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Microenvironmental niche divergence shapes
BRCA1-dysregulated ovarian cancer morphological
plasticity

Andreas Heindl"2, Adnan Mujahid Khan"2, Daniel Nava Rodrigues?, Katherine Eason® 2,
Anguraj Sadanandam??, Cecilia Orbegoso® °, Marco Punta', Andrea Sottoriva® !, Stefano Lise',
Susana Banerjee>® & Yinyin Yuan"?

How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly
understood. Here, we conduct automated histology image and spatial statistical analyses in
514 high grade serous ovarian samples to define cancer morphological diversification within
the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei
diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with
omics and clinical data reveals a relationship between morphological diversification and the
dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within
the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic
infiltration within diversified zones compared with other tumor zones, suggesting that even
immune-hot tumors contain cells capable of immune escape. Our findings support a model
whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA
repair promotes ovarian cancer progression through positive selection by immune evasion.
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lasticity of cancer nuclear shape is essential for cells to

assume a variety of critical functions such as migration and

metastasis?. Both external signals from the micro-
environment and internal changes in the nuclear envelope com-
ponents can trigger alterations in nucleus shape?*, and
deregulate important pathways such as DNA repair’~’. Con-
versely, cancer cells can actively engage in overcoming micro-
environmental constraints such as tissue stiffness®® by adapting
their shapes. Although nuclear shape irregularity is routinely
assessed in diagnostic histology and the nuclear envelope is under
intense investigation, little is known about the microenviron-
mental signals that shape cancer nuclear morphology in human
tumors in situ. This is largely due to difficulties in reproducing
complex human tumor microenvironments in vitro, and a lack of
quantitative large-scale data on cancer morphology and spatial
variability of the human tumor microenvironment.

Changes in expression of nuclear envelope components
including Lamin A/C!0-12, Emerin!3, and NUP88'* have been
identified in ovarian cancer. High-grade serous ovarian cancer
(HGSOC) is the most common histological subtype of
ovarian cancer, with a staggeringly low five-year survival rate of
30-40%!>16. Previously, we proposed a HGSOC subtyping
method based on the abundance of stromal cells and lymphocytes
in histology samples!”. Genomic analysis also revealed prognostic
molecular subtypes with distinct microenvironmental features
such as the Immunoreactive subtype!®1°, However, influences
from the microenvironment should be regional, dictated by the
high spatial heterogeneity in solid tumors??-22. Conventional
histology and genomic analysis typically do not reveal spatially
explicit information about the microenvironment. Therefore, how
regional differences in microenvironmental selective pressures
actively shape cancer nuclear morphology has not been studied.
Unbiased, large-scale analysis of cancer morphology within the
spatial context of the local microenvironment has the potential to
generate more powerful predictive models and identify new tar-
gets for this aggressive cancer type. Such studies can offer new
understanding into the adaptive advantage of cancer morpholo-
gical plasticity, akin to understanding the morphological diversity
of a species across geographical locations in ecology.

In this paper, we developed a new way of studying how
microenvironmental niches shape cancer nuclear morphology by
combining machine learning, digital pathology and spatial sta-
tistics. Integration of morphological and molecular data in 514
HGSOC tumors: 1) led to the identification of cancer morpho-
logical diversification as a spatial measure implicated in dereg-
ulation of DNA repair, loss of nuclear integrity and increased
disease mortality; 2) provided empirical evidence that a sub-
population of cancer cells with morphological diversification
could possess a selective advantage in locally immunosuppressive
microenvironments; 3) supports a model of morphological plas-
ticity as a tumor ecological process with profound clinical
implications.

Results

Spatial mapping of morphological diversification. To enable
single-cell classification of hematoxylin & eosin (H&E)-stained
whole-tumor histology slides for HGSOC, we developed an image
processing pipeline, building on our previous studies!”>??
(Methods, fig. 1a). Stain normalization?* and automated artefact
detection were implemented to account for the high levels of
variability in The Cancer Genome Atlas (TCGA)?® images. On
average, 184,541 cancer cells (standard deviation +152,271),
34,923 lymphocytes (+31,114) and 39,610 stromal cells (+35,443)
were identified, with quantitative morphological analysis, in each
whole-section sample. A total of 106,620,458 cancer and

40,559,923 microenvironmental cells was identified in the entire
cohort. We subsequently tested the accuracy of our pipeline with
five orthogonal data types. First, the balanced accuracy as an
average of specification and sensitivity of our classifier was 80.6%
for stromal cells, 85.0% for cancer cells, and 82.6% for lympho-
cytes (fig. 1b, Methods). Secondly, automated cell scoring using
image analysis was highly correlated with the independent scor-
ing provided by TCGA pathologists (fig. 1¢) (lehirdly, using gene
expression data and enrichment analysis?®~28, we identified sig-
nificant associations between cell abundance and relevant func-
tional pathways and biological processes including cell cycle and
checkpoints for cancer cells, chemokine and leukocyte transen-
dothelial migration for lymphocytes, and matrisome and collagen
formation for stromal cells (Supplementary Table 1), supporting
the biological relevance of the image analysis results. Next, tumor
purity measures from gene expression-based method ESTIMATE
and copy number-based ABSOLUTE correlated with tumor cel-
lularity estimated by image analysis (ESTIMATE Spearman’s
rho = 0.44, p =0; ABSOLUTE, rho =0.43, p =0). These corre-
lations were higher than the correlations between molecular
measures and pathologists’ scores (Spearman’s rho=10.31 for
ABSOLUTE and pathologist, rho=0.35 for ESTIMATE and
pathologist). Finally, high spatial and sample-level correlations
between H&E-based estimates and immunohistochemistry (IHC)
sections of cancer, lymphocyte, and stromal markers on a vali-
dation set further demonstrated the validity of automated H&E
image analysis (Fig. 1d-f, Supplementary Data 1, Supplementary
Figure 1 and Methods).

Based on the morphological features and spatial distribution of
cancer cells, we used spatial tessellation to partition tumors into
non-overlapping zones, followed by a spatial statistical signifi-
cance test to identify zones where cancer nuclei diversified in
shape (Methods, Fig. 1g). On average, there were 20 diversifica-
tion zones (+8) per tumor when diversification was present, and a
diversification zone contains 350 (£194) cancer cells. 53.3% of the
tumors (276/514) presented at least one morphological diversi-
fication zone.

