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ABSTRACT

Purpose To compare two methods of automatic breast segmentation with each
other and with manual segmentation in a large subject cohort. To discuss the factors
involved in selecting the most appropriate algorithm for automatic segmentation and,
in particular, to investigate the appropriateness of overlap measures (e.g., Dice and
Jaccard coefficients) as the primary determinant in algorithm selection.

Methods Two methods of breast segmentation were applied to the task of calcu-
lating MRI breast density in 200 subjects drawn from the Avon Longitudinal Study
of Parents and Children, a large cohort study with an MRI component.

A semi-automated, bias-corrected, fuzzy C-means (BC-FCM) method was com-
bined with morphological operations to segment the overall breast volume from in-
phase Dixon images. The method makes use of novel, problem-specific insights. The
resulting segmentation mask was then applied to the corresponding Dixon water and
fat images, which were combined to give Dixon MRI density values. Contempora-
neously acquired T;- and Ts-weighted image datasets were analysed using a novel
and fully automated algorithm involving image filtering, landmark identification and
explicit location of the pectoral muscle boundary. Within the region found, fat-water
discrimination was performed using an Expectation Maximisation - Markov Random
Field technique, yielding a second independent estimate of MRI density.

Results Images are presented for two individual women, demonstrating how the
difficulty of the problem is highly subject-specific. Dice and Jaccard coefficients
comparing the semiautomated BC-FCM method, operating on Dixon source data,
with expert manual segmentation are presented. The corresponding results for the
method based on T;- and Ts-weighted data are slightly lower in the individual cases
shown, but scatter plots and inter-class correlations for the cohort as a whole show
that both methods do an excellent job in segmenting and classifying breast tissue.

Conclusions Epidemiological results demonstrate that both methods of auto-
mated segmentation are suitable for the chosen application and that it is important
to consider a range of factors when choosing a segmentation algorithm, rather than

focus narrowly on a single metric such as the Dice coefficient.

PACS numbers: 87.61.-c, 87.19.xj, 87.57.C-, 87.57.N-
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v I. INTRODUCTION

18 Mammographic density, a quantitative measure of radio-dense fibrogladular tissue in the
19 breast, is one of the strongest predictors of breast cancer risk. Women with more than 75%
20 density have a four-fold or higher risk of breast cancer compared to those with less than 5%!.
2 More intensive screening for women with high mammographic density has been proposed?

2 but remains controversial®.

;3 However, in clinical practice, mammographic density, as assessed on x-ray mammograms,
2 is generally reported using only qualitative, radiologist-assessed categories, and agreement
25 between radiologists tends to be only moderate*. Quantitative analysis is hampered by the
2 fact that breast density is an inherently 3-D material property and therefore not well suited
27 to measurement using 2-D x-ray projections. Although subsequent risk assessment and epi-
2s demiological analysis rarely use full 3-D information (normally preferring a single number,
2 i.e., the volume-averaged mean breast density), accurate derivation of such a statistic from
s the 2-D X-ray data is problematic and subject to error. Automated tools such as Volpara
2 (VolparaSolutions, Wellington, NZ)> and QUANTRA (Hologic Inc., USA) are gaining trac-
» tion in the mammography community, suggesting that mean breast density can be calculated
;3 without inter-reader bias. However, such readings may be affected by errors in estimating
34 breast thickness® and the relation between the values of breast density reported and those

35 obtained by other techniques remains to be elucidated”.

s Increasingly, Magnetic Resonance Imaging (MRI) mammography is being used in clinical
;7 and research settings to assess breast structure, because of its 3-D capabilities, its non-
38 lonizing nature and the strong soft tissue contrast between fibroglandular (parenchymal)
3 and fatty tissue. In an MRI context, breast density refers to the percentage of breast tissue
s volume that is deemed to be “parenchymal” and this is generally assumed to be the same as
s volume fraction of tissue whose MR signal arises from free water molecules, as opposed to
» fat (i.e., the “water fraction” or “percentage water”). Clearly, this is not an exact equivalent
5 of the mammographic x-ray density. Nevertheless, Thompson et al.® demonstrate a clear

4 correlation between the two.

s At present manual evaluation of MRI 3-D breast density is an arduous, observer-
s dependent, and time-consuming process. Therefore, full or partial automation of the 3-D

s analysis of the breast is required. To achieve the desired segmentations of breast parenchy-
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mal volume and breast fat volume, two separate image processing tasks are required. First,
the breast as a whole needs to be distinguished from the background and chest wall; and,
second, the parenchymal tissue within the breast needs to be distinguished from fat.

Several different MRI pulse sequences have previously been used to assess breast density,
but no definitive consensus has been reached about which is optimal. Few studies have
compared different sequences within the same subject population. Furthermore, whilst there
is a large body of prior literature (see Table I) describing different ways to achieve the two
segmentation tasks described above, no studies, to date, have compared different automated
methods with each other and with manual segmentation, for a sizeable subject population.

It is clear that many methods can produce “good” segmentation results. This study
poses the following question: Do the minor differences we see between segmentations when
we apply different algorithms on the same data actually matter for the uses to which the
segmentations are ultimately put?

This study compares two very different methods of breast-outline segmentation: (i) an
established®” bias-corrected fuzzy C-means (BC-FCM) clustering technique based on a cost-
function; and (ii) a new heuristic approach based on thresholding, landmark identification
and direct analysis of image features. The results of this part of the study will be measures of
overall breast volume from each method and volume similarity measures (Dice and Jaccard
coefficients).

With the breast outline obtained, the second part of the study compares two methods
of fat-water discrimination, again based on different principles: (i) The Dixon approach®
uses scans acquired with an MRI technique that returns separate “fat” and “water” images.
In principle, these allow us to obtain a fat and water fraction for every voxel, accounting
for partial volume effects. However, Dixon sequences are not currently part of the routine
acquisition protocol for clinical MRI examinations®. (ii) Our second method uses an analysis
of the intensity histograms of the two different tissue classes in fat-suppressed T;-weighted
(T1w) and Ty-weighted (T2w) images. Such images are routinely acquired in diagnostic
scanning and this method thus has the potential advantage of wider applicability if the two
methods are shown to be concordant. Note that there is no means of obtaining ground truth
data and, given that we are dealing with a healthy subject cohort, no possibility of obtaining
x-ray data for comparison.

Nomenclature for the various segmentations is summarised in Figure 1.
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TABLE I: Summary of journal papers describing methods to segment pectoral muscle and

internal fibro-glandular tissue from MR images. Npp refers to the number of observers

who provided the gold standard manual segmentation. Np indicates the number of MR
data sets the method was validated with and Ng the number of MRI scanners. N/A = not

applicable; N/S = not specified
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A comprehensive epidemiological analysis of the relationship between breast composition

s1 and seven other physical, historical and lifestyle variables has been carried out for this cohort.

s2 Whilst the full report is beyond the scope of this study, we summarise the results and use

s them to discuss quantitatively the impact of differences between the various assessment

s« methods on conducting reliable clinico-epidemiological studies.

