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ABSTRACT

Purpose To compare two methods of automatic breast segmentation with each

other and with manual segmentation in a large subject cohort. To discuss the factors

involved in selecting the most appropriate algorithm for automatic segmentation and,

in particular, to investigate the appropriateness of overlap measures (e.g., Dice and

Jaccard coefficients) as the primary determinant in algorithm selection.

Methods Two methods of breast segmentation were applied to the task of calcu-

lating MRI breast density in 200 subjects drawn from the Avon Longitudinal Study

of Parents and Children, a large cohort study with an MRI component.

A semi-automated, bias-corrected, fuzzy C-means (BC-FCM) method was com-

bined with morphological operations to segment the overall breast volume from in-

phase Dixon images. The method makes use of novel, problem-specific insights. The

resulting segmentation mask was then applied to the corresponding Dixon water and

fat images, which were combined to give Dixon MRI density values. Contempora-

neously acquired T1- and T2-weighted image datasets were analysed using a novel

and fully automated algorithm involving image filtering, landmark identification and

explicit location of the pectoral muscle boundary. Within the region found, fat-water

discrimination was performed using an Expectation Maximisation - Markov Random

Field technique, yielding a second independent estimate of MRI density.

Results Images are presented for two individual women, demonstrating how the

difficulty of the problem is highly subject-specific. Dice and Jaccard coefficients

comparing the semiautomated BC-FCM method, operating on Dixon source data,

with expert manual segmentation are presented. The corresponding results for the

method based on T1- and T2-weighted data are slightly lower in the individual cases

shown, but scatter plots and inter-class correlations for the cohort as a whole show

that both methods do an excellent job in segmenting and classifying breast tissue.

Conclusions Epidemiological results demonstrate that both methods of auto-

mated segmentation are suitable for the chosen application and that it is important

to consider a range of factors when choosing a segmentation algorithm, rather than

focus narrowly on a single metric such as the Dice coefficient.

PACS numbers: 87.61.-c, 87.19.xj, 87.57.C-, 87.57.N-15
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I. INTRODUCTION17

Mammographic density, a quantitative measure of radio-dense fibrogladular tissue in the18

breast, is one of the strongest predictors of breast cancer risk. Women with more than 75%19

density have a four-fold or higher risk of breast cancer compared to those with less than 5%1.20

More intensive screening for women with high mammographic density has been proposed2
21

but remains controversial3.22

However, in clinical practice, mammographic density, as assessed on x-ray mammograms,23

is generally reported using only qualitative, radiologist-assessed categories, and agreement24

between radiologists tends to be only moderate4. Quantitative analysis is hampered by the25

fact that breast density is an inherently 3-D material property and therefore not well suited26

to measurement using 2-D x-ray projections. Although subsequent risk assessment and epi-27

demiological analysis rarely use full 3-D information (normally preferring a single number,28

i.e., the volume-averaged mean breast density), accurate derivation of such a statistic from29

the 2-D X-ray data is problematic and subject to error. Automated tools such as Volpara30

(VolparaSolutions, Wellington, NZ)5 and QUANTRA (Hologic Inc., USA) are gaining trac-31

tion in the mammography community, suggesting that mean breast density can be calculated32

without inter-reader bias. However, such readings may be affected by errors in estimating33

breast thickness6 and the relation between the values of breast density reported and those34

obtained by other techniques remains to be elucidated7.35

Increasingly, Magnetic Resonance Imaging (MRI) mammography is being used in clinical36

and research settings to assess breast structure, because of its 3-D capabilities, its non-37

ionizing nature and the strong soft tissue contrast between fibroglandular (parenchymal)38

and fatty tissue. In an MRI context, breast density refers to the percentage of breast tissue39

volume that is deemed to be “parenchymal” and this is generally assumed to be the same as40

volume fraction of tissue whose MR signal arises from free water molecules, as opposed to41

fat (i.e., the “water fraction” or “percentage water”). Clearly, this is not an exact equivalent42

of the mammographic x-ray density. Nevertheless, Thompson et al.8 demonstrate a clear43

correlation between the two.44

At present manual evaluation of MRI 3-D breast density is an arduous, observer-45

dependent, and time-consuming process. Therefore, full or partial automation of the 3-D46

analysis of the breast is required. To achieve the desired segmentations of breast parenchy-47
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mal volume and breast fat volume, two separate image processing tasks are required. First,48

the breast as a whole needs to be distinguished from the background and chest wall; and,49

second, the parenchymal tissue within the breast needs to be distinguished from fat.50

Several different MRI pulse sequences have previously been used to assess breast density,51

but no definitive consensus has been reached about which is optimal. Few studies have52

compared different sequences within the same subject population. Furthermore, whilst there53

is a large body of prior literature (see Table I) describing different ways to achieve the two54

segmentation tasks described above, no studies, to date, have compared different automated55

methods with each other and with manual segmentation, for a sizeable subject population.56

It is clear that many methods can produce “good” segmentation results. This study57

poses the following question: Do the minor differences we see between segmentations when58

we apply different algorithms on the same data actually matter for the uses to which the59

segmentations are ultimately put?60

This study compares two very different methods of breast-outline segmentation: (i) an61

established37 bias-corrected fuzzy C-means (BC-FCM) clustering technique based on a cost-62

function; and (ii) a new heuristic approach based on thresholding, landmark identification63

and direct analysis of image features. The results of this part of the study will be measures of64

overall breast volume from each method and volume similarity measures (Dice and Jaccard65

coefficients).66

With the breast outline obtained, the second part of the study compares two methods67

of fat-water discrimination, again based on different principles: (i) The Dixon approach38
68

uses scans acquired with an MRI technique that returns separate “fat” and “water” images.69

In principle, these allow us to obtain a fat and water fraction for every voxel, accounting70

for partial volume effects. However, Dixon sequences are not currently part of the routine71

acquisition protocol for clinical MRI examinations39. (ii) Our second method uses an analysis72

of the intensity histograms of the two different tissue classes in fat-suppressed T1-weighted73