Disruption of nuclear envelope integrity in diversified tumors.
We first tested if known relevant nuclear envelope components in
ovarian cancer were deregulated according to cancer nuclear
morphological diversification, including LMNA, Lamin Bl and
B2, Emerin, nucleoporins NUP88 and NUP153%. The presence of
morphological diversification zone was associated with increased
expression of LMNA and decreased expression of NUP88 and
NUPI153 (Fig. 2a), although not with LMNBI/2 or Emerin
expression (p>0.05, Kruskal-Wallis test). These associations
remained significant in whole transcriptome differential expres-
sion analysis after multiple testing corrections (Supplementary
Data 2). However, within the diversified patient group, the frac-
tion of diversified zones among all zones did not further correlate
with the expression level of these genes (p>0.05). In addition,
tumors presented with at least one morphological diversification
zone were less likely to be immune-high tumors based on
microenvironmental composition from histology image analysis
(Fig. 2b, Supplementary Figure 2). Consistent with this, less
Immunoreactive (p=15.37x 10, Fisher’s test) tumors were
found to present morphological diversification (Fig. 2b). On the
other hand, our classification of morphological diversification
presence was not influenced by tumor size, debulking status, and
tumor cellularity (Supplementary Figure 3).

We then sought to determine the clinical implication of
morphological diversification in HGSOC. In both TCGA cohorts
defined by contributing sites, presence of morphological diversi-
fication was associated with poor overall survival (OS) but not
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Fig. 1 Our computational pipeline for the identification of cancer nuclear morphological diversification zones. a H&E-stained whole-tumor section slides
were digitized and stain normalized. Single cells were classified based on their morphology. Voronoi tessellation was employed to subdivide the tumors into
polygons. Morphologically diversified zones were detected using local Moran's | statistics. b An illustrative example of single-cell classification: cancer cells
(green), stromal cells (red), and lymphocytes (blue). Nucleus boundaries were generated by automated image analysis. Accuracy was assessed using
balanced average, which is the mean of sensitivity and specificity. Scale bar shows 20 pum. ¢ Jonckheere trend test of automated versus pathologist's cell
abundance scoring of cancer cells and stromal cells as a second method for validation. Boxplot center line, bounds of box and whiskers represent here and
henceforth median, inter-quartile range and extreme values (1.5 times inter-quartile range). d Our image registration pipeline for validating H&E image
analysis using serial IHC sections. An example of overlaying H&E-based cancer identification result (green points showing cancer-positive regions) on CK7
was shown. e Boxplot to show the spatial correlation between CK7 and H&E-based estimate of cancer cells, CD3 and lymphocytes, and SMA and stromal
cells in all IHC validation samples. f Spearman correlation of sample-level scores from H&E image analysis (Cancer%, Lymphocyte%, Stromal%) versus
IHC CK7, CD3 and SMA scores. g An illustrative example of running local Moran's | analysis: a tumor section was spatially divided using Voronoi
tessellation; cancer cell nuclei in each zone analyzed with respect to shape variability; and the resulting heatmap of shape data superimposed with
significance test results. Images are for illustrative purpose only and do not reflect actual size of the spatial zones. Heatmap colors represent shape
variability of cancer cell morphology in the spatial zone. Spatial zones identified to be morphologically diverse were outlined in green
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relapse-free survival (RFS) (Fig. 2c-d, OS Cohort 1: n =156, p =
0.026, HR=1.99 [1.08-3.66]; Cohort 2: n=355 p=0.016,
HR =1.39 [1.06-1.81]). In comparison, morphological measures
that were not spatially explicit were not prognostic (mean,
median and standard deviation of the shape feature: all p>0.1,
log-rank test), highlighting the importance of studying the spatial
variability in cancer morphology. Applying the same analysis to
lymphocytes and stromal cells showed no diversification for
lymphocytes and less frequent (19%) diversification for stromal
cells with no correlation with prognosis, indicating that
diversification was predominately a clinically relevant aspect of
cancer cell biology. Multivariate analysis further demonstrated
the independent prognostic value of diversification presence, after
adjusting for clinical variables including debulking status, age,
and microenvironmental features (Table 1). Importantly, the
fraction of diversified zones among all zones did not further
stratify the diversified patient group (p>0.05, log-rank test).
Therefore, the presence, independently on the quantity, of
morphologically diverse cancer cells could indicate clinically
relevant intra-tumor heterogeneity. We henceforth focused on the
binary classification of morphological diversification based on the
presence instead of quantity of diversification zones in this study.

Concordant deregulation of DNA repair in diversified tumors.
To decipher the molecular basis of morphological diversification,
we examined transcriptional, copy-number, mutation and
methylation profiles in TCGA. A concordant down-regulation of
key homologous recombination DNA repair genes in diversified
samples was evident. Among the top 10 genes ranked by differ-
ential expression analysis, RAD54L, FANCG, and BRCA1 formed
a co-expression network module together with DNA damage
checkpoint CHEKI, cell cycle gene CCNA2, GINS2 in DNA
replication and centrosomal protein CEP76 (Fig. 3a—c, Supple-
mentary Data 2). Enrichment analysis revealed cell cycle and
DNA repair Gene Ontology terms in down-regulated genes for
diversified samples (Supplementary Data 3). Although copy
number or methylation data alone did not add further informa-
tion on DNA repair (Supplementary Data 4-5), their integration
with gene expression revealed strong cis-driven effects from
copy number alterations (p <0.0001, ANOVA) but not methy-
lation (p>0.05, ANOVA) on the down-regulation of RAD54L
and FANCG (Supplementary Figure 4). Among all 33 known
oncogenic and suppressive drivers reported in HGSOC?’, only
BRCAI expression was associated with cancer morphological
diversification. In concordance with a previous report!8, BRCA1I
expression was lower in the epigenetically silenced group and
BRCAI mutated samples compared with the non-silenced and
wildtype group, respectively (Fig. 3d-f). However, diversified
samples were not enriched for mutations in any gene or BRCAI
methylation (p>0.05). This suggests that diversification is a
morphological marker of DNA repair dysregulation.

Indeed, morphological diversification could be used to further
stratify BRCAI-WT patients for OS and RFS (OS: p =0.0016,
HR =1.55 [1.18-2.04], RFS: p=0.017, HR =1.38 [1.06-1.80]),
but not the BRCAI-mutated group (p>0.05, log-rank test,
Supplementary Figure 5. By merging BRCAI and BRCA2
mutation status, we identified three major patient groups with
distinctly different prognosis: the BRCA1/2 mutated group with
the best prognosis (BRCAI/2-MUT compared with all other
samples: OS p = 2.82 x 107>, HR = 0.44 [0.30-0.66]), the BRCA1/
2-WT and diversification group with the worst prognosis (OS p
=5264x10"7, HR=1.83 [1.44-233]), and the intermediate
BRCA1/2-WT without diversification (e. BRCAI and RAD54L
expression were significantly lower in the BRCAI/2-WT,
diversified group than in the BRCA1/2-WT not-diversified group

and even the BRCA1/2-MUT group (Fig. 3h). Taken together,
these data emphasize the specificity of DNA repair dysregulation
as a major oncogenic process underlying morphological
diversification.