Invited to participate: 2,530 ALSPAC participants

‘ Study participants: 500 l

|

[ Segmentation analysis: 200 participants ‘

I l

Type of MR Dixon images }7 T1-weighted VIBE T2-weighted trans-
image (T1-w) images axial (T2-w) images
Volume Manual Semi- Automatic (VaT12)
segmentation (VmD) automatic Rttt e
method (masks) (vsD) to Dixon co'o-ordinate

space (VaT12D)
Fat-water Semi-automatic
coesion o 1w ||| | ot ] B
. FWsD) FWsD)

FIG. 1: Flow diagram of the overall data processing chain and nomenclature for the various

segmentation methods. Some of these have the potential to operate on different
source data and we can also combine the methods in different ways to achieve an
overall result. We thus assign each step three codes: segmentation purpose (V =
breast volume, FW = fat-water); degree of automation (m = manual, s = semi-
automatic, a = fully automatic); and source data (D = Dixon; T1 = T}-weighted,
T2 = Ty-weighted, T12 = uses both Tj- and T,-weighted data). Thus, a breast-
volume measurement using semi-automatic segmentation on original Dixon data
would be represented as VsD. Fat-water segmentations require both source data
and a previously-generated volume mask, so are represented by the combination
of two codes. For instance, fat-water statistics calculated semi-automatically from
Dixon source data and using a mask generated automatically from T1w and T2w
data would be described by VaT12-FWsD. We note one additional case, in which
the volume mask VaT12 is re-sampled to give a result in the same coordinate space
as the Dixon images and we assign this the label VaT12D.
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ss II. METHODS
s A. Data
s7 1. Study Population

s This work forms part of an investigation into breast composition at young ages, nested
g0 within the Avon Longitudinal Study of Parents and Children (ALSPAC). ALSPAC originally
o recruited 14,541 pregnant women resident in Avon, UK with expected dates of delivery 1st
o April 1991 to 31st December 1992, as described by Boyd et al.in a cohort profile paper®’. For
o2 this sub-study, Caucasian nulliparous women were invited to attend an MRI examination at
o3 the University of Bristol Clinical Research and Imaging Centre (CRIC) between June 2011
s and November 2014. Women were restricted to those from a singleton birth, who had never
s been diagnosed with a hormone-related disease and had regularly participated in follow-up
o6 surveys, including completing the age 20y questionnaire (2010-2011). Of the 2530 invited,
o 500 (19.8%) eligible women attended.

¢ The ALSPAC Law and Ethics Committee and the Local Research Ethics Committees
o gave ethical approval for the study. The study website contains details of all the data that

100 are available through a fully searchable data dictionary®!.

w 2. MR Imaging

w2 Participants underwent a breast MRI scan using a 3T Siemens Skyra MR system with
103 a breast coil that surrounds both breasts of a prone patient. Three sets of bilateral images

104 Were acquired:

s o multislice, sagittal Dixon®® images (in-phase, out-of-phase, water and fat), acquired
106 using a turbo spin-echo sequence with nominal in-plane resolution of (0.742 x 0.742)

107 mm?, nominal slice thickness 7 mm and interslice spacing 7.7 mm;

108 o T1-weighted 3D images, acquired using a VIBE sequence with fat saturation and
109 a nominal resolution of (0.759 x 0.759 x 0.900) mm?, as routinely used in clinical

110 dynamic contrast-enhanced MRI protocols for the breast;

11 e multislice, axial, T2-weighted images, acquired using a turbo spin-echo sequence, with

10
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nominal in-plane resolution of (0.848 x 0.848) mm?, and both slice thickness and

spacing between slices 4 mm;

3. Manual Reference Segmentation

To assess breast volume, a manual segmentation protocol (as described in the Supplemen-
tary Information) was developed and used by three readers (RD, MB and ISS) independently
to outline the breast from surrounding tissues in the Dixon images, using [TK-SNAP (ver-
sion 3.0.0). All subjects had a manual segmentation of all breast slices performed by at least
one reader. The datasets of 16 representative subjects were manually segmented twice by
all three readers to assess between- and within-observer variation. In cases where more than
one manual segmentation is performed, the VmD and VmD-FWsD results quoted below

represent the median values taken for the multiple manual readings.

4. Training and Validation Data Sets

A training set of 100 randomly selected subjects was used to make initial comparisons
across MR images and segmentation methods, and for the manual readings, between- and
within-observer variation. The training data were used to assess the common reasons for
segmentation failure and to improve the algorithms. At the end of the testing phase, the
algorithm code was “frozen” and final comparisons of the segmentation methods were com-
pleted on a second set of images from a further 100 participants. Except where stated other-
wise, all the summary statistical results presented here come from this second, “validation”
cohort. For further details concerning statistical methods, please see the Supplementary

Information.

B. Breast Outline Segmentation
1. Semi-automated, bias-corrected fuzzy C-means (BC-FCM)

A fuzzy C-means (FCM) algorithm was applied to the Dixon in-phase images. It has
the advantage that it can be modified to carry out a simultaneous intensity inhomogeneity

compensation, or bias-correction (BC), and this is potentially less expensive computationally

11
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13 than a prefiltering operation?. The algorithms in this section were implemented using IDL
130 (Harris Geospatial Systems, Melbourne, FL, USA) and run on a standard desktop computer.
o The BC-FCM variant we implemented is described in". Formally, the algorithm does not
11 Tequire a training dataset and so is an unsupervised clustering algorithm. However, in prac-
112 tice, some experience with the types of data involved can improve the results dramatically.
13 Except for the local smoothness criterion (introduced by cost function ~y in ref.3” — see this
14 publication for all other related notation), BC-FCM per se does not use any spatial infor-
us mation. Nevertheless, a “good” segmentation involves a number of problem-specific insights
us and the basic BC-FCM method above was enhanced by additional heuristic algorithms in
17 the spatial domain, based on the results obtained with the training data.

ws  a. Initial parameters and iteration threshold After some experimentation, 5(r) was set
1o t0 0.1 for all spatial locations and € to 0.01. The two initial class centroids cy were calculated
10 by taking the mean of the slice being processed and adding a lower and an upper offset.
151 These two offsets are adjustable parameters under user control. For many subjects — see the
12 Results section for an example —, a single set of defaults performed extremely well. However,
153 for a small subset of “difficult” cases — second example in Results —, user interaction was
154 needed to try various combinations. As implemented here, on a standard desktop computer,
155 Tunning non-optimised software, it took around 2 mins. to run the segmentation algorithm
155 on each 3-D dataset. Thus, this “trial and error” step was the most frustrating feature
157 of the BC-FCM method in practice. Numerous coding and hardware improvements (e.g.,
158 parallelisation) could be made to the prototype to improve the user experience, potentially

o allowing these adjustable parameters to be altered by simple slider controls with immediate

o feedback.

