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Pan-cancer deconvolution of tumour composition
using DNA methylation
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The nature and extent of immune cell infiltration into solid tumours are key determinants of

therapeutic response. Here, using a DNA methylation-based approach to tumour cell fraction

deconvolution, we report the integrated analysis of tumour composition and genomics across

a wide spectrum of solid cancers. Initially studying head and neck squamous cell carcinoma,

we identify two distinct tumour subgroups: ‘immune hot’ and ‘immune cold’, which display

differing prognosis, mutation burden, cytokine signalling, cytolytic activity and oncogenic

driver events. We demonstrate the existence of such tumour subgroups pan-cancer, link

clonal-neoantigen burden to cytotoxic T-lymphocyte infiltration, and show that transcrip-

tional signatures of hot tumours are selectively engaged in immunotherapy responders. We

also find that treatment-naive hot tumours are markedly enriched for known immune-

resistance genomic alterations, potentially explaining the heterogeneity of immunotherapy

response and prognosis seen within this group. Finally, we define a catalogue of mediators of

active antitumour immunity, deriving candidate biomarkers and potential targets for precision

immunotherapy.
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The tumour microenvironment plays key roles in shaping
tumour evolution and in determining treatment responses;
prominent intratumoural lymphocyte infiltration is a

favourable prognostic marker in multiple tumour types, while a
high stromal content of extracellular matrix-producing cancer-
associated fibroblasts (CAF), is associated with poor outcomes1.
The recent clinical success of immunotherapy in subpopulations
of patients with previously intractable malignancies has also
highlighted the importance of understanding the tumour
microenvironment in order to identify those patients who will
derive the most benefit from targeted therapies1,2. Although
responses to immune checkpoint blockade (ICB), e.g. antibodies
against PD-1 (programmed cell death protein 1), PD-L1 (pro-
grammed death-ligand 1) and CTLA-4 (cytotoxic T-lymphocyte-
associated protein 4), are seen across many solid tumours, the
proportion of patients that benefit varies widely by cancer type
and we currently lack biomarkers with which to reliably predict
immunotherapy response3. Emerging evidence from clinical trials
indicates higher response rates in those cancer types that typically
display greater lymphocyte infiltration (e.g. melanoma, lung
cancer, head and neck cancer) and that the tumour neoantigen
repertoire (a function of somatic mutation load) is a key deter-
minant4–7. These observations point to a model in which, within
any given cancer type, there are immune hot and immune cold
tumours. Immune hot tumours display greater cytotoxic T-
lymphocyte (CTL) infiltration, and reactivation of these tumour-
resident CTLs by checkpoint inhibition can result in dramatic
tumour regression. Conversely, immune cold tumours display
minimal CTL infiltrates and typically fail to respond to check-
point modulation. If one could accurately identify likely respon-
ders for patient stratification and devise strategies by which to
convert cold tumours to hot tumours, these would be major steps
forward in realising the full clinical potential of cancer
immunotherapy.

Although flow cytometry of disaggregated tumour biopsies is
commonly used for investigating cellular composition, this is
often unfeasible for several reasons: difficulty in obtaining fresh
tumour tissue; lack of defined markers for poorly characterised
cell types (e.g. CAFs); and high cost of labour, reagents and
equipment required for such analyses. Cellular disaggregation of
collagen-rich tumours is also problematic, where cells are
embedded in a dense extracellular matrix. To overcome these
difficulties, multiple reference-free or reference-based methods
have recently been developed to permit the in-silico deconvolu-
tion of complex cellular mixtures or to estimate tumour
purity8–15. For example, accurate deconvolution of complex cel-
lular mixtures, including tumours, has recently been achieved by
the application of support vector regression modelling (CIBER-
SORT) to gene expression microarray data14,16. Notably, DNA
methylation data are also suitable for deconvolution of tissue
mixtures, although studies so far have focussed primarily on
simple tissues such as blood, where cell type differences are a
major confounder in Epigenome Wide Association Studies10.

Here, we present CIBERSORT-based deconvolution to
genome-wide DNA methylation data from whole tumour tissue
(hereafter referred to as ‘MethylCIBERSORT’). We provide
accurate estimates of tumour purity and cellular composition, and
identify immune hot and cold tumours across a broad spectrum
of cancer types profiled by The Cancer Genome Atlas Project
(TCGA). Using matched genomic and transcriptomic data, we
identify multiple copy number alterations enriched in cold
tumours, including deletions in PTEN and amplifications in MYC
and EGFR. We show that responses to PD1-blockade are asso-
ciated with a transcriptional signature for hot tumours post-
treatment, while the cold signature, and specifically a gene
expression module we previously linked to increased aerobic

glycolysis downstream of EGFR in head and neck squamous cell
carcinoma (HNSCC)17, is enriched in non-responders. Impor-
tantly however, defining whether a tumour is hot or cold is not
sufficient to accurately predict response to ICB, and by inter-
rogating matched genomic data, we show that treatment-naive
hot tumours frequently display genomic alterations known to
confer immunotherapy resistance.

Results
DNA methylation-based tumour deconvolution using
CIBERSORT. To develop a DNA methylation-based deconvo-
lution pipeline for application in tumours, we created a custom R
interface to produce basis matrices for use with CIBERSORT and
generated a reference using fibroblasts and seven different
immune cell types (see Methods for details). We then evaluated
the ability of our feature selection heuristic to accurately decon-
volute mixtures of leukocytes using publicly available methylation
data from mixtures of peripheral blood mononuclear cells
(PBMCs) with composition verified by flow-cytometry (gold
standard). This showed an extremely high correlation between
the estimated and gold-standard fractions (Pearson’s R= 0.986, p
< 2.2e−16, Fig. 1a). We also carried out benchmarking against the
performance of RNA-based CIBERSORT using the LM22 basis
matrix against leukocyte mixtures of similar resolution originally
profiled in Newman et al.14. This revealed that MethylCI-
BERSORT estimates demonstrate higher correlations, both at the
cell-type and the sample level (Fig. 1b, c) and significantly lower
absolute error (Fig. 1d). Thus, methylation data coupled to
CIBERSORT is highly accurate and may offer distinct advantages
relative to expression-based CIBERSORT.