Unifying tumor microenvironment, cancer morphology, and
genetics. Because morphological diversity has been associated
with genetic intra-tumor heterogeneity3%31, we investigated the
association between tumor morphological diversification and
mutation burden (n=297). Mutation burden was not sig-
nificantly associated with diversification (p =0.079, Supplemen-
tary Figure 6A). However, high mutation burden was associated
with favorable OS and RFS (OS: p=0.003, HR=0.63
[0.47-0.86], RFS: p = 0.04, HR = 0.64 [0.47-0.87], Fig. 4a), which
may be explained by an increase of lymphocytic infiltration in
these samples (p=0.003, Kruskal-Wallis test, Supplementary
Figure 6B). While mutation burden, lymphocytic infiltration, and
diversification each held strong prognostic value, they indepen-
dently contributed to a combined model that was highly prog-
nostic (Fig. 4b-d, Supplementary Figure 7). This highlights an
opportunity for developing a clinical test to identify high-risk
patients by combining knowledge of tumor microenvironment,
cancer morphology and genetics.

Spatial interplay with lymphocytic infiltration. To further
investigate the interplay between cancer morphological plasticity
and the microenvironment, we focused on the Immunoreactive
subtype with the assumption that, in general, strong micro-
environmental influence existed in this subtype. Interestingly,
only within this subtype, diversification was associated with
increased lymphocyte abundance (Fig. 5a, Supplementary Fig-
ure 8). Consistent with this, CIBERSORT?? analysis using gene
expression data revealed increased plasma cells (p=0.022,
Kruskal-Wallis test) and, in smaller proportions, naive B cells
(p =0.034, Kruskal-Wallis test) in morphologically diversified
samples (Methods, Fig. 5b). Despite having an immune-hot
microenvironment, morphologically diverse tumors were more
aggressive, with 14.5% OS and 6.7% RFS at year 5 compared with
53.3% OS and 31.1% RES for tumors without diversification
(Fig. 5¢). The association between morphological diversification
and poor prognosis was reproducible in an independent valida-
tion set of HGSOC with high lymphocytic infiltration (n =29,
Fig. 5d). In contrast, none of the clinical variables tested,
including debulking, age and stage, as well as lymphocyte abun-
dance, was associated with OS or RFS within this subtype
(Table 2).

To further interrogate the relationship between immune
ecology and cancer morphological diversification, we subse-
quently performed spatial analysis within each tumor, and
identified a negative spatial correlation between morphological
diversification and zonal lymphocyte abundance that was
visually subtle but statistically significant (p=0.001, Jonc-
kheere trend test, Fig. 5e-f). Therefore, we speculated that
diversifying cancer cells evolved immune evasion to overcome
the high level of immune selective pressure in this subtype. We
first sought to identify molecular features that could inform the
underlying biology. However, diversification was not associated
with Arm/Chrom somatic copy number alteration (SCNA),
cytotoxic immune signature, mutation burden, CTLA4/PDI
expression, or predicted neoantigen burden (Fig. 5g, Supple-
mentary Data 6 and Methods). Nevertheless, only in the
Immunoreactive but not any other subtypes, diversified samples
had significantly higher expression of galectin-3, which
inversely correlated with BRCA1 expression (Fig. 5g, Supple-
mentary Data 2). Since galectin-3 has been previously
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Fig. 2 The biological and clinical relevance of morphological diversification. a Swarm plots for LMNA, NUP88, NUP153 expression in samples with and
without diversification. b Barplots illustrating the fraction of microenvironmental subtypes (left) and molecular subtypes (right) stratified by diversification.
¢ Kaplan-Meier curves to show the prognostic value of diversification in OS for TCGA cohort 1 and d cohort 2

Table 1 Prognostic value of morphological diversification in ovarian cancer using disease-free and overall survival. Only variables
found to be significant in univariate analysis were included in multivariate analysis

Type Variable RFS 10 year (n = 440) OS 10 year (n=511)
HR (CD) p Conc HR (CI) p Conc

Uni Debulking 0.75 (0.58-0.98) 0.031* 0.524 0.74 (0.57-0.96) 0.021* 0.543
Uni Age 1.01 (0.99-1.02) 0.327 0.531 1.02 (1.01-1.03) 0.0004** 0.599
Uni Stage 0.88 (0.52-0.42) 0.266 0.537 1.07 (0.48-0.34) 0.34 0.555
Uni Stromal-high 1.50 (1.13-2.00) 0.005* 0.515 1.22 (0.90-1.64) 0.203 0.515
Uni Lymphocyte-high 0.74 (0.55-0.99) 0.041* 0.521 0.66 (0.48-0.91) 0.01* 0.535
Uni Immunoreactive 0.67 (0.5-0.92) 0.013* 0.535 0.7 (0.5-0.96) 0.035* 0.518
Uni Diversification 1.28 (1.01-1.61) 0.038* 0.518 1.45 (1.14-1.85) 0.0022* 0.538
Multi Debulking 0.73 (0.56-0.95) 0.027* 0.557 0.77 (0.59-1.02) 0.064 0.622

Age - - 1.02 (1.01-1.03) 0.0003**

Stromal-high 1.21 (0.89-1.64) 0.22 - -

Lymphocyte-high 0.74 (0.53-1.04) 0.08 0.70 (0.50-0.97) 0.034*

Diversification 1.17 (0.92-1.51) 0.193 1.32 (1.02-1.71) 0.03*

*p <0.05; **p <0.01

Diversification, patients with at least one diversification zone; Uni, univariate Cox regression; Multi, multivariate Cox regression; Conc, concordance; HR, hazard ratio; Cl, confidence interval

implicated in immune evasion by inducing T cell apoptosis3334,

we examined its expression within the immune contexture in a
validation sample set. This was achieved by imposing spatial
tessellations from H&E morphological diversification analysis
onto galectin-3 IHC images, which enabled direct spatial
analysis to test the relationship between diversification and
lymphocyte abundance as spatial variables (Fig. 5h, Methods).

