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Abstract 30 
Both normal tissue development and cancer growth are driven by a branching 31 process of cell division and mutation accumulation that leads to intra-tissue 32 genetic heterogeneity. However, quantifying somatic evolution in humans 33 remains challenging. Here, we show that multi-sample genomic data from a 34 single time point of normal and cancer tissues contains information on single-cell 35 divisions. We present a new theoretical framework that, applied to whole-36 genome sequencing data of healthy tissue and cancer, allows inferring the 37 mutation rate and the cell survival/death rate per division. On average, we found 38 that cells accumulate 1.14 mutations per cell division in healthy haematopoiesis 39 and 1.37 mutations per division in brain development. In both tissues, cell 40 survival was maximal during early development. Analysis of 131 biopsies from 41 16 tumours showed 4 to 100 times increased mutation rates compared to 42 healthy development and substantial inter-patient variation of cell 43 survival/death rates.  44  45 
Introduction 46 
Most cells in human tissues have a limited life span and need to be replenished 47 for tissues to remain functional1-3. This cell turnover leads to somatic evolution, 48 with cells accumulating mutations upon which selection may act4,5. Inter- and 49 intra-tumour genetic heterogeneity6,7 as well as treatment resistance8,9 are now 50 understood to be consequences of somatic evolutionary processes. Recent 51 studies demonstrate somatic evolution in healthy non-cancerous tissues 52 
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throughout live10-14. Normal brain cells carry hundreds of mutations weeks after 53 conception12 and normal skin or esophagus cells accumulate hundreds of cancer 54 driver mutations during adulthood10,11.  55 
These observations call for a better quantitative understanding of the somatic 56 evolutionary forces in both cancerous and healthy tissues15. However, unlike 57 species evolution for which a timed fossil record exists16,17, the lack of sequential 58 human data over time due to ethical and technical limitations is a major obstacle. 59 Furthermore, some evolutionary forces are difficult to measure even having the 60 data. For example, the mutational burden in a tissue is the combined effect of 61 per-cell mutation and per-cell survival rates, which remain hidden in sequencing 62 data18,19 (Figure 1). Currently, we cannot independently infer these two for 63 somatic evolution fundamental quantities from single time point sequencing 64 data.  65 
Here, we show that multiple bulk or single cell sequencing from the same patient 66 contain recoverable information on these important quantities that can be 67 recovered with evolutionary theory. This allows inferring in vivo cell mutation 68 and cell survival rates in tissues of individual humans from single time point 69 sequencing data.  70  71 We draw our inferences by defining and quantifying the distribution of 72 mutational distances amongst multiple samples. We first discuss the required 73 theoretical considerations and derive an analytical expression for the expected 74 distribution of mutational distances from multi-sample sequencing data. We 75 introduce a Bayesian sampling framework based on the mutational distance 76 
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distribution, allowing us to disentangle mutation rates per cell division and cell 77 survival/death rates. We apply this framework to whole genome single cell 78 sequencing data of haematopoiesis and brain tissue and measure both 79 evolutionary parameters during early development. Finally, we utilize multi-80 sample sequencing data on 16 tumours to infer patient specific evolutionary 81 parameters in human cancers.  82 
Results 83 
The distribution of mutational distances 84 All cells in a human tissue must have descended from a most recent common 85 ancestor cell (MRCA) that existed briefly during early development. Similarly, all 86 cells in a sample of a tissue must have descended from a (different) MRCA that 87 was present in that tissue at an earlier time (Figure 1a). Mutations found in all 88 cells of the sample (clonal mutations) were present in this MRCA. If we take 89 multiple samples of the same tissue, we can reconstruct the mutational profile 90 (all mutations carried by a single cell) of multiple ancestral cells (Figure 1a). 91 Typically, these ancestral cells differ in their exact mutational profile between 92 one another, because mutations inevitably accumulate differently in distinct 93 lineages (Figure 1b). We use the differences of the mutational profiles between 94 ancestral cells to construct the distribution of mutational distances. We define a 95 mutational distance as the number of mutations different between any two 96 ancestral cells (Figure 1c). In the language of set theory, if ancestral cell 1 carries 97 a set of mutations ܣ and ancestral cell 2 carries a set of mutations ܤ, then by 98 definition, both cells must have coalesced from an earlier ancestral cell (Figure 99 
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1a). The mutational profile of this cell is given by the intersection ܣ ∩ ଵݕ                          This 100 allows us to construct two mutational distances given by  101  102 .ܤ = ܣ| ∖ ଶݕ             and              |(ܤ⋂ܣ) = ܤ| ∖ (ܺ)ܲ                                                      In a single division, the probability of a cell to acquire 107 ܺ novel mutations follows a Poisson distribution 108  109 .(ݕ)ܲ This process can be iterated for increasing combinations of samples per tumour.  105 We now turn to quantitative expressions for the expected distribution of 106 mutational distances 104  103 (1)                      .|(ܤ⋂ܣ) = (ఓ௅)೉௑! ݁ିఓ௅.                                                        (2) 110  111 Here, ߤ is the mutation rate (in units of base pairs per cell division) and ܮ the size 112 of the sequenced genome. Throughout the manuscript, we assume a constant 113 mutation rate and do not consider more punctuated catastrophic events or 114 mutational bursts. Distances between cells of a lineage may arise from more than 115 a single cell division. Instead, double, triple and higher modes of cell division 116 contribute to the distribution of mutational distances of multi-sample samples. 117 In general, a cell accumulates ଵܺ + ܺଶ + ⋯ + ܺ௡ number of novel mutations after 118 ݊ divisions, which is again Poisson distributed. 119  120 In addition, we must account for cell death or differentiation, leading to lineage 121 loss. We therefore introduce a probability ߚ of having two surviving lineages 122 after a cell division and a probability 1 −  divisions that result in two 124 ݎ of a single surviving lineage (cell 123 death). We can split the total of ݊ cell divisions into ߚ