To validate the method on real tumour samples, especially
the tumour content in order to permit absolute quantification
of tumour composition, we focused initially on HNSCC, a
tumour type in which we have previously demonstrated the
prognostic significance of tumour-infiltrating lymphocytes
(TILs), particularly in those cancers driven by human
papillomavirus (HPV)18,19. We applied our pipeline to generate
an HNSCC-specific basis matrix and applied it to the set of 464
HNSCCs that have both RNA-sequencing and DNA methyla-
tion profiles available from TCGA20. Upon comparing cancer
cell proportion (purity) estimates derived using MethylCIBER-
SORT with estimates derived from ABSOLUTE21 (which jointly
estimates purity and ploidy using mutation and copy number
data) relative to other previously published methods of
estimating purity (LUMP22 and ESTIMATE23) with data
aggregated in ref. 22, MethylCIBERSORT displayed the highest
correlation (R= 0.82) and better concordance with ABSOLUTE
than other methods (Fig. 1e). Analysis of residuals (method
estimate—ABSOLUTE estimate) suggested close concordance
with ABSOLUTE estimates for MethylCIBERSORT, with larger
deviations only seen when samples were of very high purity
(>80%), while other methods tended to overestimate tumour
cell content in samples of low purity (Supplementary Figure 1a),
resulting in statistically significant differences in distributions
(FDR < 2.2e−16).

We also compared the mRNA expression of a panel of cellular
lineage markers with MethylCIBERSORT estimates and found
significant associations for multiple cell types (Supplementary
Figure 1b) even though they are derived from different samplings
of the same tumour. Many of these marker genes demonstrated
more variable expression in tumours with lower estimates of
infiltrating cell fraction, suggesting that low coverage on either or
both platforms (RNA-seq and methylation array) at the lower end
of cellular abundance may result in poorer concordance. Taken
together, these observations confirm that MethylCIBERSORT can
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accurately deconvolute the mixed cell populations in tumour
samples using DNA methylation data.

Having established the potential of MethylCIBERSORT to
identify patterns of cellular infiltration in solid tumours, we tested
its ability to detect the elevated TIL levels previously documented
in HPV-driven (HPV+) HNSCC19. MethylCIBERSORT detected
not only the increased TIL levels in HPV+ HNSCC compared
with HPV− HNSCC (p= 2.167e−05, Wilcoxon’s Rank Sum
Test) but more specifically attributed this to increased numbers of
B (CD19+) and cytotoxic T (CD8+) lymphocytes (CTLs, Fig. 1f),
in agreement with observations made using other methods,
including immunohistochemistry and gene expression analysis24,
potentially also helping to explain favourable prognosis displayed
by this subgroup, independent of treatment modality25–27.

Cellular infiltration patterns in HPV-negative HNSCC. Next,
we extended our analysis to HPV-negative (HPV−) HNSCC, a
heterogeneous, anatomically-diverse group of tumours in which
prognosis is typically much poorer than in HPV+ disease. Again,
using TCGA data (available for 398 HPV− HNSCCs) we
observed interesting relationships between multiple cell types,
with 24/36 pairs of cell types showing significant correlations
(Spearman’s rank correlations, FDR < 0.1; Fig. 1g). CTLs are
associated with both CD14+ (monocytes/macrophages/MDSCs)
and B-lymphocytes (Rho= 0.2 and 0.51). CD4+/FoxP3− T-

lymphocytes (CD4+ effector T-lymphocytes), meanwhile display
inverse correlations with CTLs (R=−0.41) and Tregs (R=
−0.38). CD56+ natural killer (NK) cell abundance is also
inversely correlated with CTLs (R=−0.45). Of note, CTLs are
inversely correlated with fibroblast abundance (R=−0.12) and to
validate this latter finding, we analysed data from two large stu-
dies in which these parameters had been quantified in
HNSCC19,28. In a pooled analysis of these data, TIL content and
SMA expression (a CAF marker) are inversely correlated (r=
−0.322 and −0.344 for CD8 and CD3 IHC in the Ward (oro-
pharyngeal SCC) cohort (Fig. 1h); −0.4 and −0.424 for TIL
scoring of H&E sections in the Ward (oropharyngeal SCC) and
Marsh (oral SCC) cohorts, respectively). They are also strongly
prognostic (Fig. 1h; p < 0.001, Log Rank Test).

Given the complex nature of associations between different cell
types, we performed consensus PAM clustering on the estimated
cellular fractions to define subgroups by infiltration patterns. We
derived two clusters (immune cold and immune hot, hereafter
referred to as cold and hot, respectively) that show markedly
different distributions of multiple cell types, most notably CTLs,
Tregs, CD4+ effector T-lymphocytes, CD19+ B-lymphocytes
and NK cells, all of which are implicated in antitumour immunity
(Fig. 2a). Consistent with our previous observations, estimates of
fibroblast content are higher in the cold group (mean fold change
1.35, FDR < 5e−7, Wilcoxon’s Rank Sum Test). To explore the
functional significance of our observations, we tested for
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associations between individual cellular fractions or immune
cluster and a recently defined measure of local cytolytic activity
based on the expression of Granzyme A and Perforin 1 (GZMA
and PRF1; markers of activated T-cells)29. Most infiltrating cell
fractions display significant correlations with cytolytic activity,
with CD8+ cells showing the maximum positive correlation
(Fig. 2b, FDR < 0.05, Spearman’s Rank Correlation). Accordingly,
the hot cluster displays significantly higher cytolytic activity
(Fig. 2c, p= 2e−16, Wilcoxon’s Rank Sum Test), and increased
ratios of CTLs to Tregs (Fig. 2d, p < 2e−16, Wilcoxon’s Rank Sum
Test); a metric that is prognostic in multiple settings30–32.

Together, our analyses suggest a tilting of the balance towards
CTL activity in the microenvironment of tumours from the hot
cluster. Integrated analysis of the impact of different cell
populations on cytolytic activity using linear modelling identified
CD8+ (coef= 0.13, p < 2e−16), CD14+ (coef= 0.10, p < 7e−7),
and CD56+ (coef= 0.26, p < 5e−15) cell abundance as positive
predictors and fibroblast abundance as a negative predictor (coef
=−0.08, p < 1e−10).