1

o

1

o

11 We observed an improvement in performance by allowing the algorithm to perform sep-

162 arate BC-FCM classifications for segmenting the posterior of the breast from the chest wall

o

163 and segmenting the anterior portion from air, then merging the two volumes. Furthermore,
164 it was noted that the optimal offsets providing the initial class centroids were often differ-

1

o

s ent for these two segmentation problems. Thus, each dataset is split into two portions in
166 an anterior-posterior (AP) direction and the BC-FCM algorithm applied twice per image
167 slice. Given that the size of breasts varies, the position of the AP-split is also different for

168 different datasets and this is handled automatically by having two passes through the entire

o

1

=N

o algorithm with an automated choice of the AP-split position made after Pass 1.

12
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w  b.  Morphological operations The breast outlining task requires a definite boundary to
i be drawn. Thus, it is not necessary to use the full membership function output of the
12 BC-FCM routine, and we arrange for the clustering to produce a binary image. This may
173 include some misclassified regions outside the breast and some “holes” inside the breast. To
s remove the unwanted regions, 2D hole-filling followed by a 4-neighbourhood connectivity

175 search and object labelling is performed. The largest non-background object in each slice is

3

176 identified as the breast region and other smaller objects are removed from the binary image.

3

17 This exercise is repeated for all slices and these are then merged to form an approximate
178 breast volume.

19 Within this approximate breast volume, there may be some non-breast tissue segmented
180 for cases in which fatty breast tissue is connected to the chest and liver; and there may also
11 be some unsegmented breast tissue left for cases in which dense breast tissue is connected to
182 the chest wall muscles. To reduce these over- and under-segmentations, 3D morphological
183 image opening is performed, followed by closing using two cylindrical structuring elements
18« having the same radius of 3 voxels but different heights of 3 voxels and 25 voxels in the axial
165 direction. These parameters were found by experimentation during our previous study®’.
16 ¢. Lateral cutoffs The preceding steps in the process do an excellent job in segmenting
17 the anterior and posterior margins of the breast. However, there is no consensus in the
188 literature as to “where the breast stops” in the right-left and superior-inferior directions.
189 The extent of the breast is not directly delineated by any change in MRI contrast and the
10 required boundary may, indeed, be specific to the application of the imaging (e.g., when
11 comparing the MRI segmentation with the breast region compressed within the paddles
102 of a mammography system, the axilla region may be excluded entirely). Thus, based on
103 the consensus protocol (Appendix ?7?) reached by the three experienced readers, a heuristic
104 algorithm was developed, as described below. This additional truncation is derived entirely
105 from geometric considerations and boundaries are drawn without regard to image intensity,
1vs which is in many cases the same on either side of the boundary.

w7 Fach breast is processed in turn. The stack of sagittal images segmented using BC-
118 FCM forms a pseudo 3-D dataset. From this dataset the transverse plane containing the
199 largest breast area is passed to a simple algorithm that extracts the air-breast interface as
20 a 1-D “breast profile”. (This geometry is illustrated as Figure S2 of the Supplementary

201 Information.) The profile is used to determine the position of the breast midpoint in a left-

13
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202 Tight direction. Working outwards from this midpoint, we find the first position at which
203 the absolute value of the gradient (approximated by the finite difference between adjacent
200 voxels) of the breast profile rises above a threshold value, determined by experimentation.
20s This indicates a change in angle of the skin surface from flat regions between and outside
206 the breasts, to the side contour of the breast. A mask is applied to exclude all sagittal slices
207 in the original dataset on either side of these changes in angle. (Typically, the “raw” output
208 of the BC-FCM algorithm would include these.) Finally, a similar profile is generated for
200 the superior-inferior direction and the upper and lower bounds of the breast are determined

210 in each sagittal plane of the original data.

an 2. Fully-automated, using T1w and T2w Images

22 a. Pre-Processing Processing (Bias-Field Correction) A slowly varying bias-field,
a3 caused by inhomogeneities in the magnetic field during the MR acquisition, is a com-
24 mon artefact of MR images. To correct this for the Tlw and T2w images, we apply the
25 “N4ITK” nonparametric non-uniform intensity normalization method*®. This is a refine-
216 ment of the popular N3 algorithm which adopts a fast, robust B-spline fitting algorithm
27 and a hierarchical, multi-scale, optimisation scheme (figures 2a and 2b).

28 b, Breast Mask Segmentation This novel, heuristic method, implemented using the
210 Insight Toolkit**, computes a whole breast mask using both the Tlw and T2w images.
20 In developing this automated approach, emphasis has been placed on limiting the number
2 of empirically derived parameters and relying instead on detecting statistical or functional
222 extrema. In this way we aim to make the method as widely applicable to variations in
223 subjects and images as possble. The method comprises a number of distinct processing

224 steps as follows.

2s 1. The T2w image is resampled to match the resolution of the T1w image.

26 2. A grey-scale closing operation along each of the orthogonal axes, x, y and z, is per-

207 formed on the T2w image, to eliminate voids from the subsequent foreground segmen-
228 tation. In this operation each voxel’s intensity, Iy, at index (i, j, k) is replaced by
229 I.row (i, 7, k) according to:

14
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ICT2w<i7j? k) = min [mll’l <maX,IT2w(i17j7 k)7 max ITQw(i27j7 k)) )

0<11 <4 1<io<N;

min ( max IT2w<i7j17k)7 max ITQw(iaj%k)) 9 (]-)
0<51<y j<J

J<j2<Nj;

. Toou (i 7. k oo (i . k
min (Og}cﬁl}ék T2 (17]7 1)7k<T£12a<>§Vk T2 (Z J 2))]

230 where N;, N;, N are the number of voxels along each axis.

o 3. The T1lw image is rescaled to match the intensity range of the closed T2w image and

232 the maximum of these two images, InfaxT1wT2w, cOmputed.

23 4. The foreground (i.e. the subject) is segmented from the background by thresholding,

234 IvaxTiwrow- The threshold, t,, is computed via:

thg = arg?ax [Faarc(I) (Fepr(!) — Foar(1))] (2)
235 according to the following functional criteria:
236 e The background is assumed dark therefore the threshold should be close to zero:

Fil) =1 — 3
darkl?) = max (/)

237 e The frequency of voxel intensities in the background is higher than the foreground
238 i.e. the background intensities form a distinctive peak in the image histogram,
230 P(I), which is captured by a sharp rise in the cumulative intensity distribution
240 function:

>0 Pl)

Foor(l) = a5~
v (k)

(4)
241 e The background has a lower intensity variance than the foreground:

S PO — )
v Pk (k — p)?

Fvar(l) =

242 The resulting foreground mask image is denoted I, — see Figure 2(d).
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(a) Original MRI T2w (b) Bias-field corrected image.

acquisition.

(c) Closed image. (d) Foreground mask.