 6

surviving lineages (branching divisions) and ݉ divisions with only a single 125 surviving lineage (non-branching divisions). The number of non-branching 126 events ݉ is again a random variable, which follows a Negative Binomial 127 distribution  128  129                                   ܲ(݉|ݎ) = ቀݎ + ݉ − ݎ1 − 1 ቁ ௥(1ߚ − ܻ                                                                 ௠.                                         (3) 130  131 The number of mutations acquired between two branching divisions depends 132 jointly on the Poisson distributed number of mutations and the Negative binomial 133 distributed number of non-branching divisions ݉. Formally, we can write for the 134 total number of mutations between two branching divisions 135  136(ߚ = ∑ ௜ܺ௠௜ୀଵ .                                                               (4) 137  138 Equation (4) is a random sum of random variables and different combinations of 139 ܺ and ݉ imply the same mutational burden ܻ within a single cell lineage. 140 Intuitively, a measured mutational burden in a single lineage can result from 141 either many non-branching divisions with a low mutation rate or, alternatively a 142 few non-branching divisions with high mutation rate. The mutational burden of a 143 single sample is insufficient to disentangle per-cell mutation and per-cell 144 survival/death rates.  145  146 We therefore turn to the number of mutations different between ancestral cells. 147 Suppose two ancestral cells are separated by ݎ branching divisions. Following 148 
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from equation (4), we can calculate the probability distribution of the number of 149 acquired mutations ܲ(ݎ|ݕ) after ݎ branching divisions 150  151                         ܲ(ݎ|ݕ) = ∑ ቀ݅ − ݎ1 − 1ቁ ௥(1ߚ − ௜ି௥݁ି௜ఓ௅(ߚ (௜ఓ௅)೤௬!ஶ௜ୀ௥ .                        (5) 152  153 Here the sum starts at ݎ, as we need to have at least ݎ branching divisions and 154 runs to infinity as in principal infinitely many non-branching divisions can occur 155 (with vanishingly low probability). Finally, we need the expected distribution of 156 branching divisions ܲ(ݎ) in a growing population of cells, which follow from 157 coalescence theory20-22. For a growing population, e.g. human tissues during 158 early development or cancer growth, we find   159  160 
(ݎ)ܲ                                          = ୣ୶୮ቆି೐షഁ(ೝశభ)ഁ ቇିୣ୶୮ቆି೐షഁೝഁ ቇଵିୣ୶୮൬ି೐షഁഁ ൰ .                                                (6) 161 
 162 We provide a more detailed derivation in the Methods. Combining equations (5) 163 and (6) we arrive at the final expression for the expected distribution of 164 mutational distances in an exponentially growing population  165  166                  ܲ(ݕ) = ∑ ∑ (ݎ)ܲ ቀ݅ − ݎ1 − 1ቁ ௥(1ߚ − ௜ି௥݁ି௜ఓ௅(ߚ (௜ఓ௅)೤௬!ஶ௜ୀ௥ஶ௥ୀଵ .                 (7) 167  168 The two evolutionary parameters of interest here, the mutation rate per cell 169 division ߤ and the cell survival rate ߚ, disentangle in equation (7). There are 170 approximately four possible regimes for the distribution of mutational distances, 171 
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discriminated by uni- or multimodality determined by combinations of small or 172 large ߤ and ߚ. In Figure 2a we show four representative realisations of equation 173 (7). The distribution of mutational distance is unimodal for sufficiently small 174 mutation rate ߤ (bottom panels in Figure 2a) with a single peak at the mean 175 mutational distance ܮߤ. The per-cell survival probability ߚ  determines the 176 weight of the distribution towards larger distances. For ߚ = 1 the distribution is 177 sharply located around the mean mutation rate. However, for smaller ߚ more 178 weight is given to larger distances and the distribution gets a fat tail. The same is 179 true for the case of high mutation rate ߤ, except the distribution is multi-modal 180 with peaks separated by multiples of the mean mutational distance ܮߤ (Figure 181 2a). Again, ߚ determines the weight to higher mutational distances with lower 182 ߚ causing a distribution with a long oscillating tail (top right panel in Figure 2a). 183 Note, the ݕ-axes in Figure 2a correspond to the probabilities of observing certain 184 mutational distances. Lower probabilities require a higher resolution and 185 therefore more sampling to resolve the exact shape of the distribution. In 186 practice, the distribution of mutational distances is easiest to recover from data 187 with low ߤ and high ߚ (fewest number of tissue samples required), whereas most 188 samples are required for high ߤ and low ߚ (top right panel in Figure 2a).   189  190 