(T1w) and T2-weighted (T2w) images. Such images are routinely acquired in diagnostic74

scanning and this method thus has the potential advantage of wider applicability if the two75

methods are shown to be concordant. Note that there is no means of obtaining ground truth76

data and, given that we are dealing with a healthy subject cohort, no possibility of obtaining77

x-ray data for comparison.78

Nomenclature for the various segmentations is summarised in Figure 1.79
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TABLE I: Summary of journal papers describing methods to segment pectoral muscle and
internal fibro-glandular tissue from MR images. NOB refers to the number of observers
who provided the gold standard manual segmentation. ND indicates the number of MR

data sets the method was validated with and NS the number of MRI scanners. N/A = not
applicable; N/S = not specified
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A comprehensive epidemiological analysis of the relationship between breast composition80

and seven other physical, historical and lifestyle variables has been carried out for this cohort.81

Whilst the full report is beyond the scope of this study, we summarise the results and use82

them to discuss quantitatively the impact of differences between the various assessment83

methods on conducting reliable clinico-epidemiological studies.84

FIG. 1: Flow diagram of the overall data processing chain and nomenclature for the various
segmentation methods. Some of these have the potential to operate on different
source data and we can also combine the methods in different ways to achieve an
overall result. We thus assign each step three codes: segmentation purpose (V =
breast volume, FW = fat-water); degree of automation (m = manual, s = semi-
automatic, a = fully automatic); and source data (D = Dixon; T1 = T1-weighted,
T2 = T2-weighted, T12 = uses both T1- and T2-weighted data). Thus, a breast-
volume measurement using semi-automatic segmentation on original Dixon data
would be represented as VsD. Fat-water segmentations require both source data
and a previously-generated volume mask, so are represented by the combination
of two codes. For instance, fat-water statistics calculated semi-automatically from
Dixon source data and using a mask generated automatically from T1w and T2w
data would be described by VaT12-FWsD. We note one additional case, in which
the volume mask VaT12 is re-sampled to give a result in the same coordinate space

as the Dixon images and we assign this the label VaT12D.
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II. METHODS85

A. Data86

1. Study Population87

This work forms part of an investigation into breast composition at young ages, nested88

within the Avon Longitudinal Study of Parents and Children (ALSPAC). ALSPAC originally89

recruited 14,541 pregnant women resident in Avon, UK with expected dates of delivery 1st90

April 1991 to 31st December 1992, as described by Boyd et al.in a cohort profile paper40. For91

this sub-study, Caucasian nulliparous women were invited to attend an MRI examination at92

the University of Bristol Clinical Research and Imaging Centre (CRIC) between June 201193

and November 2014. Women were restricted to those from a singleton birth, who had never94

been diagnosed with a hormone-related disease and had regularly participated in follow-up95

surveys, including completing the age 20y questionnaire (2010-2011). Of the 2530 invited,96

500 (19.8%) eligible women attended.97

The ALSPAC Law and Ethics Committee and the Local Research Ethics Committees98

gave ethical approval for the study. The study website contains details of all the data that99

are available through a fully searchable data dictionary41.100

2. MR Imaging101

Participants underwent a breast MRI scan using a 3T Siemens Skyra MR system with102

a breast coil that surrounds both breasts of a prone patient. Three sets of bilateral images103

were acquired:104

• multislice, sagittal Dixon38 images (in-phase, out-of-phase, water and fat), acquired105

using a turbo spin-echo sequence with nominal in-plane resolution of (0.742 × 0.742)106

mm2, nominal slice thickness 7 mm and interslice spacing 7.7 mm;107

• T1-weighted 3D images, acquired using a VIBE sequence with fat saturation and108

a nominal resolution of (0.759 × 0.759 × 0.900) mm3, as routinely used in clinical109

dynamic contrast-enhanced MRI protocols for the breast;110

• multislice, axial, T2-weighted images, acquired using a turbo spin-echo sequence, with111
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nominal in-plane resolution of (0.848 × 0.848) mm2, and both slice thickness and112

spacing between slices 4 mm;113

3. Manual Reference Segmentation114

To assess breast volume, a manual segmentation protocol (as described in the Supplemen-115

tary Information) was developed and used by three readers (RD, MB and ISS) independently116

to outline the breast from surrounding tissues in the Dixon images, using ITK-SNAP (ver-117

sion 3.0.0). All subjects had a manual segmentation of all breast slices performed by at least118

one reader. The datasets of 16 representative subjects were manually segmented twice by119

all three readers to assess between- and within-observer variation. In cases where more than120

one manual segmentation is performed, the VmD and VmD-FWsD results quoted below121

represent the median values taken for the multiple manual readings.122

4. Training and Validation Data Sets123

A training set of 100 randomly selected subjects was used to make initial comparisons124

across MR images and segmentation methods, and for the manual readings, between- and125

within-observer variation. The training data were used to assess the common reasons for126

segmentation failure and to improve the algorithms. At the end of the testing phase, the127

algorithm code was “frozen” and final comparisons of the segmentation methods were com-128

pleted on a second set of images from a further 100 participants. Except where stated other-129

wise, all the summary statistical results presented here come from this second, “validation”130

cohort. For further details concerning statistical methods, please see the Supplementary131

Information.132

B. Breast Outline Segmentation133

1. Semi-automated, bias-corrected fuzzy C-means (BC-FCM)134

A fuzzy C-means (FCM) algorithm was applied to the Dixon in-phase images. It has135

the advantage that it can be modified to carry out a simultaneous intensity inhomogeneity136

compensation, or bias-correction (BC), and this is potentially less expensive computationally137
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than a prefiltering operation42. The algorithms in this section were implemented using IDL138

(Harris Geospatial Systems, Melbourne, FL, USA) and run on a standard desktop computer.139

The BC-FCM variant we implemented is described in37. Formally, the algorithm does not140

require a training dataset and so is an unsupervised clustering algorithm. However, in prac-141

tice, some experience with the types of data involved can improve the results dramatically.142

