protein	
  is	
  screened	
  against	
  at	
  least	
  
one	
  other	
  target	
  and	
  has	
  at	
  least	
  10-­‐fold	
  selectivity	
  against	
  
any	
  other	
  target.	
  
	
   	
  

Target	
  Potency	
  

	
  
	
  
Exemplified	
  by	
  a	
  test	
  tube	
  icon,	
  it	
  shows	
  whether	
  a	
  
compound	
  inhibits	
  this	
  target	
  with	
  at	
  least	
  100	
  nM	
  potency.	
  
	
  
	
   	
  

Cell	
  Potency	
  

	
  
	
  
Exemplified	
  by	
  a	
  cell,	
   it	
  shows	
  whether	
  a	
  compound	
  binding	
  
to	
  the	
  target	
  of	
  interest	
  is	
  active	
  in	
  a	
  cell	
  line	
  with	
  at	
  least	
  10	
  
μM	
  potency.	
  
	
   	
  

Minimum	
  
Standard	
  	
  

	
  
Exemplified	
  by	
  a	
  star,	
  it	
  is	
  an	
  aggregate	
  of	
  the	
  three	
  previous	
  
scores	
   (that	
   themselves	
   are	
   independent	
   from	
   each	
   other),	
  
measuring	
   whether	
   there	
   are	
   compounds	
   inhibiting	
   this	
  
target	
  with	
  minimum	
  standards	
  of	
  target	
  potency	
  (	
  pActivity	
  
≥	
   7),	
   selectivity	
   (at	
   least	
   one	
   tested	
   off-­‐target	
   and	
   10-­‐fold	
  
selectivity	
   against	
   any	
   off-­‐target)	
   and	
   cell	
   potency	
   (activity	
  
below	
  10	
  μM	
   in	
  at	
   least	
  one	
  cell	
   line)	
   simultaneously.	
   It	
   is	
   a	
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key	
   icon	
   showing	
   whether	
   a	
   compound	
   fulfilling	
   these	
  
minimum	
  quality	
  requirements	
  is	
  found	
  in	
  publicly	
  available	
  
databases.	
  	
  
	
  

SAR	
  	
  

	
  
	
  
Exemplified	
  by	
  a	
  benzene	
  ring,	
   it	
  measures	
  whether	
   there	
   is	
  
at	
  least	
  one	
  compound	
  binding	
  to	
  this	
  target	
  that	
  has	
  SAR	
  as	
  
defined	
  by	
  the	
  SAR	
  Score	
  (vide	
  supra).	
  
	
   	
  

Inactive	
  Analog	
  

	
  
Exemplified	
  by	
  an	
  barred	
  benzene	
  ring,	
  it	
  measures	
  whether	
  
there	
   is	
   at	
   least	
   one	
   inactive	
   analog	
   of	
   the	
   compound	
   as	
  
defined	
  by	
  the	
  Inactive	
  Analog	
  Score	
  (vide	
  supra).	
  
	
  
	
   	
  

PAINS	
  

	
  
Exemplified	
   by	
   a	
   ‘PAINS’	
   icon,	
   it	
   shows	
   whether	
   there	
   is	
   a	
  
compound	
   inhibiting	
   this	
   target	
   that	
   has	
   no	
  PAINS	
   alerts	
   as	
  
defined	
  in	
  the	
  PAINS	
  Score.	
  
	
  
	
   	
  

	
  
	
  
	
  
• Target	
   Information	
   Richness	
   Score.	
   In	
   order	
   to	
   inform	
   on	
   the	
   amount	
   of	
   information	
   available,	
   we	
  
develop	
   a	
   measure	
   of	
   the	
   Information	
   Richness	
   for	
   each	
   target,	
   not	
   only	
   in	
   terms	
   of	
   the	
   number	
   of	
  
chemical	
   compounds	
   screened	
   against	
   it	
   but	
   also	
   their	
   characterization	
   in	
   terms	
   of	
   selectivity.	
  
Accordingly,	
   for	
  each	
   target,	
   every	
  compound	
  screened	
  against	
   it	
   is	
   counted	
  as	
  one	
  unit	
  of	
   information.	
  
Moreover,	
   for	
  each	
  compound	
   tested	
  against	
   that	
   target,	
   each	
  other	
   target	
   the	
  compound	
  was	
  screened	
  
against	
  is	
  also	
  counted	
  as	
  another	
  unit	
  of	
  information.	
  Therefore,	
  each	
  target	
  has	
  a	
  final	
  information	
  value	
  
that	
  accounts	
   for	
   the	
  number	
  of	
   screened	
  compounds	
  plus	
   the	
  number	
  of	
  other	
   targets	
  each	
  compound	
  
was	
  screened	
  against.	
  	