Transcriptional and proteomic differences between hot and
cold HNSCCs. Having observed differential abundance of various
leukocytes in hot versus cold HNSCC using MethylCIBERSORT,
we used gene expression data to further validate these estimates.
Using limma-trend analysis, we identified 458 differentially
expressed genes (DEGs) between the hot and cold clusters at a
fold-change of greater than 2 (FDR < 0.01, Supplementary Data 1,
genes highlighted in bold). Multiple DEGs are consistent with the
MethylCIBERSORT-derived estimates of lymphocyte infiltration;
CD8A, ZAP70 and CD3D (CD8 lymphocyte markers), CD79A
and CD19 (B-lymphocyte markers), are all upregulated in the hot
tumours, as are multiple chemokines and their receptors (CCL5,
CCR5, CXCR5, CXCR6, CCL19, CXCL11), immune checkpoint

gene transcripts (LAG3, PD1, IDO1), and as expected, the cyto-
lytic markers PRF1 and GZMA. In extended analyses of all genes
at FDR < 0.01 (Supplementary Data 1), multiple other genes,
including the Class 1 MHC gene B2M (FC= 1.39), PD-1 ligand
CD274 (FC= 1.62) and ACTA2, which encodes SMA (FC=
0.68), are also differentially expressed between the two clusters,
the latter validating fibroblast estimates from MethylCIBERSORT
(Fig. 2a).

Ingenuity Pathway Analysis further confirmed observations
made using MethylCIBERSORT estimates, identifying differential
regulation of multiple canonical pathways associated with
immune function and inflammatory conditions (Supplementary
Data 2), consistent with differential lymphocyte infiltration and
activity. Diseases and functions ontology (Supplementary Data 3)
indicated that the top few pathways activated in hot tumours were
associated with leukocyte and lymphocyte migration. Upstream
regulatory analysis implicated increased activation of STAT1 and
IRF1, and inhibition of Interferon-stimulated transcription
mediated by IRF4, in hot tumours (Supplementary Data 4).
Finally, analysis of RPPA data identified 10 differentially
abundant (FDR < 0.1) proteins or phospho-proteins (Supplemen-
tary Data 5). Higher levels of cleaved Caspase 7 (FC= 1.52) in the
hot subgroup indicates increased apoptosis, whereas Fibronectin
and PAI1 upregulation in immune cold tumours suggest a
distinct pattern of TGFβ-driven extracellular matrix remodelling
in what may be a CAF-linked phenomenon.

Distinct mutations are associated with HNSCC immune clus-
ter. Having established that the two immune clusters display
distinct transcriptional patterns, we then sought to identify
individual mutations in driver genes (MutSigCV33 q value < 0.01)
associated with immune cluster using negative binomial regres-
sion. This identified enrichment of CASP8, PIK3CA, CREBBP,
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EP300 and HLA-A mutations in hot HNSCCs, while TP53 and
KDM6A mutations are enriched in cold HNSCCs (Fig. 2e).
CASP8 mutations are implicated in subverting apoptosis induced
by lymphocytes; they are enriched in tumours with high immune
cytolytic activity and likely reflect an increased selective pressure
exerted by the presence of adaptive immune cells29,34. Fas-ligand
(FASLG), an upstream activator of pro-apoptotic signalling
through Caspase 8 is also upregulated in the immune hot
tumours, further highlighting the importance of this pathway
(Supplementary Data 1). Identification of this lymphocyte-rich
group displaying CASP8 mutations and a relative lack of TP53
mutations is striking, since TCGA previously identified a subset
of good-prognosis oral cavity tumours bearing the same genomic
hallmarks, which were reported to co-occur with HRAS
mutations20.

Neoantigen burden has previously been identified as a
predictor of anti-tumour immune responses29,35,36 and consistent
with this, we identified significantly higher predicted MHC Class
I neoantigen burdens in the hot tumours (OR= 1.56, p < 5.5e−8,
negative binomial GLM) and a smaller increase in overall
mutational burden (OR= 1.46, p= 6e−7). Moreover, in 15
tumours from the hot cluster versus five in the cold cluster,
CASP8 mutations themselves encoded at least one neoantigenic
peptide (Fig. 2e), demonstrating the existence of mutations that
could both contribute to the development of a potential selective
constraint, and serve as an adaptive mechanism to evade it.

Deconvolution and immune clustering across tumour types. To
examine whether the relationships between tumour composi-
tion and genomic alterations we observed in HNSCC are gen-
erally applicable, we derived cancer-type specific basis matrices
and conducted deconvolution on 18 further tumour types for
which cancer cell line methylation data have recently been pub-
lished37. For nine of these we were able to compare our predic-
tions of tumour purity with ABSOLUTE estimates and observed
strong correlations and significantly lower error margins com-
pared to LUMP and ESTIMATE (Supplementary Figure 2a, b).
Further, we observed a robust preservation of positive correla-
tions between MethylCIBERSORT and marker expression pan-
cancer (Supplementary Figure 2c), again with the caveat that the
samples were taken from different aliquots of the tumour. Taken
together, these findings attest to the general pan-cancer applic-
ability of MethylCIBERSORT. An important potential advantage
of DNA-methylation over gene expression-based deconvolution
methods is the ease with which accurate DNA methylation pro-
files can be obtained from formalin-fixed, paraffin-embedded
(FFPE) samples38. We therefore compared estimates pertaining to
fresh frozen and matched FFPE samples (n= 21 from three
tumours)39 and recorded very high correlations, indicating our
method is applicable also to the archival material (Supplementary
Figure 2d).