Except for the local smoothness criterion (introduced by cost function γ in ref.37 — see this143

publication for all other related notation), BC-FCM per se does not use any spatial infor-144

mation. Nevertheless, a “good” segmentation involves a number of problem-specific insights145

and the basic BC-FCM method above was enhanced by additional heuristic algorithms in146

the spatial domain, based on the results obtained with the training data.147

a. Initial parameters and iteration threshold After some experimentation, β(r) was set148

to 0.1 for all spatial locations and ε to 0.01. The two initial class centroids cf were calculated149

by taking the mean of the slice being processed and adding a lower and an upper offset.150

These two offsets are adjustable parameters under user control. For many subjects — see the151

Results section for an example —, a single set of defaults performed extremely well. However,152

for a small subset of “difficult” cases — second example in Results —, user interaction was153

needed to try various combinations. As implemented here, on a standard desktop computer,154

running non-optimised software, it took around 2 mins. to run the segmentation algorithm155

on each 3-D dataset. Thus, this “trial and error” step was the most frustrating feature156

of the BC-FCM method in practice. Numerous coding and hardware improvements (e.g.,157

parallelisation) could be made to the prototype to improve the user experience, potentially158

allowing these adjustable parameters to be altered by simple slider controls with immediate159

feedback.160

We observed an improvement in performance by allowing the algorithm to perform sep-161

arate BC-FCM classifications for segmenting the posterior of the breast from the chest wall162

and segmenting the anterior portion from air, then merging the two volumes. Furthermore,163

it was noted that the optimal offsets providing the initial class centroids were often differ-164

ent for these two segmentation problems. Thus, each dataset is split into two portions in165

an anterior-posterior (AP) direction and the BC-FCM algorithm applied twice per image166

slice. Given that the size of breasts varies, the position of the AP-split is also different for167

different datasets and this is handled automatically by having two passes through the entire168

algorithm with an automated choice of the AP-split position made after Pass 1.169
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b. Morphological operations The breast outlining task requires a definite boundary to170

be drawn. Thus, it is not necessary to use the full membership function output of the171

BC-FCM routine, and we arrange for the clustering to produce a binary image. This may172

include some misclassified regions outside the breast and some “holes” inside the breast. To173

remove the unwanted regions, 2D hole-filling followed by a 4-neighbourhood connectivity174

search and object labelling is performed. The largest non-background object in each slice is175

identified as the breast region and other smaller objects are removed from the binary image.176

This exercise is repeated for all slices and these are then merged to form an approximate177

breast volume.178

Within this approximate breast volume, there may be some non-breast tissue segmented179

for cases in which fatty breast tissue is connected to the chest and liver; and there may also180

be some unsegmented breast tissue left for cases in which dense breast tissue is connected to181

the chest wall muscles. To reduce these over- and under-segmentations, 3D morphological182

image opening is performed, followed by closing using two cylindrical structuring elements183

having the same radius of 3 voxels but different heights of 3 voxels and 25 voxels in the axial184

direction. These parameters were found by experimentation during our previous study37.185

c. Lateral cutoffs The preceding steps in the process do an excellent job in segmenting186

the anterior and posterior margins of the breast. However, there is no consensus in the187

literature as to “where the breast stops” in the right-left and superior-inferior directions.188

The extent of the breast is not directly delineated by any change in MRI contrast and the189

required boundary may, indeed, be specific to the application of the imaging (e.g., when190

comparing the MRI segmentation with the breast region compressed within the paddles191

of a mammography system, the axilla region may be excluded entirely). Thus, based on192

the consensus protocol (Appendix ??) reached by the three experienced readers, a heuristic193

algorithm was developed, as described below. This additional truncation is derived entirely194

from geometric considerations and boundaries are drawn without regard to image intensity,195

which is in many cases the same on either side of the boundary.196

Each breast is processed in turn. The stack of sagittal images segmented using BC-197

FCM forms a pseudo 3-D dataset. From this dataset the transverse plane containing the198

largest breast area is passed to a simple algorithm that extracts the air-breast interface as199

a 1-D “breast profile”. (This geometry is illustrated as Figure S2 of the Supplementary200

Information.) The profile is used to determine the position of the breast midpoint in a left-201
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right direction. Working outwards from this midpoint, we find the first position at which202

the absolute value of the gradient (approximated by the finite difference between adjacent203

voxels) of the breast profile rises above a threshold value, determined by experimentation.204

This indicates a change in angle of the skin surface from flat regions between and outside205

the breasts, to the side contour of the breast. A mask is applied to exclude all sagittal slices206

in the original dataset on either side of these changes in angle. (Typically, the “raw” output207

of the BC-FCM algorithm would include these.) Finally, a similar profile is generated for208

the superior-inferior direction and the upper and lower bounds of the breast are determined209

in each sagittal plane of the original data.210

2. Fully-automated, using T1w and T2w Images211

a. Pre-Processing Processing (Bias-Field Correction) A slowly varying bias-field,212

caused by inhomogeneities in the magnetic field during the MR acquisition, is a com-213

mon artefact of MR images. To correct this for the T1w and T2w images, we apply the214

“N4ITK” nonparametric non-uniform intensity normalization method43. This is a refine-215

ment of the popular N3 algorithm which adopts a fast, robust B-spline fitting algorithm216

and a hierarchical, multi-scale, optimisation scheme (figures 2a and 2b).217

b. Breast Mask Segmentation This novel, heuristic method, implemented using the218

Insight Toolkit44, computes a whole breast mask using both the T1w and T2w images.219

In developing this automated approach, emphasis has been placed on limiting the number220

of empirically derived parameters and relying instead on detecting statistical or functional221

extrema. In this way we aim to make the method as widely applicable to variations in222

subjects and images as possble. The method comprises a number of distinct processing223

steps as follows.224

1. The T2w image is resampled to match the resolution of the T1w image.225

2. A grey-scale closing operation along each of the orthogonal axes, x, y and z, is per-226

formed on the T2w image, to eliminate voids from the subsequent foreground segmen-227

tation. In this operation each voxel’s intensity, IT2w, at index (i, j, k) is replaced by228

IcT2w(i, j, k) according to:229
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IcT2w(i, j, k) = min

[
min

(
max

0≤i1≤i
IT2w(i1, j, k), max

i<i2<Ni

IT2w(i2, j, k)