Computational validation and MCMC inference framework 191 We implemented stochastic spatial simulations of mutation accumulation in 192 growing tissues using previously published code23. Briefly, cell birth and death 193 on a 2- or 3-dimensional grid was simulated using a Gillespie algorithm24. During 194 division, cells accumulate a number of new mutations drawn from a Poisson 195 distribution. Simulations were stopped when the tissue reached ~1 million cells. 196 
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This allowed us to take samples (either single cells or bulks) and construct all 197 pairwise mutational distances of all ancestral cell lineages detectable in the 198 samples. In Figure 2b we show an example of the mutational distance 199 distribution derived from 200 samples of a stochastic simulation (dots) 200 compared to the theoretical prediction (dashed line).  201 We want to infer the microscopic evolutionary parameters ߤ and ߚ given a 202 measured distribution of mutational distances. This can be done by Markov 203 chain Monte Carlo methods (MCMC). We implemented a standard Metropolis-204 Hastings algorithm. In brief, a random pair of parameters ߤ and ߚ is drawn from 205 uninformed uniform distributions and the likelihood of the model parameters 206 given the data is calculated. The new set of parameters is accepted with a 207 probability proportional to the likelihood ratio of the new and old parameter set 208 (see Methods for more details). This framework recovers the true underlying 209 parameters from stochastic simulations (Figure 2c & Supplementary Figures 17 210 to 21 ).  211  212 
In vivo mutation and cell survival rate inference in healthy 213 
haematopoiesis during early development 214 We discuss the in vivo mutation accumulation in healthy haematopoiesis during 215 early development as a first application. The cell population is growing and we 216 expect a low mutation rate and a high per-cell survival rate during the 217 development of early haematopoiesis13,25. In a recent study, Lee-Six and 218 colleagues13 sequenced the genome of 89 healthy haematopoietic stem cells of a 219 single 59-year-old male and subsequently constructed the phylogeny of healthy 220 
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haematopoiesis. They estimated the per-cell mutation rate to be 1.2 mutations 221 per genome per division during early development assuming perfect cell 222 doublings. Using the same data we construct the pairwise mutational distances 223 of all ancestral cells limited to the 20 earliest branching events. The resulting 224 distribution of mutational distances is shown in Figure 3a. We then use the same 225 MCMC framework discussed above to jointly infer the mutation and cell survival 226 rate. The MCMC algorithm rapidly converges to a fixed set of parameters ( 227 Supplementary Figure 17). In Figure 3a and 3b we show the posterior parameter 228 distributions after an initial burn in phase of 200 MCMC steps. In agreement with 229 Lee-Six and colleagues, we find a mutation rate of ߤ = 1.14ି଴.ଶସା଴.ଵଶ mutations per 230 genome per division (shown is the medium mutation rate per bp/cell-division 231 and 95% credibility intervals inferred from the MCMC posterior parameter 232 distribution), which corresponds to a mutation rate of ߤ = 3.9 × 10ିଵ଴ base 233 pairs/division (assuming 3 × 10ଽbp in the human genome). Furthermore, we 234 infer a per-cell survival rate of ߚ = 0.96ି଴.ଵ଴ଶା଴.଴ଷ଼, independently confirming the 235 original assumption of almost perfect cell doubling during early development13.   236 
 237 
In vivo mutation and cell survival rate inference in single neurons 238 
during development 239 In a recent publication, Bae and colleagues12 collected single neurons from 3 240 fetuses 15 to 21 weeks post conception. Cells were expanded in culture and the 241 whole genome was sequenced. Here we focus on the case where 14 whole 242 genome sequenced single neurons were available (1 fetus 17w4d after 243 conception). Again, we inferred all pairwise mutational differences, constructed 244 