Overall, a negative spatial relationship between galectin-3
expression on cancer cells and CD3 + cells was identified
(mean Spearman’s rho= —0.40). In addition, we observed
galectin-3 expression at the interface between cancer and
lymphocyte aggregates (Fig. 5i-j, Methods, Supplementary
Data 1). These preliminary data support the role of galectin-3
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Fig. 3 Cancer morphological diversification and DNA repair. a Density plot showing the distribution of log-fold change in gene expression that significantly
differed between diversified and non-diversified samples. Two clusters were identified using Gaussian mixture models, which represented down- and up-
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°

regulated gene clusters. b The gene module formed by highly co-expressed genes (cor > 0.38, p < 0.001) within the top 10 genes in the differential
expression analysis. ¢ Boxplots to illustrate the difference in BRCAT, RAD54L and FANCG expression in samples with and without diversification.

d Scatterplot illustrating the distribution of BRCAT expression according to BRCAT methylation status with contours from unsupervised clustering identifying

the BRCAT epigenetically silenced group (Cluster 1). e Beeswarm plot to show the distribution of BRCAT expression in the two clusters shown in

d. f Beeswarm plot to show significantly lower expression of BRCAT in a small number of samples with BRCAT mutation (germline and somatic). g Kaplan-

Meier curves depicting the differences in OS for patients stratified by BRCA1/2 mutation status (wildtype WT or mutated MUT) and morphological
diversification. h Boxplots showing the differences in BRCAT and RADS54L expression according to the three patient groups in G
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Fig. 4 Integrated model of mutation burden, lymphocyte abundance and morphological diversification. a Kaplan-Meier curves to show the difference in OS
according to mutation burden. b Kaplan-Meier curves to show the difference in OS according to morphological diversification. € Kaplan-Meier curves for
the combined model consisting of lymphocytic abundance, mutation burden and morphological diversification. High-risk group included the patients with
low mutation burden and lymphocyte abundance, but when they were in disagreement (one high and the other low), morphological diversification was
present. d Barplot showing the model concordance (C-index) for individual measures and combined

as a potential immune suppressor in HGSOC, which warrants
further investigation.

Discussion

In this study, we investigated the spatial heterogeneity of cancer
cell nuclear morphology in HGSOC. This led to the identification
of tumor molecular, spatial and ecological forces that could
influence morphological diversification over space. Under-
standing morphological diversity within the spatial context of
ecological environment was fundamental to the discovery of
Darwinian evolution. However, studying complex morphology of
cancer cells within the tumor microenvironment is particularly
challenging, due to the high microscopic complexity in human
tumors and limitations in model systems in representing this
complexity. By developing a systems approach to define mor-
phological diversification of cancer nucleus, we demonstrated that
the presence of morphologically diverse cancer cells predicted
poor overall survival, an observation that cannot be explained by
known clinical and genetic factors in HGSOC. About half of the
samples contained diversified zones, and within this subset,
increased number of such zone did not further correlate with

survival, suggesting that risk did not increase with abundance but
pertained to the presence of morphologically diverse cells. This is
in line with the paradigm that cancer evolution is often driven by
rare but significant events, for example minor subclones that
drive progression and resistance?. In addition, when morpho-
logical data were averaged for all nuclei within the tumor, no
prognostic value was found, underscoring the importance of
examining the spatial heterogeneity but not tumor average of
cancer morphology.

Morphological diversification was associated with dysregula-
tion of LMNA, NUP88, and NUPI53, which are key genes in
maintaining nuclear envelope architecture and structural integ-
rity>2%38, but not Lamin B1/B2. This may be explained by the
specificity of the nuclear pore protein NUP88 in binding the tail
domain of LMNA but not of Lamin B1/B23°. The data points
towards the disruption of NUP88 functions in diversified samples,
which can induce aneuploidy formation and tumorigenesis*(. In
addition, depletion of NUPI53 can result in impaired post-mitotic
assembly of the LMNA, leading to a polymorphic, lobular nuclear
shape30-37. Therefore, these molecular data support the biological
relevance of morphological diversification.
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Furthermore, our findings highlight morphological diversifi-
cation as a BRCAI-related process of disease progression in
HGSOC. Concordant down-regulation of key DNA repair genes
was identified in diversified samples. RAD54L, FANCG, BRCAI,
and DNA damage checkpoint CHEKI were among the most
significant genes in differential expression analysis and formed a

D Rest of the tumor

Cancer cells
©2

co-expression gene module. FANCG is one of the six genes
associated with Fanconi anemia that governed the Fanconi ane-
mia-BRCA (FANC-BRCA) pathway together with BRCAI/24L.
Disruption of this pathway can induce cisplatin resistance?!,
providing a potential explanation for the poor prognosis of
morphologically diverse samples. Paradoxically, deficiency of
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Fig. 5 Subtype-specific analysis of morphological diversification identifies potential immune evasion in the Immunoreactive subtype. a Swarmplot to
illustrate the difference in lymphocyte abundance according to morphological diversification within the Immunoreactive subtype. b Difference in immune
composition according to diversification using CIBERSORT. Proportions of naive B cells were small and therefore invisible. ¢ Kaplan-Meier curves to
illustrate the difference in OS and RFS according to diversification in Immunoreactive patients. d Kaplan-Meier curves to illustrate the difference in OS and
RFS according to diversification in a validation set of 29 HGSOC with high lymphocytic infiltration. Color scheme follows ¢. e Violin plot showing a visually
subtle spatial trend of decreased lymphocytic infiltration in diversified zones compared with their immediate neighborhood and the rest of the tumor.

f Schematic drawing illustrating decreased lymphocytic infiltration in the diversification zone, despite an accumulation of lymphocytes in the immediate
neighborhood. g Differences in Arm/Chrom SCNA, cytotoxic immune signature score, CTLA and PD1 expression, mutation burden, neoantigen burden,
BRCAT and galectin-3 gene expression in samples with/without diversification. h An illustrative example of spatial correlation analysis of galectin-3
expression and morphological diversification. Spatial tessellations from H&E morphological diversification analysis were superimposed onto a galectin-3
IHC image of a serial slide. Only zones containing galectin-3 positive cells were shown for illustrative purpose. Red points denote zones without
diversification, and green points denote zones with diversification. Boxplot shows the difference in galectin-3 expression between all diversified and non-
diversified zones across validation samples. i 3D spatial map to illustrate the spatial relationship between galectin-3 and CD3 + cells in a sample. j An

illustrative example of galectin-3 expression at the cancer-lymphocyte interface. Scale bar shows 30pm

Table 2 Prognostic value of morphological diversification in the Immunoreactive subtype
Type Variable RFS 10 year OS 10 year