)
,

min

(
max

0≤j1≤j
IT2w(i, j1, k), max

j<j2<Nj

IT2w(i, j2, k)

)
,

min

(
max

0≤k1≤k
IT2w(i, j, k1), max

k<k2<Nk

IT2w(i, j, k2)

)] (1)

where Ni, Nj, Nk are the number of voxels along each axis.230

3. The T1w image is rescaled to match the intensity range of the closed T2w image and231

the maximum of these two images, IMaxT1wT2w, computed.232

4. The foreground (i.e. the subject) is segmented from the background by thresholding,233

IMaxT1wT2w. The threshold, tbg, is computed via:234

tbg = arg max
I

[Fdark(I) (FCDT(I)− Fvar(I))] (2)

according to the following functional criteria:235

• The background is assumed dark therefore the threshold should be close to zero:236

Fdark(I) = 1− I

max(I)
(3)

• The frequency of voxel intensities in the background is higher than the foreground237

i.e. the background intensities form a distinctive peak in the image histogram,238

P(I), which is captured by a sharp rise in the cumulative intensity distribution239

function:240

FCDT(I) =

∑I
j=0 P (j)∑max(I)

k=0 P (k)
(4)

• The background has a lower intensity variance than the foreground:241

Fvar(I) =

∑I
j=0 P (j)(j − µ)2∑max(I)

k=0 P (k)(k − µ)2
(5)

The resulting foreground mask image is denoted Ifg — see Figure 2(d).242
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(a) Original MRI T2w

acquisition.

(b) Bias-field corrected image.

(c) Closed image. (d) Foreground mask.

FIG. 2: Orthogonal slices through (a) a T2 weighted MRI and (b) the corresponding image
after bias-field correction, with arrows indicating regions that are particularly im-
proved by the processing. The “closed” T2w image is shown in (c) and foreground
mask Ifg in (d). In each image the top-left quadrant is the axial slice, the top-right

is sagittal and the bottom-left is coronal.

5. Landmark identification. The most anterior voxels in the foreground mask, Ifg, on243

the left and right sides of the volume, are identified and assumed to be approximately244

coincident with the nipple locations. If multiple voxels are found then the center of245

mass of the cluster is computed. The mid-sternum is computed as the most anterior246

voxel of the foreground mask, equidistant from the nipple landmarks in the coronal247

plane.248

6. Pectoral muscle boundary extraction. Various methods have been presented in the249

literature to segment breast MRI volumes and the pectoral muscle (Table I). These250

include semi-automated methods requiring user interaction31,33,36, 2D mid-slice tem-251

plate registration36, statistical shape models25 and atlas-based methods16,18–20,24,45.252
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(a) Detected “dark line”

structures.

(b) Pectoral mask. (c) Extrapolated B-Spline

surface mask.

FIG. 3: The anterior pectoral muscle surface is detected using the Oriented Basic Image
Feature “dark line” class. Subplot (a) shows these features detected at four ori-
entations (OBIF15 to OBIF18). Region-growing the “brown” medial-lateral class,
OBIF15, closely delineates this anterior boundary immediately posterior to the ster-
num (b). The anterior surface of this mask is extrapolated using a B-Spline fit to

the lateral boundaries of the volume (c).

(a) Right breast outline. (b) Left breast outline.

(c) Surface rendering.

FIG. 4: Breast region mask created by removing the pectoral surface mask (figure 3c) from
the foreground mask (figure 2d). Two views of the mask are shown, superimposed
on the original MR image and centered on the right (a) and left (b) breasts. The

surface rendering (c) illustrates the “squaring off” to include the axilla.
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A number of methods have been developed to segment explicitly the pectoral mus-253

cle. These include a B-spline fit to the intensity gradient of the pectoral boundary33,254

anisotropic diffusion and Canny edge detection17 and Hessian matrix planar shape255

filtering15,46. Atlas-based methods have been shown to perform well but are compu-256

tationally intensive47 and require significant initial investment of time to develop a257

library of atlases.258

We have developed a method to detect explicitly the anterior pectoral muscle boundary259

in individual MR volumes. Our approach has similarities to the Hessian processing260

of Wang et al.15,46, in that it employs Gaussian derivatives to detect regions in the261

image with a planar profile. However rather than computing a ratio of the eigenvalues262

of the Hessian matrix and thresholding the result, we obtain a direct classification of263

linear structures, immediately posterior to the sternum, using Oriented Basic Image264

Features (OBIFs, Figure 3).265

The concept of Basic Image Features (BIFs) was developed by Griffin 48. The technique266

classifies pixels in a 2D image into one of seven classes according to the local zero-, first-267

or second-order structure. This structure is computed using a bank of six derivative268

of Gaussian filters (L00, L10, L01, L20, L11 and L02) which calculate the nth (where269

n=0,1,2) order derivatives of the image in x and y (S00, S10, S01, S20, S11 and S02).270

By combining the outputs of these filters, any given pixel can be classified according271

to the largest component of vector BIF:272

BIF =

{
flat

εS00,

slope−like

2
√
S2

10 + S2
01,

maximum

λ ,
minimum

−λ ,

light line

λ+ γ√
2
,

dark line

λ− γ√
2
,

saddle
γ

} (6)
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given273

λ = σ2 (S20 + S02)

2
(7)

γ = σ2

√
(S20 + S02)2 + 4S2

11 (8)

(9)

In addition, slopes, light lines, dark lines and saddles can be characterised according to274

their orientation (OBIFs). We quantise this orientation into four, 45 degree quadrants275

which produces eight slope sub-classes (OBIF1 to OBIF8), and four sub-classes for276

each of light lines (OBIF11 to OBIF14), dark lines (OBIF15 to OBIF18) and saddles277