We then trained an elastic-net classifier using 5-fold cross-
validation for tuning on the HNSCC cellular abundance data,
returning highly accurate recapitulation of clustering (Kappa=
0.9), and predicted immune cluster membership for the validation
set of 7596 samples representing 21 further tumour types from
TCGA (Fig. 3a). As expected, we observed strong enrichment for
CTLs, Tregs and B-lymphocytes in hot tumours pan-cancer,
while CD4-effectors, NK cells, eosinophils and CAFs were
enriched in immune cold tumours (Fig. 3b). Different tumour
types also display markedly varying degrees of lymphocyte
infiltration, with the majority of pancreatic ductal adenocarcino-
mas, colorectal, thyroid, uterine corpus endometrial, kidney,
prostate, hepatocellular cancers and sarcomas belonging to the
cold cluster (Fig. 3a). We again observed increased CTL:Treg

ratios in hot tumours (Fig. 3c) and similar relationships between
tumour composition and CYT to those seen in HNSCC.

Increased immunoediting and Th1/M1 responses in hot
tumours. To further determine if the immune infiltrate was active
in these tumours, we assayed immunoediting by testing for
reductions from the expected ratio (as previously defined by
Rooney et al.29) of observed neoantigens to total nonsilent
mutations per tumour and adapted this approach to derive the
estimated number of neoepitopes lost through immune editing
while controlling for tumour type. Accordingly, we found sig-
nificant enrichment for editing in hot tumours compared to cold
tumours (OR= 1.28, p= 0.001, negative binomial GLM). Addi-
tionally, upon integration with T-cell receptor (TCR) repertoire
data from Li et al.40, we found more diversity (Number of TCR
clones/Total number of TCR reads) in the immune hot tumours
(Fig. 3d, p < 2.2e−16, Wilcoxon’s Rank Sum Test), suggesting that
broader immune responses may underlie the greater depletion of
neoantigens in this group.

Given the evidence for divergent infiltration patterns and
activity between the immune clusters across cancer types, we then
investigated the determinants of this response by identifying
DEGs after adjusting for tumour type. We identified 365 genes at
FDR < 0.01, FC > 2 and in pathway analysis, the top pathways
were significantly associated with T-helper 1 (Th1) versus T-
helper 2 (Th2) lymphocyte responses (Fig. 3e, Supplementary
Data 6). Multiple Th1 cytokines and downstream targets were
overexpressed in hot tumours (IFNG, CCL4, CCL5, CXCL9,
CXCL10), along with costimulatory and coinhibitory receptors,
suggesting these tumours were marked by a state of lymphocyte
activation and counter-responses thereto. We next scored
proinflammatory (Th1, Th17) and suppressive (Th2) CD4+ cell
populations using RNA-seq reference profiles from purified cells
to derive relative estimates using CIBERSORT14. Consistent with
our inferences from pathway analysis, we found enrichment for
Th1 cells in hot, and Th2 and Th17 cells in cold tumours (Fig. 3f).
Th2 cells have been linked to poor prognosis in multiple studies,
while Th1 cells are associated with good prognosis and aiding
CTL responses1.

We also used expression-based CIBERSORT to derive
estimates for different myeloid cell populations (n= 2346
tumours at deconvolution p < 0.05, Permutation Test, 1000
replicates), and identified substantially higher fractions of M1
relative to M2 macrophages in hot tumours (p= 2.2e−16,
Wilcoxon’s Rank Sum Test, Fig. 3g). Notably, M2-like polarisa-
tion is associated not only with Th2 immune responses but also
with immune-suppressive myeloid-derived suppressor cells
(MDSCs)41. Taken together, our analyses implicate Th1 cytokine
signalling programmes as responsible for establishing an
immune-hot state and suggest MDSC and Th2/Th17 pro-
grammes as targets for efforts to switch cold tumours to an
immune hot state.

Relation of immune cluster to ICB response. We reasoned that
if the signature for immune hot tumours represented active
immunity, it could be applicable to the prediction of immu-
notherapy responses and evaluated this hypothesis using tumour
gene expression data from three melanoma cohorts: post-
sequential aCTLA4 and aPD1 treatment42,43; pre-aCTLA4 treat-
ment7 and post-aPD1 (Nivolumab) treatment44. Analysis of these
transcriptional patterns indicated differential expression between
responders and non-responders (Fig. 4a), and accordingly,
ssGSEA scores for the hot transcriptional signature showed sig-
nificant enrichment in responders for the latter two datasets
(Fig. 4b, c). Moreover, a similar association emerged from
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comparing the probability of response to hot/cold class predic-
tion, inferred using a logistic regression fit on TCGA hot/cold
transcriptional signature ssGSEA scores (Fig. 4d). Finally, we
evaluated the ability of the hot-signature to stratify patients by
response relative to mutational load and Class I neoepitope
burden using elastic nets coupled to cross-validation for each
dataset (Fig. 4e). While larger patient cohorts will be required to
search for and validate predictive ICB biomarkers, from this
limited analysis it is clear that neither cellular composition as
described by hot/cold classification, nor total mutation or pre-
dicted Class 1 neoantigen loads (which are also associated with

response and have been proposed as ICB response biomarkers)
are reliable predictors.

Our analysis clearly indicates there is a heterogeneity of ICB
response within both hot and cold tumours similar to that
described for tumours with high or low mutational loads,
underlining the importance of additional factors not captured
by these metrics, such as immune cell phenotype and the spatial
distribution of immune cells within the tumours1. We reasoned
that in addition to these factors, the heterogeneity in responses to
ICB among hot tumours might be driven by intrinsic resistance to
T-cell-mediated destruction due to pre-existing genomic
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alterations within the tumour cells. We set out to test this
hypothesis by constructing a pan-cancer catalogue of genomic
alterations enriched in hot tumours, with the additional aim of
finding those alterations enriched in cold tumours which might
drive lymphocyte exclusion or reduce tumour immunogenicity.