HR (CI) p Conc HR (CI) p Conc
Uni Diversification 1.94 (1.1-3.44) 0.023* 0.575 1.93 (1.02-3.65) 0.044* 0.528
Uni Debulking 1.01 (0.54-1.92) 0.97 0.498 0.71 (0.37-1.36) 0.31 0.578
Uni Age 0.98 (0.96-1.01) 0.227 0.501 1.02 (0.99-1.05) 0.073 0.604
Uni Stage 1.22 (0.44-3.41) 0.707 0.512 1.77 (0.74-4.22) 0.189 0.534
Uni Lymphocyte abundance 0.86 (0.49-1.5) 0.588 0.52 0.85 (0.47-1.54) 0.596 0.561
*p < 005

RADS54L, CHEKI, and BRCAI is known to induce sensitivity to
PARP inhibition and correlate with good prognosis, due to their
involvement in the repair of double-strand breaks by homologous
recombination*?43, However, BRCA-WT patients with diversifi-
cation had significantly lower BRCAI and RADS54L expression
and worse overall survival, even when compared to the BRCA-
MUT group. Therefore, although the association between BRCA1
and tumor morphology has been previously reported*4, mor-
phological diversification represents a novel subtype with dysre-
gulated DNA repair functions and is urgently in need of new
treatment strategies.

In addition, our proposed morphological features of HGSOC,
identified using fully automated tumor spatial analysis, provided
independent prognostic value to existing prognostic features of
HGSOC such as lymphocytic infiltration and mutation burden.
Together, these results support the development of a new clinical
test to identify high-risk patients by building on the biological
relevance and interactions among the tumor microenvironment,
cancer morphology and genetics. We postulated that evasion of
immune recognition could be responsible for the poor prognosis
of morphologically diverse tumors. In the Immunoreactive
subtype, morphological diversification correlated with poor
prognosis, despite an increase of lymphocytes including plasma
and naive B cells that were favorable prognosticators in
HGSOC*#. While none of the clinical variables, SCNA,
mutation burden or checkpoint expression can explain this dif-
ference in prognosis, we uncovered a negative spatial relationship
between diversifying cancer cells and immune infiltration, indi-
cating immune evasion in localized tumor zones. This was
achieved by examining spatial association between morphologi-
cal diversification and lymphocytes within each tumor. Hence,
we demonstrated that spatial analysis performed in human
tumors, based on the emerging concept, space as a surrogate, can
be a useful tool for maximizing inference about ecological
processes??,

Increased expression of galectin-3 in Immunoreactive samples
supports a speculative theory of immune evasion for diversifying
cells. We uncovered preliminary evidence that indicates a role of
galectin-3 in immunosuppression in HGSOC, in line with its
known function in inducing T cell apoptosis in melanoma3%. Our
quantitative data, while limited by access to small validation
cohorts, demonstrated a negative spatial relationship between
galectin-3 expression and CD3+ cell infiltration. These results
call for further investigations to elucidate the mechanism by
which diversifying ovarian cancer cells mediate and influence
immune escape. Taken together, our data support a model in
which a subpopulation of cancer cells, morphologically diversified
in shape, is capable of immune evasion within an immune-hot
tumor. Such cancer cells may co-evolve within a locally immu-
nosuppressive tumor microenvironment, bypassing immune
surveillance and promoting disease progression as a consequence.
Identifying factors driving immune escape in these tumors will
lead to improved understanding in immunosuppression and
advances in immunotherapy for maximum therapeutic gain in
HGSOC.

Methods

Patient selection. This study included 514 patients with International Federation
of Gynecology and Obstetrics (FIGO) stage II-IV HGSOC from TCGA, for whom
H&E-stained whole-tumor sections from treatment-naive tumor specimens were
available. All specimens were obtained with consent from the relevant institutional
review board participated in TCGA. Samples were split into a discovery cohort that
included the two biggest centers (University of Pittsburgh and Memorial Sloan
Kettering, n = 159) and a validation cohort (remaining centers, n = 355). After
surgery, all patients received a platinum agent and 94% of patients also received a
taxane. Clinical parameters included OS and RFS, age, recurrence, FIGO stage,
debulking and platinum sensitivity status (Table 3). OS was censored at the date of
death or, for living patients, the date of last contact. RFS was defined as the interval
from the date of initial surgical resection to the date of progression, date of
recurrence, or date of last known contact if the patient was alive and had not
recurred. For validating survival analysis in the Immunoreactive subtype, a set of
HGSOC samples (1 = 29) with prominent immune infiltration was used!”. For
THC experiments, a second validation set of treatment naive, stage-matched
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Table 3 Patient clinicopathologic characteristics stratified
by presence/absence of morphological diversification

Morphological diversification

Factor Present Absent P

Number 276 238

Analyzed subimages 57109 84322

Cancer cells 55,059,416 51,561,042

Lymphocytes 10,303,767 8,979,007

Stromal cells 12,266,456 9,010,693

Age 0.91

Median 58 59

Range (36-87) (26-87)

Death 0.003*

No 132 (47.8%) 92 (38.7%)

Yes 144 (52.2%) 145 (60.9%)

Unknown 0 (0%) 1(0.4%)

Recurrence 0.002*

Yes 163 (59.1%) 126 (52.9%)

No 2 (0.07%) 12 (5%)

Unknown 111 (40.2%) 100 (42%)

Molecular subtype 1.3x10
—06x%

Differentiated 95 (34.4%) 33 (13.9%)

Immunoreactive 40 (14.5%) 60 (25.2%)

Mesenchymal 68 (24.6%) 34 (14.3%)

Proliferative 73 (26.4%) 56 (23.5%)

Unknown 0 (0%) 55 (23.1%)

FIGO stage 0.018

lla 1(0.4%) 2 (0.8%)

11s) 3 (1.1%) 1(0.4%)

llc 6 (2.2%) 13 (5.5%)

Illa 6 (2.%) 0 (0%)

Illb 10 (3.6%) 13 (5.5%)

Illc 199 (72.1%) 180 (75.6%)

v 48 (17.4%) 28 (11.8%)

Unknown 3 (11%) 1(0.4%)

Debulking 0.38

Optimal 170 (61.6%) 159 (66.8%)

Suboptimal 74 (26.8%) 57 (23.9%)

Unknown 33 (1.6%) 22 (9.2%)

Platinum status 0.23

Resistant 55 (19.9% 28 (11.8%)

Sensitive 110 (39.9%) 79 (33.2%)

Unknown 1M1 (40.2%) 131 (55%)

*p < 0.05

samples (n = 7) was obtained with appropriate ethical approval under the Royal
Marsden Hospital NHS Foundation Trust study CCR3705 (Supplementary Data 1).