  

	
  

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠!"#$%&  ! =    𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑇𝑎𝑟𝑔𝑒𝑡𝑠  𝑡𝑒𝑠𝑡𝑒𝑑!"#$"%&'  !

!!"#$%  !"  !"#$"%&'(!"#$%&  !

!!!

	
  

	
  
Next,	
  each	
  target	
  is	
  ranked	
  according	
  to	
  their	
  information	
  value.	
  The	
  Information	
  Richness	
  score	
  reports	
  the	
  
percentile	
  of	
  each	
  target	
  in	
  terms	
  of	
  ranking,	
  being	
  100%	
  for	
  the	
  targets	
  with	
  the	
  highest	
  information	
  values	
  
and	
  0%	
  for	
  the	
  targets	
  with	
  the	
  lowest	
  information	
  values.	
  
	
  
Analysis	
  of	
  the	
  ‘Liganded’	
  Proteome	
  and	
  Chemical	
  Tools	
  for	
  Cancer	
  genes	
  
The	
   Potency	
   Score	
   (vide	
   supra)	
   is	
   used	
   to	
   calculate	
   how	
  many	
   human	
   proteins	
   interact	
  with	
   a	
   chemical	
  
molecule	
  with	
  a	
  median	
  activity	
  below	
  10,000	
  nM	
  (pActivity	
  <	
  5)	
  and	
  thus	
  represent	
  the	
  currently	
  liganded	
  
proteome.	
  The	
  Potency	
  Score,	
  Cell	
  Score,	
  the	
  number	
  of	
  off-­‐targets	
  and	
  the	
  number	
  of	
  selective	
  off-­‐targets	
  
calculated	
   for	
   the	
   Selectivity	
   Score	
   are	
   subsequently	
   used	
   to	
   calculate	
   how	
   many	
   compound-­‐target	
  
interactions	
   fulfilled	
   minimum	
   chemical	
   probe	
   requirements.	
   Only	
   compound-­‐target	
   interactions	
   with	
  
median	
  pActivity	
  ≤	
  7,	
  reported	
  to	
  have	
  an	
  affinity	
  below	
  10,000	
  nM	
  in	
  at	
  least	
  one	
  cell	
  line,	
  screened	
  against	
  
at	
  least	
  one	
  other	
  target	
  and	
  at	
  least	
  10-­‐fold	
  selective	
  against	
  all	
  other	
  targets	
  screened	
  are	
  selected.	
  Finally,	
  
the	
   absolute	
  number	
  of	
  human	
  protein	
   targets	
   and	
   chemical	
  molecules	
   selected	
   is	
   calculated.	
   In	
  order	
   to	
  
compare	
   Information	
   Richness	
   with	
   chemical	
   tool	
   quality,	
   information	
   values	
   calculated	
   for	
   the	
   Target	
  
Information	
   Richness	
   Score	
   (vide	
   supra)	
   are	
   compared	
   to	
   the	
   number	
   of	
   compounds	
   fulfilling	
  minimum	
  
chemical	
   probe	
   requirements	
   for	
   each	
   target	
   (Figure	
   S3).	
   For	
   the	
   analysis	
   of	
   minimum-­‐quality	
   chemical	
  
tools	
   for	
   cancer	
   driver	
   genes	
  we	
   extracted	
   the	
   chemical	
   tools	
   fulfilling	
  minimum	
   requirements	
   from	
   the	
  
previous	
  analysis	
  and	
  annotated	
  to	
  the	
  188	
  cancer	
  targets	
  identified	
  as	
  potentially	
  driving	
  cancer	
  in	
  a	
  recent	
  
pan-­‐cancer	
  analysis	
  (Rubio-­‐Perez	
  et	
  al.,	
  2015).	
  	
  
	
  
	
  
Analysis	
  of	
  Chemical	
  Probes	
  from	
  The	
  Chemical	
  Probes	
  Portal	
  
All	
  the	
  chemical	
  probes	
  from	
  The	
  Chemical	
  Probes	
  Portal	
  are	
  downloaded	
  from	
  The	
  Chemical	
  Probes	
  Portal	
  
website	
   (http://www.chemicalprobes.org/browse_probes;	
   downloaded	
   06/02/2017)	
   including	
   key	
  
information	
   such	
   as	
   name,	
   target(s)	
   names,	
   PubChem	
   CID	
   and	
   Average	
   Recommendation	
   (Table	
   S2)	
  
(Arrowsmith	
  et	
  al.,	
  2015).	
  Probes	
  are	
  mapped	
  to	
  canSAR	
  compound	
  IDs	
  when	
  possible	
  using	
  the	
  provided	
  