Genomic features of hot and cold tumours. Consistent with our
observations in HNSCC, and with estimates from gene
expression-based deconvolution13, immune hot tumours har-
boured higher overall mutation loads (OR= 1.33, p= 3e−25,
negative binomial GLM controlling for cancer type) and more
predicted neoantigens than immune cold tumours (Fig. 5a).
Given the recent finding that in addition to the presence of
neoantigens, their clonality (i.e. presence in all tumour cells as
opposed to minor subclones) is associated with prognosis and
response to Pembrolizumab in lung adenocarcinoma5, we ana-
lysed immune microenvironment composition as a function of
neoantigen clonality (as denoted by The Cancer Immunome
Atlas45). We found that the abundance of both CTLs and Tregs is
correlated with clonal neoantigen load pan-cancer, while the
relationship is much weaker when subclonal neoantigens are
considered. CD4+/FOXP3− effector lymphocytes display a
striking inverse correlation with clonal neoantigens (Fig. 5b).
Consistent with our earlier observation that they are enriched in
CTL/Treg low cold tumours, CAFs are inversely correlated with
both clonal and subclonal neoantigen loads. Hot tumours display
a significantly higher clonal neoantigen burden (OR= 1.28, p < 4e
−7, negative binomial GLM) as well as a skew in the neoantigen
burden towards clonal neoantigens after adjusting for tumour
type (OR= 1.01, p= 0.006 negative binomial GLM). These
findings provide evidence for a direct link between Class I MHC
clonal neoantigen burden and patterns of TIL abundance and
may help to explain the observations of McGranahan and col-
leagues, that high clonal neoantigen burden predicts favourable
response to immune checkpoint modulation using
Pembrolizumab5.

Next, we examined if the genomic features associated with
immune cluster were also reproducible across cancer types,
performing adjusted binomial regressions to estimate cluster
association after controlling for tumour type for genes previously
implicated as pan-cancer drivers based on signatures of positive
selection46 and recorded 56 hits at FDR < 0.05 (Supplementary
Data 7 and Fig. 5c). Interestingly, these putative drivers of hot
tumours were significantly enriched (OR= 11.75, p < 0.0004,
Fisher’s Exact Test) in a list of genes demonstrated to confer
resistance to CD8 T-cell-mediated killing in a recent CRISPR-
Cas9 screen47. The functionally-verified immune-resistance genes
that were disproportionally mutated in hot tumours included
those involved in antigen presentation (B2M and HLA-A),
apoptosis (CASP8) and interferon signalling (JAK1). ARID2,
which encodes a component of the SWI/SNF chromatin
remodelling complex also implicated in modulating sensitivity
to T-cell-mediated killing downstream of JAK-STAT signalling,
was also disproportionately mutated in hot tumours48,49. Mutant
KRAS, recently implicated in generating a fibrotic tumour
microenvironment by activating paracrine signalling with CAFs
in pancreatic cancer50, is enriched in cold tumours. Taken
together, these findings support a model wherein mutations in
certain genes render tumours hot as a consequence (and therefore
susceptible to checkpoint blockade), or may enable tumours to
survive in a hot tumour microenvironment, potentially also
bestowing resistance to checkpoint blockade. We sought to test
this model by linking our candidate immune-resistance muta-
tions to lack of ICB response in pre-treatment hot tumours and
although we observed a trend, (OR= 0.13, logistic regression,

p= 0.09), the number of treated tumours with sequence data
available is currently too low (54 hot tumours across four studies)
to gain a definitive answer.

To complement these analyses, we called copy number
alterations across 11,000 tumours and tested for differential
association of peaks with immune cluster after adjusting for
tumour type for the subset with immune cluster assignment
available. This led to the identification of multiple events that
occurred at different frequencies between cold and hot tumours
(FDR < 0.1, Fig. 5d). Of these, prominent examples included
amplifications targeting the epidermal growth factor receptor
(EGFR) (7p11.2) and MYC (8q24.3) and deletions at 10q23.31,
encompassing the PTEN tumour suppressor gene in cold tumours
and JAK2 (9p24.1) amplifications in hot tumours. Some of these
candidates already have known associations with immune
evasion; MYC has been linked to an immune evasion phenotype
that is amenable to targeting through gene–body demethylation51

and PTEN deletion has recently been linked to the failure of
immunotherapy and decreased cytotoxic T-lymphocyte infiltra-
tion in patients and in a mouse model of melanoma43,52,53.
Among the genomic alterations we identify (for a full list of
predicted driver events see Supplementary Data 8), it is likely that
some establish, while others are selected for, in different immune
microenvironments. In either case, alongside PTEN deletion,
these alterations warrant further investigation as candidate
genomic markers for response to ICB. The enrichment of EGFR
and MYC amplification, together with PTEN deletion in cold
tumours pan-cancer was striking given the co-expression module
linked to increased tumour cell glycolysis and immune evasion in
HNSCC, which includes EGFR and in which pathway analysis
also predicts increased c-MYC and mTORC1 activity17. A similar
relationship has been observed in triple negative breast cancer54

and we therefore investigated this relationship further; initially
interrogating the link between EGFR protein levels and TILs in
two HNSCC cohorts (n= 518)19,28 we found that samples
classified as EGFR high and moderate were significantly more
likely to be TIL low than EGFR low cancers after accounting for
anatomic site and HPV status (Fig. 5e, p < 0.05 and 0.01 for EGFR
moderate and high cancers, logistic regression). The positive
correlation between EGFR levels (which are themselves correlated
with EGFR phosphorylation (activation), Supplementary Figure 3)
and the glycolytic signature is maintained across TCGA when
matched RPPA profiles and RNA-seq data are compared (Fig. 5f).
Notably, the glycolytic signature is enriched in progressing
melanomas after PD-1 blockade (Fig. 5g, p= 0.06, t-test, p= 0.02
when excluding stable disease) and is inversely associated with
expression of the hot transcriptional signature (Rho=−0.44)
that is associated with ICB response (Figs. 4 and 5h).

Discussion
Of the methods developed to deconvolve cell mixtures into
multiple cell types from methylation data, there have not been, to
the best of our knowledge, exhaustive studies employed across
cancer types. Methods such as LUMP and the Leukocyte
Methylation Score estimate only the overall leukocyte fraction,
while methods based on expression data either produce relative
estimates of abundance within the immune fraction or enrich-
ment scores (CIBERSORT, TIMER) or perform low resolution
deconvolution (ESTIMATE)13,14,21–23. Combining methylation-
based feature selection from both stromal and cancer cells with
the robust performance of CIBERSORT previously displayed on
gene expression microarray data14 allowed us to derive estimates
for different infiltrating cell populations as a fraction of the
overall sample. We see MethylCIBERSORT and CIBERSORT as
complementary tools for studying the tumour microenvironment
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in cases where both DNA methylation and gene expression data
can be obtained, in addition to serving as alternatives in cases
where only one data type is available.