IHC staining. All staining was performed on the Leica Bond III platform using
Leica Bond Polymer Refine Detection (Leica, DS9800). Blocking of endogenous
peroxidase and non-specific staining was performed as per kit instructions. Fol-
lowing on-board dewax, and epitope retrieval (HIER) where necessary, primary
antibody was applied for 15 min, followed by rabbit anti-mouse post-primary and
anti-rabbit polymer for 8 min each, all at ambient temperature. Epitope retrieval
was performed on-board at 99 C using either Leica Epitope Retrieval Solution 1 or
2 (Leica, AR9961, AR9640; low and high pH solutions respectively), for the times
shown below.

Protocols for individual antibodies were as follows: CK7 (Leica, mouse clone
RN7, cat. PA0138) used as supplied (ready-to-use reagent, with no further
dilution), HIER with ER2 for 20 min; CD3 (Leica, mouse clone LN10, cat. NCL-L-
CD3-565), used at a dilution of 1/100, HIER with ER2 for 20 min; CD8 (Leica,
mouse 4B11, cat. PA0183) used as supplied, HIER with ER2, 20 min; CD20
(Agilent Technologies, mouse L26, cat. M075501-2) used at 1/100, HIER with ERI,
20 min; SMA (Leica, mouse sm-1, cat. PA0943) used as supplied, no epitope
retrieval required; Galectin-3 (Leica, mouse 9C4, cat. PA0238), used as supplied,
HIER with ER2, 20 min.

H&E image analysis. 514 H&E whole-tumor section images were subjected to fully
automated image analysis for single-cell classification at a resolution of 0.5 microns
per pixel. Each sample was split into non-overlapping tiles with a size 2000 x 2000
pixels using bfconvert from the open microscopy environment*$. Stain normal-
ization was performed using a nonlinear mapping approach?* to accommodate the
high staining variability in the samples resulting from variations in tissue pre-
paration and stain reactivity. Single cell detection and classification were performed
using open source R package CRImage?? with an ovarian cancer cell classifier!74°.
In brief, watershed segmentation for hematoxylin positive nuclei was performed for
cell detection, and classification was based on a support vector machine? with 97
morphological and textural features. Validation of the automated cell identification
was performed using n = 894 single cell annotations (stromal cells #n = 209, cancer
cells n =501 and lymphocytes # = 184) from 32 images provided by a pathologist
(DNR) blinded to image analysis results, pathological scoring of cancer and stromal
cells, gene expression and copy-number data provided by TCGA>L.

Validation of H&E image analysis with serial IHC sections. We developed an
image analysis pipeline to validate H&E image analysis using multiple serial IHC
sections, which combined automated image registration, IHC image and spatial
analysis. In brief, multiple sections were cut and placed in the same orientation on
the slides, with the H&E midway through the series. The remaining sections were
stained with CK7, CD3, CD8, CD20, SMA, galectin-3, respectively. These were
digitalized and spatially aligned to H&E using an image registration algorithm®2.
The accuracy of image registration was evaluated (average Dice coefficient = 0.91).
Results of H&E-THC correlation were reported as sample-level cross-correlations
between the two assays and within-sample spatial correlations at a spatial resolu-
tion of 64 um (~8-10 cells) (Supplementary Data 1).

THC image registration to H&E was performed using a two-stage approach: an
initial rigid alignment followed by a non-linear refinement. The first stage of the
registration was performed by aligning the external boundaries of the tissue
sections2. The initial rigid registration was more likely to be inaccurate at high
resolution, due to non-linear physical distortions that occur during sectioning. The
second stage process corrected for this by performing a refinement procedure at
high resolution to generate a non-linear registration transformation, based upon
the initial rigid registration. The refinement was a local rigid alignment of salient
tissue structures, such as nuclei clusters, and was performed on 500 x 500 pixel
regions, sampled at a resolution of 0.46 microns/pixel. Coordinates of the corners
of each region of interest were used as reference points to find the best-fit non-
linear transformation. Here a 4th degree polynomial transformation was used. The
accuracy of image registration was assessed. We used the DICE coefficient to
measure the overlap of tissues after registration (Supplementary Data 1). DICE
similarity coefficient is a spatial overlap index and a reproducibility validation
metric, defined as twice the overlap area divided by the sum of two tissue areas. Its
value ranges from 0, indicating no spatial overlap between two sets of binary
results, to 1, indicating complete overlap.

All THC sections were first mapped onto the H&E section using the
transformations generated from the registration process. Stain separation®® was
applied to the registered RGB images to extract the intensities of the hematoxylin
and IHC stains. Thresholding was applied to IHC stain channel to identify regions
of positivity for each marker according to controls. Tissue regions belonging to the
slide background, tissue folding, staining artefacts were not considered while
calculating THC scores. Automated IHC scoring was performed on 10 x 10 regions
of interest, sampled at a resolution of 6.4 microns/pixel. Regions were scored as the
percentage of positive cells. In the case of galectin-3 scoring, instead of a 10 x 10
neighborhood, all the pixels that were inside the edges of a particular Voronoi
tessellation were considered to calculate the positivity score. For sample-level
analysis, regional scores were averaged.

We then estimated CK7, CD3, and SMA positivity and calculated their spatial
correlation with cancer, lymphocyte and stroma ratios estimated from the H&Es,
respectively. We observed a positive spatial correlation between CK7 and cancer
ratio (average Pearson corr = 0.74 (+0.03)) calculated from 7 ITHC samples.
Similarly, we observed a positive spatial correlation between CD3 positivity and
lymphocyte (average Pearson corr = 0.67 (+0.09)) calculated from 7 IHC samples.
Lastly, we observed a positive spatial correlation between for SMA, positivity and
stroma ratio (average Pearson corr =0.70 (£ 0.06)) calculated from 7 IHC
samples. The lowest correlation was observed between lymphocyte and CD3, as
expected, since only a subset of lymphocytes were T cells. Because the CD20 stain
was largely negative across all these samples, and CD8 was mainly used to confirm
its presence among CD3 + cells, we did not use them for quantitative analysis.

Spatial analysis of tumor morphology. Spatial partitioning of tumor sections into
tumor regions was achieved using Voronoi tessellation. Because Voronoi tessella-
tion mimics naturally emerged patterns, it is therefore particularly useful for stu-
dies of ecology>*, and we have recently demonstrated its applicability in histology
analysis?>>>. Randomly selected cancer cells were used as seeds to create polygons
that contain all their closest neighbors. Let K be a set containing all cancer cells,
and let (Cy)rex be the coordinates of a cancer cell k. A Voronoi region Ry, generated
by cancer cell Cy contains all cells P that are (1) not seeds and, (2) closer to Cy than
to any other seed C;, j # k. Let d(Q;Q)) be the Euclidean distance function between
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two cells Q; and Q;, then

R, = {x € Pld(x,C,) < d(x7Cj),Vj¢k}. 1)

The aim of spatial tessellation is to divide tissue areas into small regions. We
have previously evaluated different methods for spatial tessellation, the most
common ones being square and Voronoi®®. Here we chose to use Voronoi due to
its property in mimicking naturally arising pattern and generating a more
uniformly distributed number of cells per region, compared with square
tessellation. We used randomly selected cancer cells as seeds, such that the number
of cancer cells from the Voronoi regions follows a normal distribution. Because the
morphology of cancer cells within each spatial region was the focus here, we did
not specifically account for vessels or clear areas.