FIG. 2: Orthogonal slices through (a) a T2 weighted MRI and (b) the corresponding image
after bias-field correction, with arrows indicating regions that are particularly im-
proved by the processing. The “closed” T2w image is shown in (¢) and foreground
mask g, in (d). In each image the top-left quadrant is the axial slice, the top-right

is sagittal and the bottom-left is coronal.

5. Landmark identification. The most anterior voxels in the foreground mask, Ig, on
the left and right sides of the volume, are identified and assumed to be approximately
coincident with the nipple locations. If multiple voxels are found then the center of
mass of the cluster is computed. The mid-sternum is computed as the most anterior
voxel of the foreground mask, equidistant from the nipple landmarks in the coronal

plane.

6. Pectoral muscle boundary extraction. Various methods have been presented in the
literature to segment breast MRI volumes and the pectoral muscle (Table I). These
include semi-automated methods requiring user interaction3!:3336 2D mid-slice tem-

plate registration®®, statistical shape models?® and atlas-based methods!®:18720:24,45,

16
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) Detected “dark line” ) Pectoral mask. ¢) Extrapolated B-Spline

structures. surface mask.

FIG. 3: The anterior pectoral muscle surface is detected using the Oriented Basic Image
Feature “dark line” class. Subplot (a) shows these features detected at four ori-
entations (OBIF;5; to OBIF;5). Region-growing the “brown” medial-lateral class,
OBIF5, closely delineates this anterior boundary immediately posterior to the ster-
num (b). The anterior surface of this mask is extrapolated using a B-Spline fit to

the lateral boundaries of the volume (c).

a) Right breast outline. ) Left breast outline.

(c) Surface rendering.

FIG. 4: Breast region mask created by removing the pectoral surface mask (figure 3c) from
the foreground mask (figure 2d). Two views of the mask are shown, superimposed
on the original MR image and centered on the right (a) and left (b) breasts. The

surface rendering (c) illustrates the “squaring off” to include the axilla.
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A number of methods have been developed to segment explicitly the pectoral mus-
cle. These include a B-spline fit to the intensity gradient of the pectoral boundary3?,
anisotropic diffusion and Canny edge detection'” and Hessian matrix planar shape

1546 Atlas-based methods have been shown to perform well but are compu-

filtering
tationally intensive!” and require significant initial investment of time to develop a

library of atlases.

We have developed a method to detect explicitly the anterior pectoral muscle boundary
in individual MR volumes. Our approach has similarities to the Hessian processing
of Wang et al.'3% in that it employs Gaussian derivatives to detect regions in the
image with a planar profile. However rather than computing a ratio of the eigenvalues
of the Hessian matrix and thresholding the result, we obtain a direct classification of
linear structures, immediately posterior to the sternum, using Oriented Basic Image

Features (OBIFs, Figure 3).

The concept of Basic Image Features (BIFs) was developed by Griffin *®. The technique
classifies pixels in a 2D image into one of seven classes according to the local zero-, first-
or second-order structure. This structure is computed using a bank of six derivative
of Gaussian filters (Lo, L1o, Lo1, L2o, L11 and Lgy) which calculate the nth (where
n=0,1,2) order derivatives of the image in = and y (Spo, S0, So1, S20, S11 and Sps).
By combining the outputs of these filters, any given pixel can be classified according

to the largest component of vector BIF:

q slope—like
at
BIF = { €500, 24/ Sto + Sth

maximum minimum

R (6)

light line dark line
A+ y A — 7y saddle
- Y

)

V2 V2
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given

(520 + Sp2)
A=o — (7)
2 2 2
Y=o \/(520 + So2)” + 457 (8)

In addition, slopes, light lines, dark lines and saddles can be characterised according to
their orientation (OBIFs). We quantise this orientation into four, 45 degree quadrants
which produces eight slope sub-classes (OBIF; to OBIFg), and four sub-classes for
each of light lines (OBIF;; to OBIFy,), dark lines (OBIF;5 to OBIF;5) and saddles
(OBIF 9 to OBIFy,).

By region-growing the medial-lateral, OBIF;5 dark line features detected in each axial
image slice, in 3-D, from seed positions immediately posterior to the mid-sternum,
we obtain a binary segmentation of the anterior pectoral muscle surface. The BIF
processing was performed at a single scale using a Gaussian kernel with standard
deviation 5 mm. A smooth B-spline surface is then fitted to the anterior voxels of
the resulting mask** to extrapolate the muscle surface to the lateral boundaries of the

image volume (figure 3c).

. Finally we generate a 2D coronal mask, Ionp,, to crop non-breast tissue from the

whole breast mask. Icnp, is computed from a coronal skin elevation map, Iginon,
which contains the distance of each anterior skin voxel in the foreground mask, Ig,,
from the most posterior boundary of the MR volume. The coronal profile of each

breast is obtained by thresholding Ig;nop at

<4hms + th + hRn

h:
6

(10)

where h,, is the anterior elevation of the mid-sternum landmark, and Ar, and hg, are
the left and right nipple anterior elevations respectively. The roughly circular profile
obtained for each breast is then dilated by 10mm and the mask squared off, to create

a superior-lateral corner and hence extend the breast volume into the axilla (figure 4c)
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2s C.  Fat-Water Discrimination

20 1. Semi-automated calculation of percentage breast density, based on Dixon

207 Images

28 In principle, the output from a Dixon pulse sequence is a set of images reflecting water

200 content [, (r), which we identify with the parenchymal component of the breast, and an

©

30 equivalent set [;(r) reflecting fat content. Ideally, these images would be quantitative and

o

s allow the direct calculation of the water and fat fractions ¢,,(r) and ¢;(r) via the equation®

o

I,
Iw+[f

O = and Of =

(11)

2 In practice, there are a number of complicating factors:

303 e Parenchymal tissue and fat have different relaxation properties and, since the acqui-
304 sitions are not generally designed to be proton density weighted, this means that the

305 relative intensities of equal fractions of fat and water are different.

306 e The B field of the probe is not uniform across the whole breast and this leads to a

307 spatially-dependent efficacy of the fat-water separation.

308 e In practice, the fat tissue does not have a single proton resonance.

309 e Different manufacturers have different proprietary image reconstruction methods and
310 these may influence the quantitative results.

s Our solution to (at least) the first of these problems is to proceed as follows:

22 (a) Identify a small region in the water image that is expected to be entirely composed

313 of parenchymal tissue. The region should be in a part of the image that is free from
314 intensity artefacts caused by proximity to the RF coil (i.e., the data should come from
315 a homogenous region of By).

u6 (b) In the fat image, identify similarly a second region entirely composed of fat.

a7 (¢) Calculate the ratio of the average voxel values in each of the two regions:

1
r = N_ w I‘l/ Z If I']) (12)
1€ROI,

v JEROI;
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318 where N,, and Ny are the numbers of voxels in the selected regions-of-interest ROI,, and

319 ROIy respectively.
20 (d) Replace the value Iy in Eq. (11) with r;.

s This procedure potentially improves the accuracy of the water-fraction calculation but at
322 the cost of introducing an interactive step into the density estimation process. We have not
23 tested in a systematic fashion the influence that the size and shape of the region-of-interest
324 selection have on the process, in part because we have no ground truth values. A further
s issue with this technique is that in the limiting cases of extremely dense or extremely fatty

16 tissues, it may not be possible to find appropriately “pure” regions of both types.