(OBIF19 to OBIF22).278

By region-growing the medial-lateral, OBIF15 dark line features detected in each axial279

image slice, in 3-D, from seed positions immediately posterior to the mid-sternum,280

we obtain a binary segmentation of the anterior pectoral muscle surface. The BIF281

processing was performed at a single scale using a Gaussian kernel with standard282

deviation 5 mm. A smooth B-spline surface is then fitted to the anterior voxels of283

the resulting mask44 to extrapolate the muscle surface to the lateral boundaries of the284

image volume (figure 3c).285

7. Finally we generate a 2D coronal mask, ICNL, to crop non-breast tissue from the286

whole breast mask. ICNL is computed from a coronal skin elevation map, Iskin2D,287

which contains the distance of each anterior skin voxel in the foreground mask, Ifg,288

from the most posterior boundary of the MR volume. The coronal profile of each289

breast is obtained by thresholding Iskin2D at290

h =
(4hms + hLn + hRn

6
(10)

where hms is the anterior elevation of the mid-sternum landmark, and hLn and hRn are291

the left and right nipple anterior elevations respectively. The roughly circular profile292

obtained for each breast is then dilated by 10mm and the mask squared off, to create293

a superior-lateral corner and hence extend the breast volume into the axilla (figure 4c)294
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C. Fat-Water Discrimination295

1. Semi-automated calculation of percentage breast density, based on Dixon296

Images297

In principle, the output from a Dixon pulse sequence is a set of images reflecting water298

content Iw(r), which we identify with the parenchymal component of the breast, and an299

equivalent set If (r) reflecting fat content. Ideally, these images would be quantitative and300

allow the direct calculation of the water and fat fractions φw(r) and φf (r) via the equation49
301

φw =
Iw

Iw + If
and φf =

If
Iw + If

(11)

In practice, there are a number of complicating factors:302

• Parenchymal tissue and fat have different relaxation properties and, since the acqui-303

sitions are not generally designed to be proton density weighted, this means that the304

relative intensities of equal fractions of fat and water are different.305

• The B1 field of the probe is not uniform across the whole breast and this leads to a306

spatially-dependent efficacy of the fat-water separation.307

• In practice, the fat tissue does not have a single proton resonance.308

• Different manufacturers have different proprietary image reconstruction methods and309

these may influence the quantitative results.310

Our solution to (at least) the first of these problems is to proceed as follows:311

(a) Identify a small region in the water image that is expected to be entirely composed312

of parenchymal tissue. The region should be in a part of the image that is free from313

intensity artefacts caused by proximity to the RF coil (i.e., the data should come from314

a homogenous region of B1).315

(b) In the fat image, identify similarly a second region entirely composed of fat.316

(c) Calculate the ratio of the average voxel values in each of the two regions:317

r =
1

Nw

∑
i∈ROIw

Iw(ri)

/
1

Nf

∑
j∈ROIf

If (rj) (12)
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where Nw and Nf are the numbers of voxels in the selected regions-of-interest ROIw and318

ROIf respectively.319

(d) Replace the value If in Eq. (11) with rIf .320

This procedure potentially improves the accuracy of the water-fraction calculation but at321

the cost of introducing an interactive step into the density estimation process. We have not322

tested in a systematic fashion the influence that the size and shape of the region-of-interest323

selection have on the process, in part because we have no ground truth values. A further324

issue with this technique is that in the limiting cases of extremely dense or extremely fatty325

tissues, it may not be possible to find appropriately “pure” regions of both types.326

2. Fully-automated, using T1w and T2w Images327

Fuzzy c-means (FCM) clustering has been evaluated by a number of studies to classify328

the internal structure of the breast into fat and fibro-glandular tissue classes16,18,29,31,33–35,50
329

Table I). Song et al.50 adopt a Gaussian kernel FCM, whilst Sathya34 use a quadratic kernel330

FCM to train a support vector machine (SVM). In29, Wang et al. use a multi-parametric331

hierarchical SVM classification approach to segment the internal breast and found this to be332

superior to both a conventional SVM28 and FCM segmentation. T1W, T2W, proton density333

and three point Dixon (water and fat) images were all incorporated. Klifa et al.31 compared334

the resulting volumentric MRI density measurement of their method with mammography335

but found only modest correlation (R2 = 0.67).336

In20 a probabilistic atlas approach was proposed. This requires a sizeable number of337

pre-labelled atlases to be created, considerable computation to register them and assumes338

correspondence between fibro-glandular structures across the population. To address the339

latter a Markov Random Field (MRF) was introduced to spatially regularise the classification340

of each voxel according to that of its neighbours. Similarly Wu et al.16 use the registered atlas341

as a pixel-wise fibroglandular likelihood prior for a multivariate Gaussian mixture model and342

demonstrate superior performance when compared to FCM using a manual thresholding343

approach as the gold standard. In a later publication19, the same authors investigate a344

continuous max-flow (CMF) algorithm to generate a voxel-wise likelihood map using the345

same atlas initialisation. They demonstrate that this approach performs better with the346

21



Breast MRI segmentation for density estimation

atlas initialisation than without, but that FCM is superior to the CMF approach without347

the atlas.348

Mixture models have also been proposed by Yang et al.32 who implement a method using349

Kalman filter-based linear mixing. They demonstrate it out-performs a c-means method but350

evaluation using real MR data was limited.351

Our segmentation of the T1 and T2 MRI data into fat and glandular tissue is a mod-352

ification of that proposed by Van Leemput et al.51 in which an intensity model and spa-353

tial regularization scheme are optimized using a Maximum Likelihood formulation of the354

Expectation-Maximisation (EM) algorithm. The EM algorithm iteratively updates the355

Gaussian probability distributions used to estimate the intensity histograms of each tis-356

sue class (fat and non-fat) via a Maximum Likelihood formulation. In order to improve357

classification of voxels in which the partial volume of fat and glandular tissues is a signif-358

icant factor, a Markov Random Field (MRF) regularization scheme is employed to ensure359

spatial consistency. The MRF modifies the probability of a particular voxel being assigned360

to either the fat or glandular classes (or a proportion of either) according to the current clas-361

sification of neighbouring voxels. In this way isolated regions of glandular tissue in very fatty362

regions, for instance, are penalized in favour of a more realistic and anatomically correct363

arrangement of the classes.364

D. Epidemiology365

Appropriate linear and logistic regression models were used to examine associations of366

average total breast, fat and water volumes, and percent water, as measured using different367