Informally, this means that for each cancer cell selected as a seed, the
corresponding Voronoi region consists of all cells that are closer to this cancer cell
(seed) than to any other seed in the tissue. The number of cancer cells N selected as
seeds scaled non-linearly with tissue area and was computed by

N— Tissu; area? @)

resulting in an average of 527.5 zones per tumor. Equation 2 determines the
number of regions and, by choosing cancer cells as seeds, also ensures that there are
cancer cells within the regions. In addition, cancer-dense regions are more likely to
have seeds sampled. Therefore, it helps dissect regions with densely packed cancer
cells. Because the main objective of this study is to identify spatial diversification of
cancer nucleus morphology, the size of region should scale with the tissue size
instead of the number of cancer cells, to avoid bias towards tissue size. For example,
if it scales with the number of cancer cells, for tumors with significant fibrotic
content, there will be fewer regions and therefore results would skew the spatial
analysis result: existing spatial diversification in cancer morphology may not get
detected due to low spatial resolution.

Statistical identification of morphological diversification zones. Diversification
zone identification was carried out by computing local Moran’s I°7, an indicator
of spatial autocorrelation for a specific spatial location. Local Moran’s I was
developed for the identification of spatial hotspots or outliers®’, and has been
extensively used in ecology due to several outstanding properties compared with
other methods®®-¢0, When applied to the shape feature data of cancer nuclei in
conjunction with their spatial locations, it can identify tumor regions containing
cancer nuclei with significantly different morphology compared with other regions.
Local Moran’s I for a region i is defined as

I = (Yi_f)zwij(Yj_?i)v (3)

j=1

where Y; is the variability of the shape feature for all cancer cells C; j—;..., in R;

derived by
Y, =SD (L
2

n*aCJ)’V’e{l""’”} (4)
where SD is the standard deviation function, pg; is the perimeter of the nucleus of
the jth cancer cell, ac; the nuclear area of the jth cancer cell and # the total amount
of cancer cells within the region R;. Y is the average of Y,,i€{1..m} for all regions in
the neighborhood of region R; and w;; is the spatial weight of the connection
between i and j. w;; is 1 if i is a neighbor region of j, and 0 otherwise. A region is a
neighbor to R; if they share a common edge or point. Local Moran’s I allows to
perform significance test against the null hypothesis of no spatial association, that
is, spatial randomness. Following Anselin®’, the significance test was carried out by
comparing the standardized Moran’ I statistics, z-scores,

A

K V/Var[l]’ ®)

to the standard normal distribution, using p = 0.05 as a threshold for significance
and adjusted with False Discovery Rate. This determined whether a zone presents
significantly different cancer nuclear morphology as compared to the global mean
and neighboring zones in the tumor. In Anselin®’/, Monte Carlo permutations were
recommended to obtain more accurate p-values compared with analytical methods,
as illustrated with an example study on 42 African nations. We have compared an
implementation of the Hope methodology®! with analytically obtained p-values for
cancer morphological diversification and found no significant difference or
advantage in using Monte Carlo simulations, possibily due to the large number of
observations obtained per tumor samples (on average 527.5 zones per tumor).

Pathological inspection. 50 samples were inspected by a pathologist. In some
cases (roughly 40%), increased pleomorphism could be observed in most of the
diversified regions. For the remaining cases there was no immediately obvious,

uniform feature that differentiates these two types of regions, suggesting that image
analysis can identify visually subtle features of tumor nuclear morphology.

Molecular data analysis. ESTIMATE®? and ABSOLUTE®? tumor purity data were
downloaded from®. ESTIMATE uses gene expression profiles of 141 immune
genes and 141 stromal genes to estimate tumor purity, stromal and immune scores
(based on TCGA Agilent array-based expression profiles of ovarian cancer n = 417
used for ovarian cancer in the original publication). ABSOLUTE uses somatic
copy-number data for inferring tumor purity. Copy number (n = 463), gene
expression (n = 455), methylation (n =433), mutation data and mutation burden
as the total number of somatic mutations (n = 297) were obtained from the Broad
Institute and cBioportal®>%. Differential gene expression analysis of samples with
and without diversification was performed using the R (v3.3.1) package limma®’
(v3.28.21) available via Bioconductor®. Gene set enrichment analysis was per-
formed using the R package HTSanalyzeR (v2.26.0). Multiple testing correction was
performed using False Discovery Rate®. Immune cell subset analysis was per-
formed using CIBERSORT?? and the most variable probe for each gene was
selected according to standard deviation. Gene expression was then deconvoluted
using the LM22 signature matrix32, which contains 547 genes for the identification
of 22 hematopoietic cell types. Statistical significance was assessed by generating p-
values from 200 permutations. Only the patient subset with immune abundance
greater than the median immune abundance and with internal filtering step p <
0.05 was considered for deconvolution analysis. Hypergeometric test was used for
copy number and mutation data analysis to identify specific alterations or muta-
tions enriched in morphologically diverse samples with multiple testing correc-
tions. Only Immunoreactive subtype contained sufficient number of samples after
filtering. BRCAI epigenetically silenced group was derived by clustering BRCA1
expression and methylation data using Gaussian mixture models’? following!8.

Galectin-3 expression and its relationship with CD3 expression and mor-
phological diversification. In all of these samples, we observed a negative spatial
correlation between galectin-3 expression and CD3 expression. To avoid the cor-
relation analysis being confounded by the spatial segregation of tumor and stroma,
only regions with at least 30% but no more than 70% tumor were used. We further
carried out spatial correlation analysis of tumor content and galectin-3 expression
but found no correlation (corr = 0.019), thereby excluding the possibility that the
correlation between CD3 and galectin-3 was due to stroma-tumor spatial division.
Correlation analysis between galectin-3 and CD3 was carried out using all regions
as such in a sample.

H&E morphological diversification analysis was performed as previously
described. 2/7 samples did not contain any diversified regions. Spatial tessellation
derived from this analysis was imposed onto galectin-3 IHC images after
registration. For each sample with diversification present, galectin-3 expression was
quantified for each region. All regions across 5/7 samples were pooled together for
testing the difference in galectin-3 expression as shown in Fig. 5h. Average galectin-
3 expression in diversified and non-diversified regions for each sample was listed in
Supplementary Data 1.