21 2. Fully-automated, using T1w and T2w Images

»s  Fuzzy c-means (FCM) clustering has been evaluated by a number of studies to classify
320 the internal structure of the breast into fat and fibro-glandular tissue classes!6:18:29,31,33-35,50
s Table I). Song et al.>® adopt a Gaussian kernel FCM, whilst Sathya®! use a quadratic kernel
5 FCM to train a support vector machine (SVM). In?*®, Wang et al. use a multi-parametric
s hierarchical SVM classification approach to segment the internal breast and found this to be
333 superior to both a conventional SVM?® and FCM segmentation. T1W, T2W, proton density

1.3 compared

334 and three point Dixon (water and fat) images were all incorporated. Klifa et a
135 the resulting volumentric MRI density measurement of their method with mammography
3 but found only modest correlation (R? = 0.67).

337 In20

a probabilistic atlas approach was proposed. This requires a sizeable number of
a3 pre-labelled atlases to be created, considerable computation to register them and assumes
339 correspondence between fibro-glandular structures across the population. To address the
30 latter a Markov Random Field (MRF) was introduced to spatially regularise the classification
sa1 of each voxel according to that of its neighbours. Similarly Wu et al.'% use the registered atlas
2 as a pixel-wise fibroglandular likelihood prior for a multivariate Gaussian mixture model and
u3 demonstrate superior performance when compared to FCM using a manual thresholding
s approach as the gold standard. In a later publication!?, the same authors investigate a

1s continuous max-flow (CMF) algorithm to generate a voxel-wise likelihood map using the

us same atlas initialisation. They demonstrate that this approach performs better with the
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atlas initialisation than without, but that FCM is superior to the CMF approach without
the atlas.

Mixture models have also been proposed by Yang et al.*? who implement a method using
Kalman filter-based linear mixing. They demonstrate it out-performs a c-means method but
evaluation using real MR data was limited.

Our segmentation of the T1 and T2 MRI data into fat and glandular tissue is a mod-
ification of that proposed by Van Leemput et al.’! in which an intensity model and spa-
tial regularization scheme are optimized using a Maximum Likelihood formulation of the
Expectation-Maximisation (EM) algorithm. The EM algorithm iteratively updates the
Gaussian probability distributions used to estimate the intensity histograms of each tis-
sue class (fat and non-fat) via a Maximum Likelihood formulation. In order to improve
classification of voxels in which the partial volume of fat and glandular tissues is a signif-
icant factor, a Markov Random Field (MRF) regularization scheme is employed to ensure
spatial consistency. The MRF modifies the probability of a particular voxel being assigned
to either the fat or glandular classes (or a proportion of either) according to the current clas-
sification of neighbouring voxels. In this way isolated regions of glandular tissue in very fatty
regions, for instance, are penalized in favour of a more realistic and anatomically correct

arrangement of the classes.

D. Epidemiology

Appropriate linear and logistic regression models were used to examine associations of
average total breast, fat and water volumes, and percent water, as measured using different
MR images and segmentation methods, with selected established and potential mammo-
graphic density correlates. Breast measures were log-transformed and the exponentiated
estimated regression parameters represent the relative change (RC) in breast measure with
a unit increase, or category change, in the exposure of interest (with 95% confidence intervals
(95% CI) calculated by exponentiating the original 95% CIs). Age at menarche (months),
height (cm) and BMI (height (cm)/ weight (kg)?) at MR were treated as continuous vari-
ables and centred at the mean. Current hormone contraceptive use, cigarette smoking and
alcohol drinking were treated as binary (yes/no) variables. Mothers mammographic den-

sity (%) was averaged between both breasts, and maternal age (months) at mammography
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w7 and clinically measured or self-reported maternal BMI (median 3 years (inter-quartile range

by

ws (IQR) = 1.5 years) prior to mammography)) were used as continuous measures and centred

J

;9 at the mean. Variables were included as potential determinants of breast measures, or as

ss0 confounding factors, where appropriate.

o

s Data analysis was conducted with STATA statistical software, Version 14.

s2 III. - RESULTS

i3 A.  Breast Outline Segmentation

Observer #1, seglqentation #1

A
»J.'\H\‘\_,E‘

Observer #1, segmentation #2 (VmD)

BC-FCM original version

>
A
4 |

(
) o \ 13; —5‘?’71 15 —42.4 \ ‘\‘
L S— A ﬂaﬁl_gbrithm in S

s N di d response to conform with manual segr ion protocol. =
BC-FCM additional heuristics (VaD) egmentation nat disruptet Slices between breasts not pruned in original version. This

~, by receiver coil sensitivity~~ . ing the additional ical heuristi BC-
] v e ) is done using the additional geometrical heuristic not BC
/ / / hotspot” 4 > | M, because of the total absenge ?‘f contrast boundary.
{ - 4 . / / / - 4 /
y | 4 [ y /
‘ ; ( ; ) 4 é / |
(

Excellent fidelity of boundary with chest wall -

/ improved cor%ed_with line above.
inor boundary .« e pr ] /4

‘ -
.- S S

FIG. 5: : Example of a case where both of the algorithms examined in this work
performed well. Features of interest in the various different segmentations are annotated.
Note that this image is provided with high resolution and can be zoomed significantly to
reveal additional detail.

s Figure 5 shows an example of the two methods applied to a dataset containing medium-
35 sized breasts, with a moderate parenchymal content. There is a border of fat around the
36 parenchyma, which, at the posterior of the breast, leads to excellent contrast at the bound-

se7 ary with the chest wall, making segmentation a relatively straightforward task. Results are
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TABLE II: : Dice and Jaccard coefficients for the “easy” segmentation problem of Fig. 5.
Note that the BC-FCM /heuristics (VaD) represents the fully automated version, running
with default parameters.