While approaches using RNA-sequencing or other transcrip-
tional profiling, such as the construction of an index of cytolytic
activity, have been useful in predicting immunotherapy response7

and in identifying the role of mutations in genes like CASP8 in
immune evasion29, the deeper level of deconvolution made fea-
sible using DNA methylation data allows the roles of distinct
cellular subsets and their interdependencies to be dissected. Here,
by applying the method to HNSCC, which is marked by a great
degree of clinical heterogeneity, we identified lymphocyte-rich
and stromal-rich prognostic subgroups consistent with those
discovered previously using a variety of independent
methods19,20,24,28,55–57 and derived insights into the micro-
environmental alterations that might be relevant for prognosis. In
the process, we showed that our scheme for classifying cancers
correlates with well-established immune metrics such as cytolytic
activity, neoantigen/mutational load and CTL:Treg ratios. We
demonstrated that tumours similar to the HNSCC immune-hot
subgroup exist in varying fractions across the vast majority of
cancer types. The congruence of our classification with the
aforementioned metrics is maintained throughout and translates
to broader TCR responses which presumably drive the greater
depletion of neoantigens seen in the hot tumours. Combining the
accuracy and ability to determine absolute cell fractions of
MethylCIBERSORT with the high resolution afforded by
CIBERSORT enabled detection of a skew towards antitumour T-
helper and macrophage phenotypes in hot tumours, reinforcing
our hypothesis that this cluster is enriched for active antitumour
immune responses. Consistent with this, we also showed in the
limited post-treatment cohorts with gene expression data, that
melanomas responding to ICB (particularly anti-CTLA4) display
a gene expression signature derived from our hot cluster. Our ICB
response analysis also indicates that hot/cold classification based
on cellular composition is a superior predictor of response than
total mutation or predicted Class I neoantigen loads (both pre-
viously proposed ICB response biomarkers), however none of
these metrics displayed sufficient accuracy to be of clinical use.
Given the complex interplay between tumour genomics, epige-
nomics and anti-tumour immune responses, it is likely that
prediction algorithms incorporating multiple biomarkers such as
these, in addition to checkpoint protein expression and spatial
information on immune infiltrates (e.g. Immunoscore58) will be
required for patient stratification.

Genomic analysis identified significant enrichment for events
that confer resistance to T-cell-mediated destruction in hot
tumours as well as potential sensitisers. Our copy number ana-
lysis revealed that PTEN deletion, MYC amplification and EGFR
amplification are associated with immune depletion. All three
events have been associated with increased glycolysis, which we
have previously linked to immune evasion17. Our finding that
PTEN deletion is associated with poor CTL infiltration in this
pan-cancer cohort adds substantial support and mechanistic
rationale for its proposed role as a determinant of response to
ICB. Taken together with the identification of EGFR and MYC
amplification in cold tumours, our analysis suggests that phar-
macological inhibition of EGFR/mTORC1/MYC-driven glyco-
lysis could be an effective means by which to ‘warm-up’ these
tumours and potentially enhance responses to ICB. The finding
that hot tumours frequently harbour functionally-validated
immune-resistance mutations offers a potential explanation for
the heterogeneity in ICB response even amongst hot tumours (or
equally, those with high mutation loads or high cytolytic activ-
ity7). Secondly, the relative paucity of these mutations in cold
tumours (presumably due to the absence of a selection pressure

for them) suggests that if we could induce lymphocyte infiltration
(e.g. by targeting glycolysis or CAFs59), we may improve the
effectiveness of checkpoint blockade across a broader range of
patients.

Finally, our analysis of neoantigen clonality and immune
infiltration patterns adds mechanistic insight to the value of
clonal neoantigen burden in predicting response to ICB5. In
particular, we show that clonal neoantigens are associated with
infiltration of CTLs and Tregs, while Th2 cells and CAFs are
enriched in tumours with lower clonal neoantigen loads. Why
these relationships between neoantigen loads and T-lymphocytes
are apparent only when one considers clonal neoantigens is an
intriguing question. It could be that since many subclonal
neoantigens are expressed by a small minority of cells within the
tumour, these evade effective presentation to the immune system.
Indeed, in a previous study by several of the authors, it was
possible to isolate T-lymphocytes reactive against clonal but not
subclonal neoantigens from lung cancer patients5. Our data
suggest that this is due to a relative paucity of CTLs in tumours
with low clonal neoantigen loads and that this is true across a
wide range of cancer types.

In summary, the development of a stand-alone method to
estimate both tumour purity and stromal composition from DNA
methylation data has provided a number of insights that shed
light on potential biomarkers for immunotherapy response and
the way in which tumour genomes influence, and are shaped by,
the immune microenvironment. Beyond analyses of publicly
available data such as those we present here, the applicability of
the method to both fresh and archival samples should readily
allow researchers to explore questions related to the tumour
microenvironment and potential therapeutic response across a
diverse range of experimental settings.

Methods
Development of methylation signatures for deconvolution. Raw data were
obtained in the form of IDAT files from the following sources (the number of
samples from which each profile was derived is shown in parentheses): granulo-
cytes (12), CD8+ (cytotoxic T-lymphocytes) (6), CD19+ (B-lymphocytes) (6),
CD56+ (NK cells) (6), CD14+ (monocyte lineage) (6), eosinophils (6) were from
the FlowSorted.Blood.450k Bioconductor package60. CD4+ cells were removed
from the Blood.450k dataset and CD4+ T-cells from the Zhang dataset61 (data
kindly provided by Dr. Alicia Oshlack) were further divided into FOXP3+ (Tregs)
(4) or FOXP3− (6) groups. Fibroblast profiles (4) were from the Gene Expression
Omnibus (GSE74877). Neutrophils are the most abundant subset of granulocytes
and these samples were therefore aggregated into a single category for further
analysis. To generate a DNA methylation signature for cancer cells, we used 450k
methylation profiles we previously obtained from a series of six HNSCC cell lines:
UM-SCC47; 93VU147T; UPCI:SCC090; PCI-30; UPCI:SCC036 and UPCI:SCC003
(GSE38270, described in ref. 62) and additionally those from Iorio et al.
(GSE68379)37. The files were parsed into R using the minfi63 Bioconductor package
and were normalised using single sample Noob as implemented in minfi. To derive
signature features, a custom limma-based wrapper function was used to fit a series
of linear models for all pairwise comparisons between candidate cell types. Features
from this set of analyses were then restricted to MVPs that showed a median beta-
value difference of 0.25 at an FDR of 0.01 for that fit or less, with a maximum of
100 MVPs per pairwise comparison. Finally, for use with CIBERSORT, data were
transformed from beta values (bound between 0 and 1) to percentages (0–100).
Type-wise means were estimated for each probe and cell type and the matrix
exported for upload to CIBERSORT.