PubChem	
  CIDs,	
  ChEMBLIDs	
  or	
  SMILES.	
  The	
  most	
  potent	
  target	
  from	
  the	
  reported	
  values	
   is	
  considered	
  for	
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the	
   analysis	
   and	
   mapped	
   to	
   UniprotIDs	
   via	
   the	
   provided	
   gene	
   names	
   (Table	
   S2).	
   The	
   oldest	
   Primary	
  
Reference	
   of	
   the	
   probe	
   is	
   also	
   recorded	
   and	
  mapped	
   to	
   PubMed	
   ID,	
   journal	
   name	
   and	
   publication	
   year	
  
(Table	
  S2).	
  Since	
  our	
  assessment	
  is	
  performed	
  at	
  the	
  single	
  target	
  level,	
  we	
  focus	
  on	
  the	
  selective	
  probes	
  for	
  
the	
   comparative	
   analysis.	
   From	
   the	
  133	
  probes	
  available	
   in	
   the	
   resource	
  at	
   the	
  accession	
  date,	
  109	
  were	
  
associated	
  with	
  no	
  more	
  than	
  two	
  targets	
  (Table	
  S2).	
  Next,	
  we	
  selected	
  probes	
  that	
  have	
  a	
  SAB	
  Rating	
  ≥	
  3	
  
and	
   are	
   thus	
   recommended	
   by	
   experts	
   following	
   The	
   Chemical	
   Probes	
   Portal	
   guidelines	
  
(http://www.chemicalprobes.org/sab-­‐rating-­‐system).	
  From	
  the	
  109	
  selective	
  probes,	
  71	
  are	
  recommended	
  
by	
   experts.	
   From	
   the	
   71	
   recommended	
   probes,	
   46	
   could	
   be	
   mapped	
   to	
   publicly	
   available	
   medicinal	
  
chemistry	
  databases	
  and	
  have	
  affinity	
  data	
  for	
  the	
  primary	
  target	
  that	
  enables	
  the	
  calculation	
  of	
  the	
  scores.	
  
It	
  is	
  worth	
  noting	
  that	
  many	
  of	
  the	
  probes	
  that	
  could	
  not	
  be	
  mapped	
  were	
  published	
  in	
  2016	
  or	
  2017	
  and	
  
they	
  had	
  not	
  yet	
  been	
  included	
  in	
  public	
  databases	
  such	
  as	
  ChEMBL.	
  From	
  these	
  46	
  probes,	
  their	
  ranking	
  for	
  
their	
  intended	
  target	
  is	
  calculated	
  according	
  to	
  our	
  predefined	
  Global	
  Score	
  (Table	
  S2).	
  In	
  30	
  cases	
  (65%),	
  
the	
   recommended	
   probes	
   are	
   ranked	
   among	
   the	
   top	
   20	
   by	
   the	
   predefined	
   Global	
   Score	
   and	
   in	
   17	
   cases	
  
(37%)	
  the	
  recommended	
  probes	
  rank	
  among	
  the	
  top	
  5.	
  Analysis	
  of	
  the	
  15	
  probes	
  that	
  are	
  recommended	
  by	
  
The	
  Chemical	
  Probes	
  Portal	
  but	
  do	
  not	
  rank	
  among	
  the	
  top	
  20	
  by	
  the	
  Global	
  Score	
  uncovers	
  that	
  the	
  main	
  
reasons	
  for	
  not	
  ranking	
  correctly	
  are	
  data	
  incompleteness	
  (mainly	
  because	
  key	
  information	
  was	
  published	
  
in	
  a	
  non-­‐indexed	
  publication)	
  or	
  data	
  inaccuracy	
  (mainly	
  EC50s	
  curated	
  as	
  IC50s;	
  Tables	
  S2	
  and	
  S3).	
  
	
  
	
  
DATA AND SOFTWARE AVAILABILITY 
 
All the data to calculate all the scores can be consulted and downloaded from Probe Miner’s website, 
either from each probe-target page or by accessing the ‘Display All’ section on each target overview 
page, from which a download button can be used to download all the raw data. E.g: 
 
http://probeminer.icr.ac.uk/#/P09874/compounds 
 
 
KEY RESOURCES TABLE 
 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited Data 

ChEMBL22 ChEMBL Gaulton et al., 2016 

BindingDB BindingDB Gilson et al., 2016 

canSAR v3 canSAR Tym, et al., 2016 

Software and Algorithms 

Level 1 of the scaffold tree Scaffold Tree Langdon et al., 2011 

PAINS FILTERS PAINS Baell and Walters, 2014 
 
 