Manual 1 Manual 2 BC-FCM BC-FCM VaT12D

Orig /heuristics

(VaD)
Dice Coefficients
Manual 1 1.000
Manual 2 0.949 1.000
BC-FCM Orig 0.854 0.877 1.000
BC-FCM /heuristics (VaD) 0.901 0.924 0.921 1.000
VaT12D 0.887 0.888 0.810 0.865 1.000
Jaccard Coeflicients
Manual 1 1.000
Manual 2 0.904 1.000
BC-FCM Orig 0.745 0.781 1.000
BC-FCM /heuristics 0.820 0.859 0.853 1.000
VaT12D 0.797 0.799 0.681 0.761 1.000

s shown for two separate manual segmentations by the same experienced observer; for the
30 BC-FCM method from ref.3"; the BC-FCM method with additional heuristics and default
;0 parameters, as described above; and the new method based on T1 and T2 images (VaT12).
;o1 It will be seen that the segmentation performance is excellent, with only minor difference
302 between the methods. Note how implementation of guidelines developed during the manual
303 segmentation process supplements the BC-FCM approach in order to cut off the segmenta-
s tion in both the left-right and superior-inferior directions, where there are no corresponding
305 intensity boundaries seen in the image data themselves.

s Table II shows the Dice and Jaccard coefficients for the four sets of segmentations illus-
so7 trated in Figure 5, confirming the excellent performance of all the algorithms.

s By contrast, Figure 6 illustrates a case where all assessment methods have far more
399 difficulty in providing a correct segmentation. Smaller breasts tend to be more problematic
w0 to segment, as a higher fraction of the segmentation involves partial-volume effects. Highly
s parenchymal breasts have very low (sometimes no) contrast between the parenchyma and
w02 pectoral muscles of the chest wall, and the intensity-based BC-FCM algorithm has particular
w03 difficulties in this regard. Many slices require a high degree of anatomical knowledge to
04 perform the segmentation. Consider the two versions of the BC-FCM results presented.

w0s With the default parameters in the upper of the two rows, over-segmentation occurs in slice
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TABLE III: : Dice and Jaccard coefficients for the difficult segmentation problem of Fig. 6

Manual 1 Manual 2 BC-FCM BC-FCM BC-FCM VaT12D
Orig /heuristics Edited
(best) (VsD)
Dice Coefficients

Manual 1 1.000

Manual 2 0.915 1.000

BC-FCM Orig 0.776 0.797 1.000

BC-FCM /heuristics (best) 0.836 0.792 0.782 1.000

BC-FCM Edited (VsD) 0.914 0.913 0.809 0.828 1.000

VaT12D 0.796 0.771 0.728 0.818 0.795 1.000
Jaccard Coefficients

Manual 1 1.000

Manual 2 0.843 1.000

BC-FCM Orig 0.634 0.662 1.000

BC-FCM /heuristics (best) 0.718 0.657 0.642 1.000

BC-FCM Edited (VsD) 0.842 0.840 0.679 0.707 1.000

VaT12D 0.661 0.627 0.572 0.692 0.660 1.000

w6 11 and part of the chest wall is included in the parenchymal breast region. By contrast, with

a7 the “best” set of parameters (as found by repeating the algorithm and manually adjusting

w8 them), the lower row shows that the problem in slice 11 is corrected, with good matching of

a0 the pectoral muscle contour, but only at the cost of introducing an under-segmentation in

a0 slice 8, and, worse, losing the segmented breast region entirely in slice 6. In practice, where

au such problems occurred, it was necessary to edit the final segmentations manually. (Note on

a2 terminology: As shown in Fig. 6, the “BC-FCM /heuristics (VaD)” method cannot reliably

a3 be run for the whole cohort using only default parameters and so we must describe the

aie technique as semi- rather than fully-automated. Even for cases where no manual editing or

a5 parameter adjustment need to be performed, human inspection is still required to confirm

a6 this. All subsequent cohort statistics will therefore use the nomenclature VsD to reflect

417 this.)

We have run a similar analysis on all 16 cases for which we have duplicate manual

a0 segmentations by all three observers. The detailed results are shown in the Supplementary

20 Information.

A second method of examining the relation between the volume segmentation results is

22 to plot the total breast volume obtained by one method against that of another. In the
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Observer #1, seg\mentatiun #1

y P Oversegmentation
BC-FCM with additional heuristics and 5 of chest wall
manually optimised parameters

Undersegmentation uf\l’m«;j
intensity parenchymal regiol

FIG. 6: : Example of a case where automatic segmentation is difficult. The rows represent
the results of different segmentations and, for compactness, an informative subset of slices
has been chosen to illustrate important features of the problem. Note that this image is
provided with high resolution and can be zoomed significantly to reveal additional detail.

a3 scatter plots of Figures 7(a)—(c), the - and y-coordinates of each point represent the mean,
a2 for a single subject, of the left and right breast volumes evaluated, respectively, by the two
»s methods under consideration. Figure 7(a) compares VsD, the semi-automated BC-FCM
226 method using Dixon image input, with the “gold-standard” median manual segmentation,
2 VmD, measured on the same Dixon dataset. Figure 7(b) gives results for the VaT12 method,
228 which operates on the T1lw and T2w datasets and evaluates the breast volume in the coor-
9 dinate space of the T1w dataset. Finally, Figure 7(c) looks at the effect of resampling the
20 map generated by the algorithm in (b) with the spatial resolution and frame of reference of
a1 the Dixon data, which we term VaT12D. In each case, the line of identity is shown and Ta-
s ble IV reports the corresponding inter-class correlations (ICC), representing the proportion

w33 of variance across participants shared between different ascertainment methods.
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FIG. 7: Scatter plots of mean left and right breast volumes in cm? for the different
methods in comparison to manual segmentation: (a) volume from semiautomatic
segmentation of Dixon images (VsD) vs volume from manual segmentation (VmD); (b)
volume via automated segmentation from T;- and Ty-weighted images transformed to
Dixon reference frame (VaT12FD) vs manual (VmD); (c¢) volume obtained from T;- and

Ty-weighted images in native 3-D reference frame (VaT12).

TABLE IV: : Inter-class correlations for total breast volume segmentations.

VmD
VmD 1.000
VsD 0.990
VaT12D 0.974
VaT12 0.985

VsD
1.000

0.977
0.992

27

VaT12D

1.000
0.982

VaTl12

1.000
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TABLE V: : Inter-class correlations for total water volume segmentations.

VmD-FWsD VsD-FWsD  VaT12D- VaTl12- VaTl12-
FWsD FWaT1l FWaT?2
VmD-FWsD  1.000
VsD-FWsD 0.995 1.000
VaT12D-FWsD 0.992 0.993 1.000
VaT12-FWaT1l 0.920 0.921 0.924 1.000
VaT12-FWaT2 0.948 0.949 0.962 0.899 1.000

s B, Fat-Water Segmentation

ss Figures 8 and 9 present the results of the fat and water segmentation in the same format
w36 as for the total breast volume. In this case, however, a further option is available. Although
a7 the breast outline segmentation VaT12 requires both the T1lw and T2w data, once this
.3 mask is available, it is possible to obtain two separate fat-water segmentations one using
a3 just the T1lw and one using just the T2w data. These are denoted VaT12-FWaT1l and
w0 VaT12-FWa'T?2 respectively.

w1 The inter-class correlation (ICC) for total water volume, representing the proportion of
a2 variance across participants shared between the different ascertainment methods, are given

43 1In table V.

us C.  Epidemiological Results

ws A diagrammatic summary of the results of the epidemiological analysis is presented in
us Figure 10 and further details of the work are reported as supplementary information.