MR images and segmentation methods, with selected established and potential mammo-368

graphic density correlates. Breast measures were log-transformed and the exponentiated369

estimated regression parameters represent the relative change (RC) in breast measure with370

a unit increase, or category change, in the exposure of interest (with 95% confidence intervals371

(95% CI) calculated by exponentiating the original 95% CIs). Age at menarche (months),372

height (cm) and BMI (height (cm)/ weight (kg)2) at MR were treated as continuous vari-373

ables and centred at the mean. Current hormone contraceptive use, cigarette smoking and374

alcohol drinking were treated as binary (yes/no) variables. Mothers mammographic den-375

sity (%) was averaged between both breasts, and maternal age (months) at mammography376
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and clinically measured or self-reported maternal BMI (median 3 years (inter-quartile range377

(IQR) = 1.5 years) prior to mammography)) were used as continuous measures and centred378

at the mean. Variables were included as potential determinants of breast measures, or as379

confounding factors, where appropriate.380

Data analysis was conducted with STATA statistical software, Version 14.381

III. RESULTS382

A. Breast Outline Segmentation383

FIG. 5: : Example of a case where both of the algorithms examined in this work
performed well. Features of interest in the various different segmentations are annotated.
Note that this image is provided with high resolution and can be zoomed significantly to

reveal additional detail.

Figure 5 shows an example of the two methods applied to a dataset containing medium-384

sized breasts, with a moderate parenchymal content. There is a border of fat around the385

parenchyma, which, at the posterior of the breast, leads to excellent contrast at the bound-386

ary with the chest wall, making segmentation a relatively straightforward task. Results are387

23



Breast MRI segmentation for density estimation

TABLE II: : Dice and Jaccard coefficients for the “easy” segmentation problem of Fig. 5.
Note that the BC-FCM/heuristics (VaD) represents the fully automated version, running

with default parameters.

Manual 1 Manual 2 BC-FCM
Orig

BC-FCM
/heuristics
(VaD)

VaT12D

Dice Coefficients
Manual 1 1.000
Manual 2 0.949 1.000
BC-FCM Orig 0.854 0.877 1.000
BC-FCM/heuristics (VaD) 0.901 0.924 0.921 1.000
VaT12D 0.887 0.888 0.810 0.865 1.000

Jaccard Coefficients
Manual 1 1.000
Manual 2 0.904 1.000
BC-FCM Orig 0.745 0.781 1.000
BC-FCM/heuristics 0.820 0.859 0.853 1.000
VaT12D 0.797 0.799 0.681 0.761 1.000

shown for two separate manual segmentations by the same experienced observer; for the388

BC-FCM method from ref.37; the BC-FCM method with additional heuristics and default389

parameters, as described above; and the new method based on T1 and T2 images (VaT12).390

It will be seen that the segmentation performance is excellent, with only minor difference391

between the methods. Note how implementation of guidelines developed during the manual392

segmentation process supplements the BC-FCM approach in order to cut off the segmenta-393

tion in both the left-right and superior-inferior directions, where there are no corresponding394

intensity boundaries seen in the image data themselves.395

Table II shows the Dice and Jaccard coefficients for the four sets of segmentations illus-396

trated in Figure 5, confirming the excellent performance of all the algorithms.397

By contrast, Figure 6 illustrates a case where all assessment methods have far more398

difficulty in providing a correct segmentation. Smaller breasts tend to be more problematic399

to segment, as a higher fraction of the segmentation involves partial-volume effects. Highly400

parenchymal breasts have very low (sometimes no) contrast between the parenchyma and401

pectoral muscles of the chest wall, and the intensity-based BC-FCM algorithm has particular402

difficulties in this regard. Many slices require a high degree of anatomical knowledge to403

perform the segmentation. Consider the two versions of the BC-FCM results presented.404

With the default parameters in the upper of the two rows, over-segmentation occurs in slice405
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TABLE III: : Dice and Jaccard coefficients for the difficult segmentation problem of Fig. 6

Manual 1 Manual 2 BC-FCM
Orig

BC-FCM
/heuristics
(best)

BC-FCM
Edited
(VsD)

VaT12D

Dice Coefficients
Manual 1 1.000
Manual 2 0.915 1.000
BC-FCM Orig 0.776 0.797 1.000
BC-FCM /heuristics (best) 0.836 0.792 0.782 1.000
BC-FCM Edited (VsD) 0.914 0.913 0.809 0.828 1.000
VaT12D 0.796 0.771 0.728 0.818 0.795 1.000

Jaccard Coefficients
Manual 1 1.000
Manual 2 0.843 1.000
BC-FCM Orig 0.634 0.662 1.000
BC-FCM /heuristics (best) 0.718 0.657 0.642 1.000
BC-FCM Edited (VsD) 0.842 0.840 0.679 0.707 1.000
VaT12D 0.661 0.627 0.572 0.692 0.660 1.000

11 and part of the chest wall is included in the parenchymal breast region. By contrast, with406

the “best” set of parameters (as found by repeating the algorithm and manually adjusting407

them), the lower row shows that the problem in slice 11 is corrected, with good matching of408

the pectoral muscle contour, but only at the cost of introducing an under-segmentation in409

slice 8, and, worse, losing the segmented breast region entirely in slice 6. In practice, where410

such problems occurred, it was necessary to edit the final segmentations manually. (Note on411

terminology: As shown in Fig. 6, the “BC-FCM/heuristics (VaD)” method cannot reliably412

be run for the whole cohort using only default parameters and so we must describe the413

technique as semi- rather than fully-automated. Even for cases where no manual editing or414

parameter adjustment need to be performed, human inspection is still required to confirm415

this. All subsequent cohort statistics will therefore use the nomenclature VsD to reflect416

this.)417

We have run a similar analysis on all 16 cases for which we have duplicate manual418

segmentations by all three observers. The detailed results are shown in the Supplementary419

Information.420

A second method of examining the relation between the volume segmentation results is421

to plot the total breast volume obtained by one method against that of another. In the422
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FIG. 6: : Example of a case where automatic segmentation is difficult. The rows represent
the results of different segmentations and, for compactness, an informative subset of slices
has been chosen to illustrate important features of the problem. Note that this image is
provided with high resolution and can be zoomed significantly to reveal additional detail.