Benchmarking using PBMC mixtures. We applied the feature selection pipeline to
the matrix of stromal cells that we assembled and then tested performance against
450k profiles of PBMC mixtures with flow-cytometry gold standards. We also
applied LM22 (expression-based CIBERSORT) to datasets consisting of PBMC
samples and Follicular Lymphoma biopsies originally evaluated in CIBERSORT14.
Wilcoxon’s Rank Sum Tests were used to test for differences in correlations with
flow-cytometry for cell types and samples, and absolute errors between flow-
cytometry and deconvolution estimate. For the expression-based CIBERSORT
estimates, we performed comparisons against both calibrated (i.e. enforcing a sum-
to-one constraint as reflected in the flow cytometry) and uncalibrated (straight
estimates of cell fractions from CIBERSORT) estimates.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05570-1

10 NATURE COMMUNICATIONS |          (2018) 9:3220 | DOI: 10.1038/s41467-018-05570-1 | www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74877
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38270
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68379
www.nature.com/naturecommunications


Running deconvolution experiments on HNSCC using CIBERSORT. Data for
464 methylation profiled TCGA HNSCC samples were downloaded in the form of
raw IDAT files for the 450k array from the TCGA data. Data were normalised
using functional normalisation64 in the minfi63 package and BMIQ65, with 10,000
reference probes for Expectation Maximisation fitting. HPV status was determined
using VirusSeq66 based on detection of viral gene transcripts.

Beta values for deconvolution associated features, and the signature matrix
derived in the previous step, were uploaded to CIBERSORT at https://cibersort.
stanford.edu. The data were not quantile normalised due to the potential for global
methylation shifts in cancers, and CIBERSORT was run using 1000 permutations.
Output files were downloaded as tab-delimited text files and custom parsers were
used to import results into R for downstream analysis. FFPE methylation profiles
for 42 HNSCC were obtained from Gene Expression Omnibus (Accession
GSE38266) using the GEOquery R package, and beta values were BMIQ
normalised and analysed using CIBERSORT as described for the TCGA cohort.
Wilcoxon’s Rank Sum Tests were used to test for differences in total TIL
abundance and TIL subsets.

Estimating accuracy in tumour deconvolution. In the absence of flow-cytometry-
based estimates for the different cell types in the analysed tumours, the estimated
fraction of cancer cells from MethylCIBERSORT was compared to sequencing-data
based estimates from ABSOLUTE available for 466 HNSCCs from previously
published work22 using Spearman’s Rank Correlation. Correlations were between
ABSOLUTE and other methods of estimating purity/immune cell fraction in this
subset of tumours; LUMP, ESTIMATE23 and H&E staining assessment of tumour
purity (data available in ref. 22). Residuals were computed by subtracting the
method estimate from the ABSOLUTE value. Distributions were compared using
Wilcoxon’s Rank Sum Test. Spearman’s Rank Correlation was used to estimate
correlations between expression of marker transcripts and MethylCIBERSORT
estimates for multiple cellular populations. Where applicable, multiple testing
correction was performed using the Benjamini–Hochberg approach.

Clustering and correlation analyses. Estimates of immune cell fractions in HPV
− HNSCC (HPV-transcript negative) were examined for correlations with other
infiltrating cell types using Spearman’s Rank Correlation with BH correction for
multiple testing. Clustering was carried out using the clusterCons package with 100
iterations using a Manhattan distance metric. The most robust number of clusters
was then selected.

Differences in the distribution of infiltrating cell types by immune cluster were
summarised using mean fold changes and tested using Wilcoxon’s Rank Sum Test
with BH-correction for multiple testing.

DEGs were identified using limma-trend and were defined at a threshold of a 2-
fold change and BHFDR < 0.01. Pathway analysis was carried out using Ingenuity
Pathway Analysis, with findings restricted to experimentally confirmed direct
interactions in human cells/tissues. Cytolytic activity (CYT) was calculated as the
geometric mean of GZMA and PRF1 expression as defined previously29. To
estimate the contributions of cell population abundances to this, a linear model was
fit against log2(CYT) with the different populations as predictors. Wilcoxon’s Rank
Sum Tests were used to test differences in CYT and CD8:Treg ratios between the
immune clusters.

Survival analyses. Multivariate Cox Regression was used to estimate the prog-
nostic utility of clusters derived using infiltration patterns with age and stage as
covariates. The survival effect of estimated purity was regressed with the same
covariates using a Cox regression with coefficients defined per percent increase in
purity.

Genomic correlates. We obtained a list of driver genes inferred by MutSigCV33 in
TCGA HNSCC cohort from the Broad Institute’s GDAC. GISTIC Copy number
estimates thresholded by genes were also obtained from this source. MAF files were
obtained from the TCGA data portal. MutSigCV drivers were filtered at a q value
threshold of 0.01 and mutations in this set were tested for differences in frequencies
of occurrence using a Chi-squared test for differences in proportion. Multiple
testing correction was carried out using the Benjamini–Hochberg method. Tables
of predicted neoantigens were downloaded from The Cancer Immunome Atlas
(http://tcia.at).

Benchmarking performance across other tumour types. Signature features were
derived from 450k profiles using the aforementioned heuristic (delta-Beta and FDR
cutoffs) with a maximum of 100 features per cell type for a wide range of tumour
types, using cell lines allocated to the corresponding tissue in GSE6837937 (Table
S10) and the aforementioned infiltrating cell types. These signatures were applied
to deconvolve methylation profiles and estimates of purity were derived using
TCGA samples for which ABSOLUTE, ESTIMATE and LUMP purity estimates
were available22.