a7 Associations with both breast volume and breast water fraction were found for current
s body mass index (BMI). For a 1 kg m~2 increase in BMI, a relative change in breast volume
a0 of 1.13[1.10, 1.16] was observed for the cohort for both the VmD and VsD methods and
ss0 the corresponding result for the VaT12 family of methods was 1.15[1.12, 1.18], where the
w1 figures in square brackets are the 95% confidence intervals. A smaller, but still important,
2 decrease in breast water fraction was seen, and the corresponding statistics are VimD-FWsD,
153 VsD-FWsD 0.96[0.95, 0.97], VaT12D-FWsD 0.95[0.94, 0.97], VaT12-FWaT1 0.97[096, 098],
e VaT12-FWT2 0.95[0.94, 0.96].

s A weak association between current height and breast volume was also observed. For
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ss a 1 cm increase in height, the analysis methods gave the following relative increases in
ss7 breast volume: VmD 1.05[0.98, 1.11], VsD 1.04[0.98,1.11], VaT12D-FWsD was 1.05[0.97,
s 1.12], VaT12-FWaT1 1.05[095, 1.03], VaT12-FWT2 1.05[0.95, 1.13]. However, height was
10 not associated with breast water fraction.

wo  No associations were found with any of: age of menarche, use of oral contraception,
w1 smoking, alcohol intake or maternal mammographic density.

w2 From the similarity of all these statistics, we conclude that the exact details of the seg-

63 mentation methods are not significant at the level of this cohort analysis.

ws IV.  DISCUSSION

w5 Our results show that, as in many segmentation problems, the degree of success of the au-
a6 tomated algorithms varies significantly between subjects. Figure 5 and Table IT demonstrate
w67 excellent performance by all of the algorithms, whereas the degree of correspondence with
a8 the expert manual segmentation is considerably poorer in Figure 6 and Table III. However,
w9 it should be noted that even the expert human observer is less able to provide a good repeat
a0 segmentation.

an The ICCs for total breast volume in Table IV demonstrate good agreement between
a2 all methods, but interestingly, slightly closer agreement between VaT12 and the two Dixon-
a3 based methods (VmD or VsD) than between VaT12D and the Dixon methods. As described
ara above, VaT'12D is created by simply resampling VaT'12 in the Dixon coordinate space, which
a5 has a coarser slice thickness, using appropriate blurring and nearest neighbour interpolation.
as Although movement between the Dixon and T1w or T2w scans could explain this disparity,
a7 registering the volumes did not improve the results. The resampling process appears to
ars amplify the difference between VaT12 and VmD or VsD, but we have not analysed this
a0 further, given that it is a relatively small effect.

w0 It would, of course, be interesting to compare the output of the VaT1T2 method di-
a1 rectly with manual segmentation of the high-resolution T1w dataset in its native refer-
2 ence frame, without the need to down-sample. However, the workload involved in creating
ss3 high-resolution manual segmentations is prohibitive. In the Supplementary Information, we
s Teport anecdotal results for five such cases with full high-resolution manual segmentations.

s Also of note from comparison of the scatter-plots of Figure 7 is that each of methods VsD,
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s VaT12D and VaT12 increasingly over-estimates the breast volume in comparison to VmD as
.7 the mean left and right breast size increases. This is most apparent for VaT12. The trend to
a8 larger error is, of course logical — similar percentage errors between the methods will result
a0 in greater absolute differences the larger the breast — but it is not currently clear why all
20 methods are biased to over-estimate the volume in this region. Method VaT12D also under-
s estimates the breast volume for smaller breasts compared with the manual segmentation

w2 VmD and the reason for this, too, is unclear.

w3 The biggest discrepancy between analysis methods, as shown by the scatter plots, is in the
404 assessment of mean breast water volume (and, hence, water fraction — data not shown). The
s VsD-FWsD and VaT12-FWsD methods both use Dixon source data and differ from VmD-
w6 FWsD only via the breast outline previously described. The methods all give very similar
so7 results (ICCs 0.995 and 0.992 in Table V). By contrast, the correlation between the Dixon-
a8 based VmD-FWsD and VaT12-FWaT'l is weaker, and the VaT12-FWa'T2 result additionally
10 shows a bias (Figure 8). However, it is important to note that the assumption that water
so0 fractions based on the Dixon method can be regarded as a gold standard for true parenchymal
so1 fraction is much less compelling than the previous assumption that VmD is the gold-standard
s02 volume. We justify our choice of VmD-FWsD as the method of comparison on the basis that
s03 it is consistent with previous work in the field*® (and indeed an improvement), but Ledger
soe et al.”? have demonstrated that there is a significant degree of variability between different
sos Dixon-based methods, depending on the exact design of the pulse sequence. It is unsurprising
so6 that a segmentation based on a completely different MRI contrast mechanism should be less
so7 highly correlated. What is nevertheless highly encouraging is that the correlation remains
s as strong as it is — the worst value reported in Table V is 0.920 — and this suggests that

so0 the use of MRI as a modality will prove to be a robust choice for breast analysis.

s A salutory lesson from the scatter graphs is the constant need for vigilance and appropri-
su ate quality control when processing large cohorts of data. During the review of this paper a
s12 referee noticed an outlier, which turned out to be the result of an easily-corrected error that
s13 caused the mask for the entire right breast to be missing. Such “edge” cases, occurring very
siu infrequently, remain a significant challenge in the adoption of automated pipelines. Any
s15 requirement for manual inspection of each dataset to check the output negates to some ex-
s16 tent the advantages of fully-automated segmentation processes, and an appropriate balance

s17 needs to be determined for each application.
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sis Another feature highlighted by all of these results is the problem inherent in the use of
s19 quantitative metrics such as Dice and correlation coefficients, which (despite their apparent
s20 calculation “accuracy”) are a very blunt tool for analysing a complex situation. Are all of
sz1 the voxels that fail to overlap equally important? Is much of the difference between the
s22 observer and the automated methods in fact caused by the choice of how much of the axilla
s23 is included and is this region of any significance biologically?

s A first reading of the coefficients presented here suggests that the VsD breast outline
s2s segmentation, followed by the FWsD tissue segmentation method is the best-performing of
s26 the computer-aided tools presented here. But is it the most suitable? Ultimately, the choice

s27 of segmentation method needs to weigh up the following points:

528 e To what extent does the application demand a segmentation that is as good as that
529 of an expert radiologist? Two extremes here might be the planning of radiotherapy
530 treatment for an individual patient, where high correspondence is vital, and the cal-
531 culation of epidemiological parameters for a Big Data cohort, where errors might well
532 “average out.”

533 e To what extent is the ground truth knowable? For a given set of intra- and inter-
534 observer performance metrics evaluated on a test cohort, what performance thresholds

535 should be regarded as “acceptable” for automated segmentations?

536 e How widely available are the required source data? As previously noted, the Dixon
537 protocol is not routinely included in clinical examinations, thus limiting the applica-

538 bility of breast density measurements based on the VsD-FWsD method.
530 e How robust is the method?