 11

the corresponding distribution of mutational distances (Figure 4a) and used our 245 MCMC framework for joint parameter estimates. The MCMC converges rapidly 246 and we find sharply localised posterior distributions for the mutation and cell 247 survival rate. We infer a median mutation rate of ߤ = 1.37ି଴.ଵା଴.ଵ mutations per 248 genome per division (corresponding to a mutation rate of ߤ = 4.6 × 10ିଵ଴ base 249 pair/division) and a per-cell survival rate of ߚ = 0.998ି଴.଴ଵା଴.଴଴ଶ. This inference 250 agrees with Bae and colleagues original estimate of 1.3 mutations per genome 251 per division based on a weighted average of all 3 fetuses, again assuming no cell 252 death during early development. It also agrees with estimates of 1.2 mutations 253 per division from de novo SNVs in familial trios26. The almost identical mutation 254 rates in haematopoietic and brain tissue during early development may not be 255 surprising. We would expect the DNA duplication and repair machinery to be 256 stable across tissues during early development. It may even remain stable 257 throughout live, as suggested by the linear rate of mutation accumulation with 258 age across individuals27-29.  259  260 
In vivo mutation and cell survival rates in human tumours 261  262 We then investigated the per-cell mutation and survival rates in individual 263 tumours. We analysed whole genome or exome sequencing of 131 biopsies from  264 16 tumours comprised of 1 colon adenoma, 7 colon carcinomas, 5 clear cell renal 265 carcinomas and 2 lung squamous cell carcinomas (Table 1). When whole genome 266 sequencing was available, the mutational load was sufficient to apply the 267 inference framework to each chromosome separately (Figure 5 and 268 Supplementary Figures 1-9). The analysis was restricted to regions of 269 



 12

chromosomes with same copy number profile in all samples of a tumour and 270 inferences were normalised by copy-number and genome content. The 271 resolution to infer the distribution of mutational distances from tumours was 272 lower compared to healthy haematopoiesis or brain during development. 273 Nevertheless, in most cases, the reconstructed distributions recover important 274 features of the theoretical distribution (Supplementary  Figures 1-9 and 14). We 275 found that mutation rates per cell division were 4 to 100 times higher in tumours 276 compared to healthy tissue, ranging from 2.91 × 10ିଽ (bp/division) in the colon 277 adenoma to 53 × 10ିଽ (bp/division) in one lung squamous cell carcinoma (Table 278 1). Mutation rates differ significantly between patients but not across 279 chromosomes of the same patient (Supplementary Figures 11 and 12). Overall 280 this suggests important differences in mutation accumulation at the single cell 281 level between tumours and is in agreement with recent experimental in vitro 282 single cell mutation rate inferences29,30.  283  284 To further unravel the underlying differences in mutation accumulation during 285 tumour growth, we decomposed somatic mutations into the most prevalent 286 trinucleotide mutational signatures31 for three whole-genome sequenced 287 colorectal carcinomas and inferred per-cell mutation and per-cell survival rates 288 per signature in each chromosome (Figure 5). Again, we find significant 289 differences between patients (Supplementary Figure 13), further supporting 290 inter-tumour differences of mutation accumulation at the single cell level.  291  292 The inter-patient variation of the cell survival rate was evident. Whereas in 293 healthy tissue almost all cells survive during development, in tumours cell 294 
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survival rates vary between 0.34 in one MSI+ colon carcinoma up to 0.86 in one 295 renal cell carcinoma (Table 1). Again, per-cell survival rates were overall 296 consistent if inferred from chromosomes of individuals, but varied significantly 297 between patients (Figure 6 and Supplementary Figure 12). The underlying 298 reasons for this inter-patient variation may be cell intrinsic and/or extrinsic, e.g. 299 high cell death due to genomic instability, high mutational burden or immune 300 surveillance. It will be of high interest to further unravel these differences on a 301 patient specific basis in future studies. It should be noted that the inferred cell 302 survival rates are high compared to previous estimates32,33. This is a direct 303 consequence of the joint inference of mutation and cell survival rates that was 304 not possible in earlier work. 305  306 
Discussion 307 
Here we presented a framework that allows disentangling the microscopic 308 evolutionary forces of mutation and survival rates per cell division in humans 309 from single time point measurements. Leveraging data on mutations in healthy 310 haematopoiesis13 and brain tissue12, we found, in agreement with previous 311 estimates, mutation rates of 1.14 and 1.37 mutations per whole genome per cell 312 division. Mutation rates were 4 to 100 times higher in cancers and showed 313 considerable inter-patient variation.  314  315 The inference framework presented here relies on some assumptions. Mutation 316 and cell survival rates are kept constant trough time and spatial location. We do 317 not consider significant changes in cell fitness during growth and/or spatial 318 
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resource constraints. These limitations are more important for tumour specific 319 inferences and less relevant for healthy tissue. The exact temporal and spatial 320 change of the underlying microscopic evolutionary parameters over the lifetime 321 of an individual tumour remains an open question. In some cases, there is 322 evidence for singular catastrophic events34 and mutational signatures may 323 change between resection and relapse35. However, it will also be important to 324 disentangle mutation and cell population dynamic processes in these cases. A 325 more fine-grained sampling over space and time is needed to better access if and 326 how evolutionary parameters change within tumours. Given the technological 327 advances in single cell genomics36,37, sequencing of potentially thousands of 328 single cells would lead to significant information gain. This will allow probing 329 potential changes of these evolutionary parameters over time.  330  331 Furthermore, we expect the inter-patient variation of per-cell mutation and 332 survival rates to directly influence clinically important variables, such as the 333 likelihood of pre-existing treatment resistance38, tumour age and 334 aggressiveness39. Measuring microscopic evolutionary forces in humans allows 335 for a mechanistic foundation for precision medicine.  336  337  338  339  340  341  342 
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Methods 343 
 344 
Branching distribution in exponentially growing populations 345 To calculate the expected distribution of branching events in an exponentially 346 growing population, we can make use of coalescence theory20,21. Note that in 347 coalescence theory one usually uses a backward time convention. If a population 348 grows exponentially with ܰ(߬) = ݁ఉఛ, coalescence considers backward time 349 ݐ = −߬ such that populations effectively shrink exponentially. The probability of 350 coalescence ఍ܲ(ݐ) at time ݐ in an exponentially growing population is given by  351  352 
                              ఍ܲ(ݐ) = ଵே(௧) ∏ [1 − ଵே(௦)] ≈ ௘ഁ೟ேబ௧ିଵ௦ୀ଴ exp ቀଵି௘ഁ೟ఉேబ ቁ,                                 (8) 353  354 where ܰ(ݐ) is the size of the growing population at time ݐ. In our case, we are 355 concerned with mutational distances and thus we ask for the distribution of 356 times between coalescence events Δݐ rather than the distribution of coalescence 357 times ݐ. However, we can directly infer this distribution from equation (8), by 358 rewriting Δݐ = ଴ݐ − ଴ݐ as the time of the initiating cell population at some point in 359 the past. By substituting ݐ = log( ଴ܰ) ݐwe have Δ ,(ߚ)/ = ୪୭୥(ேబ)ఉ −  and we find 360 for the distribution of times between coalescence events 361  362 ݐ
                          ܲ(Δݐ) = ܲ ቀ୪୭୥(ேబ)ఉ − ቁݐ = ݁ିఉ୼௧ exp ቀଵିேబ௘షഁ౴೟ఉேబ ቁ.                              (9) 363  364 This is for large ଴ܰ well approximated by  365 
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 366 
                                            ܲ(Δݐ) = ݁ିఉ୼௧ exp ቀ− ௘షഁ౴೟ఉ ቁ.                                                 (10) 367  368 We show the validity of this approximation in Supplementary Figure 16. The 369 normalized expression holds for all ଴ܰ ≥ 1. We can discretise this probability 370 density function to derive at the probability for the number of branching 371 divisions ݎ via 372  373 