The cell line data were functionally normalised with the infiltrating cell types
described earlier before signature extraction was carried out. 450k data for the
aforementioned tumour types were loaded from a pan-cancer freeze derived from
SAGE synapse for TCGA pan-cancer (syn2812961) and a custom function was

used to extract signature probes and generate methylation percentage matrices for
deconvolution with CIBERSORT CIBERSORT was run using the graphical user
interface [https://cibersort.stanford.edu]. Correlation and residuals analysis were
carried out as described above with MethylCIBERSORT purity estimates versus
ABSOLUTE, and between previously published methods and ABSOLUTE.
Wilcoxon’s Rank Sum Test with Benjamini–Hochberg correction for multiple
testing were used to compare distributions, with these estimates sourced from
ref. 22.

Pan-cancer analyses of immune cluster assignment. An elastic net model was fit
using cellular abundance estimates for HPV− HNSCC using three iterations of 5-
fold cross-validation to identify the optimal values of lambda and alpha with Kappa
values being the selection criterion. The classifier was then applied to MethylCI-
BERSORT estimates from 18 further tumour types for which corresponding cancer
cell line methylation profiles were available37 to allocate immune cluster. Decon-
volution was performed as described above and class allocations were made using
the elastic net classifier derived from HNSCC.

For immunoediting analyses, we estimated the number of nonsynonymous
mutations encoding at least one immunogenic peptide empirically by summing
coefficients across each of six base change contexts as well as the number of non-
neoepitope nonsynonymous mutations. Together, these were applied to silent
mutation counts in each cancer to derive an expected fraction of neoantigens to
nonneoantigens. Comparing the observed fraction to the expected fraction yielded
the percentage of neoantigens depleted, and using this in combination with the
number of observed neoantigens yielded the count of neoantigen-encoding
mutations lost specifically to immunoediting. This was then modelled using a
negative binomial framework to estimate the influence of immune cluster on
immunoediting.

MAF files for mutations were again downloaded from SAGE synapse for all
tumours from the MC3 calling effort (syn7214402). Driver mutations were defined
based on pan-cancer MutSig analyses previously published33 and logistic regression
GLMs were used to estimate coefficients for mutation frequencies for immune
cluster with tumour type as a covariate. Significant genes were defined at BHFDR <
0.05. Survival analyses were performed using data downloaded from Synapse
(syn7343873) using Cox proportional hazards regression with stage and cancer
type as covariates. Substages were aggregated into stages and only Stages I–IV were
considered. Neoantigen abundance and clonality data were downloaded from The
Cancer Immunome Atlas45.

Negative binomial modelling was used to model all count data, cytolytic activity
was modelled using linear models and binomial GLMs were used to model
proportions. Details of covariates, hypotheses and response variables are presented
inline. For copy number analyses, SNP6 data were downloaded from the GDC data
portal and processed using GISTIC 2.067 on the GenePattern Public Server (arm-
level peel off, noise threshold 0.3, FDR < 0.01, driver-gene confidence > 95%) and
modelled similarly to mutation data.

Further resolution of cell types using expression-based CIBERSORT. RNA-seq
data were downloaded from the European Nucleotide Archive for the following
datasets: PRJEB1184468; PRJNA25821669; PRJEB546870. Kallisto71 was used to
quantify gene expression with a reference transcriptome consisting of Gencode
Grch37 assembly of protein coding and lincRNA transcripts. Data were then
modelled using limma trend and the top 50 markers by t-statistics were selected for
each cell subset from one versus all comparisons after thresholding with a 2-fold
change and FDR < 0.05. These cell types were used to generate a reference profile
and CIBERSORT was run to deconvolute samples. For M1/M2 macrophage ana-
lyses we used LM22 from the CIBERSORT server as the reference. In both cases,
Wilcoxon’s Rank Sum Test was used to estimate differences in distributions.

Analysis of immunotherapy response. Nanostring data for a panel of immune
genes and exome sequencing data were obtained from Chen et al.42 and Roh
et al.43, respectively for patients treated using sequential anti-CTLA4 and anti-PD1
checkpoint blockade.

Clustering and machine learning were carried out using the subset of genes
intersecting with the Hot-vs-Cold pancancer signature. .632 bootstrapping was
used for hyperparameter tuning and ROC estimation. Negative binomial regression
was used to model neoantigen, mutation and subclone numbers, and logistic
regression to estimate predictive performance of count data on response.

The number of subclones present in each tumour from the Roh cohort, derived
from the EXPANDS algorithm, were obtained from the associated publication72.
RNAseq data for aCTLA4 pretreatment biopsies were kindly provided by Eliezer
Van Allen and genomic data were from the associated publication7. Data for post-
treatment Nivolumab treated melanomas were obtained from ref. 44.

Validation of EGFR association with cold tumours. RPPA data were downloaded
for TCGA cancers from the TCGA portal. IHC data were derived from refs. 19,28

for comparison of EGFR protein levels versus TIL levels, previously defined in
refs. 19,28. ssGSEA scores were used to summarise the activity of the glycolytic gene
signature (described in ref. 17) and standard statistical procedures were used to
assess interrelationships.
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Code availability. Knit R-markdowns of the code used for analysis have been
deposited on Zenodo at https://doi.org/10.5281/zenodo.1304766. The MethylCI-
BERSORT R-package and the signatures we generated are on Zenodo at https://doi.
org/10.5281/zenodo.1298968. A Google Group for users of the package can be
found here: https://groups.google.com/d/forum/methyldeconvolution.

Data availability. The data analysed in this study are available either from the
Gene Expression Omnibus (accession numbers: GSE35069; GSE74877; GSE38270;
GSE68379), the European Nucleotide Archive (accession numbers: PRJEB11844;
PRJNA258216; PRJEB5468), SAGE Synapse (accession numbers: syn7214402;
syn7343873; syn2812961), The Cancer Genome Atlas Project or from the authors
upon reasonable request.
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