540 e To what extent are speed, convenience and consistency of method to be preferred over

541 accuracy?

s.2 In our case, consideration of all of the above led to the use of the VaT12 method, rather
sa3 than VsD, for segmentation of the remaining 300 cases in the cohort (results not presented).
sa« This choice was made largely on the basis of improved automation and on the epidemiological
sss evidence from the 200-strong training and test datasets, as described in Section IIT C, where
sas key epidemiological parameters were found to be identical, within confidence limits, for both

se7 methods.
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s V. CONCLUSION

s0  We have presented what we believe to be the first detailed comparison on a large,
ss0 population-based cohort of two methods of breast-outline segmentation based on completely
ss1 different approaches. These have been coupled with two methods of fat-water discrimination
ss2 based on fundamentally different MR contrast mechanisms. All combinations of the meth-
s53 0ds studied are in very strong agreement, as seen both visually and via inter-class correlation
ssa coefficients, and are suitable for large-scale epidemiological analysis. We have discussed the
ss5 assumptions behind the methods and posed a number of general questions that we believe
ss6 need to be answered each time a decision is made on whether and how to perform automated

s57 segmentation.
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FIG. 8: Scatter plots of mean left and right breast water percentage for the different
methods in comparison with manual segmentation on Dixon images followed by percentage
water estimation the using semiautomated Dixon image method: (a) semiautomatic
segmentation of Dixon images followed by percentage estimate from Dixon image data
(VsD-FWsd); (b) volume via automated segmentation from T;- and To-weighted images
transformed to Dixon reference frame (VaT12FD) followed by semiautomated percentage
estimate from the Dixon data (VaT12D-FWsd); (c) volume obtained from T;- and
Ty-weighted images in native 3-D reference frame, followed by automatic percentage
estimate from Ti-weighted data (VaT12-FWaT1); (d) as (c), but with the water
percentage estimated from the Ty-weighted data.
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FIG. 9: Scatter plots of mean left and right breast water volumes in cm? for the different
methods in comparison to VmD-FWsD. For nomenclature see caption to Figure 8.
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Breast composition correlates and segmentation

Relative change in average

Relative change in average

masks breast volume (95% ClI) percent water (95% Cl)
Current BMI (per 1 kg/m? increase)’
VmD-FWsD - 1.13 (1.10, 1.16) - 0.96 (0.95, 0.97)
VsD-FWsD - 1.13 (1.10, 1.16) - 0.96 (0.95, 0.97)
VaT12D-FWsD — 1.15 (1.12, 1.18) - 0.95 (0.94, 0.97)
VaT12-FWaT1 —— 1.15 (1.12, 1.18) - 0.97 (0.96, 0.98)
VaT12-FWaT2 - 1.15 (1.12, 1.18) -t 0.95 (0.94, 0.96)
Current height (per 5 cm increase) '
VmD-FWsD 4—— 1.05 (0.98, 1.11) —— 1.01 (0.98, 1.04)
VsD-FWsD 4+ — 1.04 (0.98, 1.11) —— 1.01 (0.97, 1.04)
VaT12D-FWsD - 1.05 (0.97, 1.12) —— 1.01 (0.98, 1.04)
VaT12-FWaT1 N S 1.05 (0.98, 1.13) 4 1.01 (0.98, 1.04)
VaT12-FWaT2 +—— 1.05 (0.98, 1.13) — 1.01 (0.97, 1.05)
Age of menarche (per 6 month increase)
VmD-FWsD —— 1.01 (0.98, 1.05) - 1.00 (0.98, 1.02)
VsD-FWsD B 1.01 (0.98, 1.05) — 1.00 (0.98, 1.02)
VaT12D-FWsD —— 1.01 (0.97, 1.05) —r— 1.00 (0.98, 1.02)
VaT12-FWaT1 —— 1.01 (0.97, 1.05) —— 1.00 (0.98, 1.02)
VaT12-FWaT2 - — 1.01 (0.97, 1.05) - 1.00 (0.98, 1.02)
Currrently use oral contraceptives (yes vs. no)
VmD-FWsD —_— 1.02 (0.86, 1.17) —_— 0.99 (0.91, 1.07)
VsD-FWsD —_— 1.00 (0.86, 1.15) _— 0.96 (0.90, 1.06)
VaT12D-FWsD —_— 1.01 (0.83, 1.19) —_— 0.96 (0.90, 1.06)
VaT12-FWT1 _— 0.99 (0.82, 1.17) —_— 0.96 (0.89, 1.04)
VaT12-FWT2 —_— 0.99 (0.82, 1.17) —_— 1.00 (0.91, 1.09)
Currently smoke (yes vs. no)’
VmD-FWsD 1.02 (0.74, 1.30) e 0.93 (0.80, 1.06)
VsD-FWsD 1.00 (0.73, 1.27) s 0.93 (0.80, 1.06)
VaT12D-FWsD 1.02 (0.70, 1.35) s 0.94 (0.81, 1.08)
VaT12-FWaT1 1.04 (0.70, 1.37) s 0.97 (0.84, 1.11)
VaT12-FWaT2 1.04 (0.70, 1.37) 0.97 (0.81, 1.13)
Currently drink alcohol (yes vs. no) '
VmD-FWsD _—t 0.97 (0.78, 1.16) _— 0.99 (0.89, 1.08)
VsD-FWsD —_— 0.93 (0.76, 1.11) —— 0.99 (0.89, 1.09)
VaT12D-FWsD —_— 0.94 (0.73, 1.15) —_— 0.99 (0.89, 1.10)
VaT12-FWaT1 ——— 0.95 (0.73, 1.16) _— 0.97 (0.88, 1.07)
VaT12-FWaT2 —_—— 0.95 (0.73, 1.16) ——— 1.03 (0.91, 1.15)
Maternal mammographic density (per 5% increase) 2
VmD-FWsD —— 1.01 (0.95, 1.07) [ 1.03 (1.00, 1.06)
VsD-FWsD —_— 1.00 (0.94, 1.06) [t 1.03 (1.00, 1.06)
VaT12D-FWsD — 1.01 (0.94, 1.08) —— 1.03 (1.00, 1.06)
VaT12-FWaT1 e— 1.00 (0.93, 1.07) [ 1.03 (1.00, 1.06)
VaT12-FWaT2 —_— 1.00 (0.93, 1.07) f_— 1.03 (1.00, 1.06)
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FIG. 10: Results of epidemiological analysis. Relative change in geometric means of MR
breast volume and percent water in relation to a unit increase, or category change, in each
breast composition correlate variable. 'Models adjusted for current age in months and
BMI at MR scan, where appropriate. ?Models restricted to young women for whom
mammograms from their mothers could be retrieved (n=33) adjusted for current age in
months and BMI at MR scan and maternal age at mammogram and BMI in 2010
(median=3y (IQR = 1.5y) prior to mammogram). For further details, see Supplementary
Information.
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