(ݎ)ܲ = න ݀(Δݐ) ܲ(Δݐ) = න ݀(Δݐ) ௥ାଵ
௥

௥ାଵ
௥ ݁ିఉ୼௧ exp ቆ− ݁ିఉ୼௧ߚ ቇ 

                                            = exp ቀ− ௘షഁ(ೝశభ)ఉ ቁ − exp ቀ− ௘షഁೝఉ ቁ.                                        (11) 374  375 As we are interested in positive branch length only, we need to normalise the 376 distribution for non-negative integers such that 1 = ଵ஼ ∑ ݎ)ܲ = ݅)ஶ௜ୀଵ . The 377 
normalising factor is ܥ = 1 − exp ቀ− ௘షഁఉ ቁ, and the distribution of branching 378 divisions ݎ in an exponentially expanding cell population becomes  379  380 
(ݎ)ܲ                                            = ୣ୶୮ቆି೐షഁ(ೝశభ)ഁ ቇିୣ୶୮ቆି೐షഁೝഁ ቇଵିୣ୶୮൬ି೐షഁഁ ൰ .                                            (12) 381 

 382 Equation (12) together with equation (6) in the main text allows a complete 383 description of the expected distribution of mutational distances in exponentially 384 growing populations. It has to be noted that the coalescence approximation used 385 
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here is based on a deterministic exponential growth function. It is known that 386 such approaches do not always fully capture the full stochasticity especially at 387 small population sizes and birth-death processes often perform better22. The 388 individual based computer simulations used here are implementations of the 389 Gillespie algorithm and are exact numerical representations of the underlying 390 stochastic process. However, a further analysis on the stochasticity of the 391 process for small population sizes is warranted.  392  393 
Interpretation of effective survival rate  394  395 Throughout the manuscript we use the concept of the effective cell survival rate 396 ߚ. One can also formulate cell death with a microscopic perspective given a 397 probability ߙ for a daughter cell to die (or differentiate) after division. Such a 398 probability allows for three outcomes after a cell division: with probability 399 (1 − 1)ߙଶ both daughter cells survive, with probability 2(ߙ − ߚ ଶ both daughter cells die. However, as we are 401 bound to find surviving cell lineages in every possible measure of tumours, none 402 of the observed cell lineages can have gone extinct. Mathematically, this implies 403 that measurement conditions cell division on non-extinction of both daughter 404 cells and we can write 405  406ߙ one daughter 400 cell survives and with probability (ߙ ≡ (݊݋݅ݐܿ݊݅ݐݔ݁ ݊݋݊ |݊݋݅ݏ݅ݒ݅݀ ݈ݑ݂ݏݏ݁ܿܿݑݏ)ܲ = ௉(௦௨௖௖௘௦௦௙௨௟ ௗ௜௩௜௦௜௢௡ & ௡௢௡ ௘௫௧௜௡௖௧௜௢௡)௉(௡௢௡ ௘௫௧௜௡௖௧௜௢௡) . 407  408 With the corresponding probabilities ߙ we get  409 
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ߚ                                                          410  = (ଵିఈ)మଵିఈమ = ଵିఈଵାఈ.                                                          (13) 411  412 We also can rearrange equation (13) to solve for ߙ                                                                   414  413  ,ߙ = ଵିఉଵାఉ.                                                                  (14) 415  416 If we interpret ߙ as the probability of random cell death after a division, ߙ must 417 be smaller than 1/2. If ߙ were larger than 1/2, tumour populations extinct 418 almost surely after sufficiently many cell divisions. This implies ߚ > 1/3 for 419 growing populations.  420  421 
Simulations of mutation accumulation in growing tissues 422 We simulated cell populations of ~1 million cells on a grid with varying birth 423 death and mutation rates using an implementation of the Gillespie algorithm 424 based on code published in23. The code is available at 425 https://github.com/sottorivalab/CHESS.cpp. A cell division produces two 426 surviving cells with probability ߚ or one surviving cell with probability 1 −  During simulations, the 430 mutations for each cell as well as the division history of each cell are recorded.  431  432 .ߤ During each division, each daughter cell inherits the mutations of its parent and 428 in addition accumulates novel mutations. The number of novel mutations is 429 drawn from a Poisson distribution with mean 427 .ߚ
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We took samples (between 1 and 10k cells per sample) from each simulated 433 tumour. For most inferences, we used maximal distance sampling. Sequencing 434 errors were simulated for each bulk by binomial sampling assuming sequencing 435 depths of 100x, by generating dispersed coverage values for input mutations. We 436 do that by sampling a coverage from a Poisson distribution: Poisson(λ = Z) with 437 mean ߣ equal to a desired sequencing depth ܼ. Once we have sampled a depth 438 value k for a mutation, we sample its frequency (number of reads with the 439 variant allele frequency) with a Binomial trail. We use ݂ ∼ Binomial(݊, ݇), where 440 ݊ is the proportion of cells carrying this mutation given all cells sampled in the 441 simulated biopsy. This generates realistic mutation distributions comparable to 442 available genomic sequencing data.  443  444 
Bayesian parameter inference 445 We use a Markov chain Monte Carlo method (MCMC) to recover the mutational 446 distance ܮߤ and the cell survival rate ߚ  given a measured distribution of 447 mutational distances. More precisely we implemented a standard Metropolis-448 Hastings-algorithm following below steps: 449 (i) Create a new random set of model parameters ࢝ given the current set 450 of parameters ࢜ from a defined probability density ܳ, such that 451 ܳ(ݕ|ݔ) = ߩ given 453 the data. 454 (iii) Calculate the ratio of the new and old likelihood (࢝)ܲ of the model distribution ((࢝)ܲ)ܮ Calculate the likelihood (ii) 452  .(ݔ|ݕ)ܳ =  otherwise 456 reject.  457 ߩ Accept the new parameter set with probability .((࢜)ܲ)ܮ 455/((࢝)ܲ)ܮ