scatter plots of Figures 7(a)–(c), the x- and y-coordinates of each point represent the mean,423

for a single subject, of the left and right breast volumes evaluated, respectively, by the two424

methods under consideration. Figure 7(a) compares VsD, the semi-automated BC-FCM425

method using Dixon image input, with the “gold-standard” median manual segmentation,426

VmD, measured on the same Dixon dataset. Figure 7(b) gives results for the VaT12 method,427

which operates on the T1w and T2w datasets and evaluates the breast volume in the coor-428

dinate space of the T1w dataset. Finally, Figure 7(c) looks at the effect of resampling the429

map generated by the algorithm in (b) with the spatial resolution and frame of reference of430

the Dixon data, which we term VaT12D. In each case, the line of identity is shown and Ta-431

ble IV reports the corresponding inter-class correlations (ICC), representing the proportion432

of variance across participants shared between different ascertainment methods.433
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(a) (b)

(c)

FIG. 7: Scatter plots of mean left and right breast volumes in cm3 for the different
methods in comparison to manual segmentation: (a) volume from semiautomatic

segmentation of Dixon images (VsD) vs volume from manual segmentation (VmD); (b)
volume via automated segmentation from T1- and T2-weighted images transformed to

Dixon reference frame (VaT12FD) vs manual (VmD); (c) volume obtained from T1- and
T2-weighted images in native 3-D reference frame (VaT12).

TABLE IV: : Inter-class correlations for total breast volume segmentations.

VmD VsD VaT12D VaT12
VmD 1.000
VsD 0.990 1.000
VaT12D 0.974 0.977 1.000
VaT12 0.985 0.992 0.982 1.000
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TABLE V: : Inter-class correlations for total water volume segmentations.

VmD-FWsD VsD-FWsD VaT12D-
FWsD

VaT12-
FWaT1

VaT12-
FWaT2

VmD-FWsD 1.000
VsD-FWsD 0.995 1.000
VaT12D-FWsD 0.992 0.993 1.000
VaT12-FWaT1 0.920 0.921 0.924 1.000
VaT12-FWaT2 0.948 0.949 0.962 0.899 1.000

B. Fat-Water Segmentation434

Figures 8 and 9 present the results of the fat and water segmentation in the same format435

as for the total breast volume. In this case, however, a further option is available. Although436

the breast outline segmentation VaT12 requires both the T1w and T2w data, once this437

mask is available, it is possible to obtain two separate fat-water segmentations one using438

just the T1w and one using just the T2w data. These are denoted VaT12-FWaT1 and439

VaT12-FWaT2 respectively.440

The inter-class correlation (ICC) for total water volume, representing the proportion of441

variance across participants shared between the different ascertainment methods, are given442

in table V.443

C. Epidemiological Results444

A diagrammatic summary of the results of the epidemiological analysis is presented in445

Figure 10 and further details of the work are reported as supplementary information.446

Associations with both breast volume and breast water fraction were found for current447

body mass index (BMI). For a 1 kg m−2 increase in BMI, a relative change in breast volume448

of 1.13[1.10, 1.16] was observed for the cohort for both the VmD and VsD methods and449

the corresponding result for the VaT12 family of methods was 1.15[1.12, 1.18], where the450

figures in square brackets are the 95% confidence intervals. A smaller, but still important,451

decrease in breast water fraction was seen, and the corresponding statistics are VmD-FWsD,452

VsD-FWsD 0.96[0.95, 0.97], VaT12D-FWsD 0.95[0.94, 0.97], VaT12-FWaT1 0.97[096, 098],453

VaT12-FWT2 0.95[0.94, 0.96].454

A weak association between current height and breast volume was also observed. For455
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a 1 cm increase in height, the analysis methods gave the following relative increases in456

breast volume: VmD 1.05[0.98, 1.11], VsD 1.04[0.98,1.11], VaT12D-FWsD was 1.05[0.97,457

1.12], VaT12-FWaT1 1.05[095, 1.03], VaT12-FWT2 1.05[0.95, 1.13]. However, height was458

not associated with breast water fraction.459

No associations were found with any of: age of menarche, use of oral contraception,460

smoking, alcohol intake or maternal mammographic density.461

From the similarity of all these statistics, we conclude that the exact details of the seg-462

mentation methods are not significant at the level of this cohort analysis.463

IV. DISCUSSION464

Our results show that, as in many segmentation problems, the degree of success of the au-465

tomated algorithms varies significantly between subjects. Figure 5 and Table II demonstrate466

excellent performance by all of the algorithms, whereas the degree of correspondence with467

the expert manual segmentation is considerably poorer in Figure 6 and Table III. However,468

it should be noted that even the expert human observer is less able to provide a good repeat469

segmentation.470

The ICCs for total breast volume in Table IV demonstrate good agreement between471

all methods, but interestingly, slightly closer agreement between VaT12 and the two Dixon-472

based methods (VmD or VsD) than between VaT12D and the Dixon methods. As described473

above, VaT12D is created by simply resampling VaT12 in the Dixon coordinate space, which474

has a coarser slice thickness, using appropriate blurring and nearest neighbour interpolation.475

Although movement between the Dixon and T1w or T2w scans could explain this disparity,476

registering the volumes did not improve the results. The resampling process appears to477

amplify the difference between VaT12 and VmD or VsD, but we have not analysed this478

further, given that it is a relatively small effect.479

It would, of course, be interesting to compare the output of the VaT1T2 method di-480

rectly with manual segmentation of the high-resolution T1w dataset in its native refer-481

ence frame, without the need to down-sample. However, the workload involved in creating482

high-resolution manual segmentations is prohibitive. In the Supplementary Information, we483

report anecdotal results for five such cases with full high-resolution manual segmentations.484

Also of note from comparison of the scatter-plots of Figure 7 is that each of methods VsD,485
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VaT12D and VaT12 increasingly over-estimates the breast volume in comparison to VmD as486

the mean left and right breast size increases. This is most apparent for VaT12. The trend to487

larger error is, of course logical – similar percentage errors between the methods will result488

in greater absolute differences the larger the breast – but it is not currently clear why all489

methods are biased to over-estimate the volume in this region. Method VaT12D also under-490

estimates the breast volume for smaller breasts compared with the manual segmentation491