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(iv) Repeat 458 In our case the model distribution is given by equation (7) in the main text. To 459 calculate the likelihood of equation (7) given the data, we have to choose a cut off 460 for the infinite sums. However, real data always has a maximum mutational 461 distance. Higher terms of the infinite sums contribute to higher mutational 462 distances. The distribution of interest does not change for a sufficiently high cut 463 off and each observed data set only requires finite many terms. Here we used 464 ݎ = ݅ = 30 as upper cut-off, which is a conservative choice. We used uninformed 465 uniform prior distributions for mutational distance ܮߤ and the per-cell survival 466 rate ߚ in all cases. Point estimates were extracted as sample medians from the 467 MCMC inferences. The ranges of the uniform priors were adjusted to optimise 468 acceptance rates and computational time. In our implementation, a new set of 469 parameters is relative to the previously accepted parameter set ࢝୒ୣ୵ = ை௟ௗ࢝ +470 Φ(࢝), where Φ is the prior parameter distribution. A typical range used in our 471 inference scheme is Φ୳୬୧୤୭୰୫(ߚ) = [−0.06, +0.06]  and Φ୳୬୧୤୭୰୫(ߤ) =472 [−0.15, +0.15]. We also tested Gamma prior distributions and did not see 473 differences in convergence. One numerical realisation of the Log-Likelihood 474 function is shown in Supplementary Figure 18 and example traces of the MCMC 475 algorithm are shown in Supplementary Figure 17. We also tested the influence of 476 sequencing depth and spatial sampling strategies on the performance of the 477 MCMC inference framework (Supplementary  Figures 19 & 20). The code for the 478 MCMC inference is available at https://github.com/sottorivalab/MCMC-479 MutationalDistances-. 480  481 
Mutational signature analysis 482 
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For each sample we found the set of signatures (among those signatures 483 reported in CRC) that best explained the totality of mutations in the sample. We 484 did a non-negative regression of the sample’s mutations against all the CRC 485 signatures44 and found those signatures with non-zero coefficients. We took 486 these as the candidate signatures for each sample.  487  488 For each mutation in each sample, we determined the likelihood of the mutation 489 under each of the candidate signatures. We assigned a mutation to a candidate 490 signature where the likelihood under that signature was at least twice that under 491 any other. If there was no such signature, we assigned the mutation to “Other”. 492 The method was originally developed in44 and is based on the R-package 493 “SomaticSignatures”45. We did not adjust for differences in nucleotide 494 composition when calculating differences between coding and non-coding 495 regions as we wanted to infer the overall point mutation rate in these regions. 496 Nucleotide dependent mutation rate estimates are shown in Supplementary 497 Figures  10 and 15. Nucleotide composition was adjusted for to calculate the 498 mutation rates of mutational signatures using standard tools45. 499  500 
Data availability  501 Sequencing data from healthy haematopoiesis is available from Lee-Six et al.13, 502 brain data during early development from Bae et al.12, colorectal cancer data 503 from Cross et al.40 and Roerink et al.41, renal cell carcinoma data from Gerlinger 504 et al.42 and lung carcinoma data from Jamal-Hanjani et al.43. 505  506 
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 531 
Figure Legends 532  533 
Figure 1: Multi-region bulk sequencing encodes information on single cell lineages and 534 
single cell divisions. a) Each of the seven spatially separated tissue samples (in grey) consists of 535 thousands to millions of cells that descended from a single most recent common ancestor 536 (MRCA) cell. The genomic make-up of the single ancestral cell is described by the mutations 537 clonal to the bulk sample. Those appear at high variant allele frequency in the sample (bottom-538 left panel, in purple). The intersection of mutations in any two bulk MRCA cells corresponds to 539 the genomic profile of another more ancestral cell. This process continues back in time until the 540 MRCA cell of all the sampled cells is reached. b) The level of genomic variation within a growing 541 tissue (e.g. development or cancer) is the direct consequence of mutation accumulation during 542 cell divisions, leading to a branching structure. Importantly, the most fundamental parameters, 543 the mutation rate ߤ and survival rate ߚ of cells per division that drive this process are not directly 544 observable. c) Mutation rate per division ߤ and cell survival rate ߚ leave identifiable fingerprints 545 in the observable patterns of genetic heterogeneity within a tissue. Cell divisions occur in 546 increments of natural numbers and thus the mutational distance between any two ancestral cells 547 is a multiple of the mutation rate 549  548 .ߤ 
Figure 2: Distribution of mutational distances and computational validation. a) The 550 quantized nature of cell divisions leads to a characteristic predicted distribution of mutational 551 distances across cell lineages. The shape of the distribution depends on the exact values of ߤ and 552 ߚ. Roughly four different scenarios of combinations of small and large ߤ and ߚ are possible. They 553 influence the shape of the distribution differently and thus constructing the distribution of 554 mutational distances allows disentangling the mutation rate ߤ and cell survival rate ߚ. b) Spatial 555 stochastic simulations confirm the ability of mutational distance distributions to disentangle 556 mutation and lineage expansion rates (red area shows the spatial spread of a subclonal 557 mutation). Dots show mutational distances inferred from 200 samples of a single stochastic 558 computer simulation (ߤ = 20, ߚ = 0.95), the dashed line is the predicted distribution based on 559 our equation 7. c) A Monte Carlo Markov Chain inference framework based on mutational 560 distance distributions reliably identifies mutation and lineage expansion rates in simulations of 561 spatial and stochastically growing tissues (2 dimensional spatial stochastic simulations, 562 :ߤ 
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Spearman Rho = 0.98, ݌ = 4 × 10ିଶଷ ; ߚ: Spearman Rho = 0.93, ݌ = 8 × 10ିଵ଺ , Relative error: 563 ߟఓ = ఉߟ ,0.056 = 0.045). 564  565 
Figure 3: Per-cell mutation and per-cell survival rate inferences in healthy haematopoiesis 566 
during development. a) Mutational distance distribution inferred from 89 whole genome 567 sequenced healthy haematopoietic stem cells from ref13 (black dots), and best theoretical fit 568 (grey line). Posterior parameter distribution of the MCMC inference for b) the mutation rate per 569 cell division (ܮߤ = 1.14ି଴.ଶସା଴.ଵଶ mutations per genome per cell division) and c) the cell survival rate 570 (ߚ = 0.96ି଴.ଵ଴ଶା଴.଴ଷ଼). Median point estimates and 95% credibility intervals were taken from the 571 posterior parameter distributions. The inferred mutation rate per cell division agrees with the 572 original estimation of 1.2 mutations per cell division. Furthermore, our joined inference of 573 mutation and cell survival rate confirms the original assumption of no cell death during early 574 development of haematopoiesis.  575  576 
Figure 4: Per-cell mutation and per-cell survival rate inferences in single neurons during 577 
development a) Mutational distance distribution inferred from 14 whole genome sequenced 578 single neurons from ref12 derived from one fetus (17w4d past conception) (black dots), and best 579 theoretical fit (grey line). MCMC inference for b) the mutation rate per cell division (ܮߤ =580 1.37ି଴.ଵା଴.ଵ mutations per genome per cell division) and c) the per-cell survival rate (ߚ =581 0.998ି଴.଴ଵା଴.଴଴ଶ). Median point estimates and 95% credibility intervals were taken from the posterior 582 parameter distributions. The inferred mutation rate per cell division agrees with the original 583 estimation of 1.3 mutations per cell division. Furthermore, our joined inference of mutation and 584 cell survival rate confirms the original assumption of no cell death during early brain 585 development.  586  587 
Figure 5: Mutational distance for three colorectal tumours. a-c) Examples of the mutational 588 distance distribution on single chromosomes for three different colorectal carcinomas for which 589 6, 7 and 9 multi-region bulk samples were sequenced at whole-genome resolution (dots=data, 590 dashed line=theoretical prediction based on MCMC parameter estimates – see insets). The 591 distribution of mutational distances differs between patients, with Patient 04 (MSI – 592 Microsatellite Instability) showing one order of magnitude larger mutational distances. d-f) Per-593 cell mutation rate per chromosome separated by trinucleotide mutational signature. Results are 594 consistent across chromosomes, as expected (Methods). g-i) The mean overall mutation rates are 595 (ߤ଴ଶ = (1.0ି଴.଴଻ା଴.ସ଺)  × 10ି଼, ଴ଷߤ = (2.4ି଴.ଵଽା଴.ସଵ)  × 10ି଼ and ߤ଴ସ = (3.1ି଴.ଵଶା଴.ଷହ) × 10ି଼ bp/division , 596 dashed lines), 20 to 60 times higher compared to healthy somatic cells. Patient 04 is MSI+ 597 highlighted by signature 6. j-l) Estimates of per-cell survival rates per chromosome are 598 consistent across chromosomes of the same patient (Median: 599 ߚ଴ଶ = 0.51ି଴.଴ହା଴.଴ହ, ଴ଷߚ = 0.65ି଴.଴ଶା଴.଴ଶ, ଴ସߚ = 0.34ି଴.଴ଵା଴.଴ଵ ), but vary considerably between patients 600 (Supplementary Figure 12).  601 
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 602 
Figure 6: Map of per-cell mutation and per-cell survival rates across cancer types. For each 603 of the 16 tumours analysed we plot the per-cell mutation rate versus the per-cell survival rate. 604 Median estimates and 95% credibility intervals for the mutation and cell survival rate are 605 derived from the MCMC inferences as described in the main text. Dashed lines correspond to 606 values of healthy tissue (ߤ௛ = 1 × 10ିଽ, ௛ߚ = 1/3). White background corresponds to ߚ values 607 that allow for growing cell populations as ߚ = 1/3 corresponds to stable (homeostatic) 608 populations. Shaded area describes values of ߚ that would lead to population extinction. Most 609 cancers scatter across the map, indicating extensive inter-patient heterogeneity.  610  611  612  613  614 