VmD and the reason for this, too, is unclear.492

The biggest discrepancy between analysis methods, as shown by the scatter plots, is in the493

assessment of mean breast water volume (and, hence, water fraction — data not shown). The494

VsD-FWsD and VaT12-FWsD methods both use Dixon source data and differ from VmD-495

FWsD only via the breast outline previously described. The methods all give very similar496

results (ICCs 0.995 and 0.992 in Table V). By contrast, the correlation between the Dixon-497

based VmD-FWsD and VaT12-FWaT1 is weaker, and the VaT12-FWaT2 result additionally498

shows a bias (Figure 8). However, it is important to note that the assumption that water499

fractions based on the Dixon method can be regarded as a gold standard for true parenchymal500

fraction is much less compelling than the previous assumption that VmD is the gold-standard501

volume. We justify our choice of VmD-FWsD as the method of comparison on the basis that502

it is consistent with previous work in the field49 (and indeed an improvement), but Ledger503

et al.52 have demonstrated that there is a significant degree of variability between different504

Dixon-based methods, depending on the exact design of the pulse sequence. It is unsurprising505

that a segmentation based on a completely different MRI contrast mechanism should be less506

highly correlated. What is nevertheless highly encouraging is that the correlation remains507

as strong as it is — the worst value reported in Table V is 0.920 — and this suggests that508

the use of MRI as a modality will prove to be a robust choice for breast analysis.509

A salutory lesson from the scatter graphs is the constant need for vigilance and appropri-510

ate quality control when processing large cohorts of data. During the review of this paper a511

referee noticed an outlier, which turned out to be the result of an easily-corrected error that512

caused the mask for the entire right breast to be missing. Such “edge” cases, occurring very513

infrequently, remain a significant challenge in the adoption of automated pipelines. Any514

requirement for manual inspection of each dataset to check the output negates to some ex-515

tent the advantages of fully-automated segmentation processes, and an appropriate balance516

needs to be determined for each application.517
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Another feature highlighted by all of these results is the problem inherent in the use of518

quantitative metrics such as Dice and correlation coefficients, which (despite their apparent519

calculation “accuracy”) are a very blunt tool for analysing a complex situation. Are all of520

the voxels that fail to overlap equally important? Is much of the difference between the521

observer and the automated methods in fact caused by the choice of how much of the axilla522

is included and is this region of any significance biologically?523

A first reading of the coefficients presented here suggests that the VsD breast outline524

segmentation, followed by the FWsD tissue segmentation method is the best-performing of525

the computer-aided tools presented here. But is it the most suitable? Ultimately, the choice526

of segmentation method needs to weigh up the following points:527

• To what extent does the application demand a segmentation that is as good as that528

of an expert radiologist? Two extremes here might be the planning of radiotherapy529

treatment for an individual patient, where high correspondence is vital, and the cal-530

culation of epidemiological parameters for a Big Data cohort, where errors might well531

“average out.”532

• To what extent is the ground truth knowable? For a given set of intra- and inter-533

observer performance metrics evaluated on a test cohort, what performance thresholds534

should be regarded as “acceptable” for automated segmentations?535

• How widely available are the required source data? As previously noted, the Dixon536

protocol is not routinely included in clinical examinations, thus limiting the applica-537

bility of breast density measurements based on the VsD-FWsD method.538

• How robust is the method?539

• To what extent are speed, convenience and consistency of method to be preferred over540

accuracy?541

In our case, consideration of all of the above led to the use of the VaT12 method, rather542

than VsD, for segmentation of the remaining 300 cases in the cohort (results not presented).543

This choice was made largely on the basis of improved automation and on the epidemiological544

evidence from the 200-strong training and test datasets, as described in Section III C, where545

key epidemiological parameters were found to be identical, within confidence limits, for both546

methods.547
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V. CONCLUSION548

We have presented what we believe to be the first detailed comparison on a large,549

population-based cohort of two methods of breast-outline segmentation based on completely550

different approaches. These have been coupled with two methods of fat-water discrimination551

based on fundamentally different MR contrast mechanisms. All combinations of the meth-552

ods studied are in very strong agreement, as seen both visually and via inter-class correlation553

coefficients, and are suitable for large-scale epidemiological analysis. We have discussed the554

assumptions behind the methods and posed a number of general questions that we believe555

need to be answered each time a decision is made on whether and how to perform automated556

segmentation.557
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(a) (b)

(c) (d)

FIG. 8: Scatter plots of mean left and right breast water percentage for the different
methods in comparison with manual segmentation on Dixon images followed by percentage

water estimation the using semiautomated Dixon image method: (a) semiautomatic
segmentation of Dixon images followed by percentage estimate from Dixon image data

(VsD-FWsd); (b) volume via automated segmentation from T1- and T2-weighted images
transformed to Dixon reference frame (VaT12FD) followed by semiautomated percentage

estimate from the Dixon data (VaT12D-FWsd); (c) volume obtained from T1- and
T2-weighted images in native 3-D reference frame, followed by automatic percentage

estimate from T1-weighted data (VaT12-FWaT1); (d) as (c), but with the water
percentage estimated from the T2-weighted data.
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(a) (b)

(c) (d)

FIG. 9: Scatter plots of mean left and right breast water volumes in cm3 for the different
methods in comparison to VmD-FWsD. For nomenclature see caption to Figure 8.
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FIG. 10: Results of epidemiological analysis. Relative change in geometric means of MR
breast volume and percent water in relation to a unit increase, or category change, in each

breast composition correlate variable. 1Models adjusted for current age in months and
BMI at MR scan, where appropriate. 2Models restricted to young women for whom

mammograms from their mothers could be retrieved (n=33) adjusted for current age in
months and BMI at MR scan and maternal age at mammogram and BMI in 2010

(median=3y (IQR = 1.5y) prior to mammogram). For further details, see Supplementary
Information.
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