 615 
Tissue type Sequencing # Samples ×ࣆ ૚૙ିૢ 

ࢼ Source 

HSC (development) Whole Genome 89 0.39 0.96 Lee-Six Neuron (development) Whole Genome 14 0.46 0.99 BaeCRA Exome 6 2.91 0.46 Cross CRC (MSS) Exome 13 30.1 0.84 Cross CRC (MSS) Exome 8 12.5 0.43 Cross CRC (MSS) Whole Genome 6 24.0 0.65 Cross CRC (MSS) Whole Genome 7 10 0.51 Cross CRC (MSS) Whole Genome 9 8.9 0.45 Roerink CRC (MSS) Whole Genome 9 9.9 0.50 Roerink CRC (MSI) Whole Genome 9 30.9 0.34 Cross CRC (MSI) Whole Genome 7 17.9 0.47 Roerink CCRCC Exome 8 21.7 0.66 Gerlinger CCRCC Exome 11 31.2 0.86 Gerlinger CCRCC Exome 8 15.8 0.47 Gerlinger CCRCC Exome 8 2.3 0.80 Gerlinger CCRCC Exome 8 2.1 0.72 Gerlinger NSCLC Exome 7 53 0.36 Jamal-Hanjani NACLC Exome 7 14 0.59 Jamal-Hanjani 
 616 
Table 1: Data summary and evolutionary parameter inferences. The data of healthy tissue 617 during development was taken from Lee-Six et al13 and Bae et al12. Data on colorectal cancers is 618 from Cross et al40 and Roerink et al41, data on renal cell carcinoma from Gerlinger et al42 and data 619 



 26

on lung carcinomas from Jamal-Hanjani et al43. Estimates for mutation and cell survival rates are 620 from best MCMC fits based on the distribution of mutational distances.  621  622  623 
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