Survival analysis and statistical tests. Statistical analyses were performed in R.
Survival analysis was performed using the Kaplan-Meier estimate and the log-rank
test. Cox proportional hazards model was used for univariate and multivariate
survival analysis. Effects were expressed as hazard ratios (HR) with 95% confidence
intervals (CI). Kruskal-Wallis test was used to compare sets of continuous values,
Fisher’s exact test for categorical variables. The abundance of stromal cells/lym-
phocytes was quantified as the percentage of stromal cells/lymphocytes in all cells.
Microenvironmental subtypes were identified based on the percentage of lym-
phocytes and stromal cells for each tumor. Lymphocyte-high subtype was deter-
mined by high lymphocyte abundance (275%) and low stromal cell abundance
(<25%), such that the number of patients was similar to that of the Immunor-
eactive subtype. Similarly, the Stromal-high subtype was determined as samples
with low lymphocyte abundance (<25%) and high stromal cell abundance (>75%).
With continuous variables, a range of cutoffs at 30-70 percentiles at 1% interval
was searched to identify cutoffs that resulted in difference in survival. Zonal dif-
ference in lymphocytic infiltration was computed using all diversification zones,
their immediately adjacent neighboring zones and remaining zones, and the
Jonckheere trend test was used for testing spatial trends.

Neoantigen prediction. For 40 of the patients in the immunoreactive subtype, we
could download whole exome sequencing data from the TCGA website. Reads
extracted from the TCGA bam files were realigned to human build GRCh37
(hs37d5). Our protocol for annotating neoantigens is constituted of the following
steps: (i) variant calling in tumor and germline samples for each patient; (ii)
annotation of neopeptides generated by somatic variants; (iii) prediction of
patients” HLA-types; (iv) prediction of neoantigens using neopeptides from (ii) and
HLA-types from (iii) as input. Hereafter, we describe in details the different steps.

1. Variant calling
: we called both germline and somatic variants using a combination of
MuTect2’! and Platypus’2. We first ran MuTect2 (MuTect2 -R <hs37d5.fa
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> -I:tumor < tumor_bam_file > -:normal < normal_bam_file > ~dbsnp <
dbsnp_132_b37 leftAligned.vcf > —cosmic < hgl9_cosmic_v54_120711.vcf
> -0 < mutect_vcf_file >) and then used MuTect2 calls as priors for a joint
normal-tumor Platypus call (platypus callVariants-refFile<hs37d5.fa
> -bamFiles<normal_bam_file, tumor_bam_file > —output<somatic_vcf_file
> —source<smutect_vcf_file > -minPosterior = 0-getVariantsFromBAMs =
1-logFileName <log_file > -verbosity = 1). From the output of Platypus, we
assigned germline variants as follows: they had a PASS in the FILTER column
of the Platypus output, genotype quality GQ=10, germline sample genotype
different from “0/0”, germline coverage =10 and at least one germline variant
read. If more than one alternative variant satisfied these conditions and
appeared in the Platypus-assigned genotype, we considered only the one that
had the highest allele frequency. We filtered out variants found in segmental
duplication regions (genomicSuperDups.bed.gz). From the output of Platypus,
we assigned somatic variants as follows: we excluded variants that in the
corresponding germline sample had coverage lower than 10, genotype other
than “0/0”, genotype quality GQ < 10 or one or more reads carrying a variant.
Somatic indels were retained if they had PASS or alleleBias in the FILTER
column of the Platypus output; all other somatic variants we considered (see
below for a complete list) were retained if they had any among PASS,
alleleBias, Q20, QD, SC, and HapScore in the FILTER column. Further, any
somatic variant had to have in the tumor sample: genotype different from
“/.”, coverage>10, at least 3 reads carrying the variant. If more than one
alternative variant satisfied these conditions, we considered the one that had
the highest allele frequency among those that appeared in the Platypus-
assigned genotype or, if none appeared in the Platypus-assigned genotype,
simply the one with the highest allele frequency. Next, we filtered out somatic
variants with tumor content-adjusted allele frequency <0.15. We filtered out
variants found in segmental duplication regions (genomicSuperDups.bed.gz).
2. Neopeptide generation

: for neopeptide generation, we considered the following protein
sequence-modifying variants (following the VEP73 classification: variant_ef-
fect_predictor.pl -i<input_vcf_file > -o < output_vep_vcf_file > —cache-dir_
cache < dir_cache > —port < port# > —everything—force_overwrite-vcf): ~ mis-
sense_variant, inframe_insertion, inframe_deletion, frameshift_variant, sto-
p_lost and stop_gained. However, variants that additionally featured one or
more among splice_acceptor_variant, splice_donor_variant, start_lost or
stop_retained_variant annotation terms, were discarded. As a source for
protein sequences we used the file Homo_sapiens.GRCh37.75.pep.all.fa
downloaded from the ENSEMBL website (http://ftp.ensembl.org/pub/
release-75/fasta/homo_sapiens/pep/). Neopeptides of lengths 8-11 were
generated using in-house scripts according to the following protocol. For
each somatic variant (see categories above) falling in a canonical transcript
(canonical transcripts annotated following VEP), we ran a sliding window on
the corresponding mutated protein sequence to generate all peptides of length
8-11 spanning the variant. A number of cases deserved special attention. If
one or more additional variants (somatic or germline) were found within 8-11
positions of the somatic variant under consideration, we had to decide
whether or not the neopeptide generated would carry none, some or all of the
additional variants. Here, to simplify things, we assumed all variants (be it
somatic or germline) to be ‘in phase’ with each other and with the same
zygosity. This meant that if additional variants were found within 8-11
positions of a somatic variant, the neopeptides we generated carried all the
variants (both somatic and germline) that were present in the protein region
they spanned. Neopeptides corresponding to somatic stop_lost and frameshift
variants were generated by modifying the cDNA sequence of the canonical
transcript  (as  found in  http:/ftp.ensembl.org/pub/release-75/fasta/
homo_sapiens/cdna/Homo_sapiens.GRCh37.75.cdna.all.fa.gz) according to
the observed variant and generating the frame-shifted protein sequence until
a stop codon was found or the end of the cDNA sequence was reached. We
manually checked for cases in which 3_prime_UTR variants could affect the
resulting neopeptides. Further, cases of frameshift and stop_lost variants
where additional variants were present within the same transcript (e.g. a
second frameshift variant) as well as cases where two or more neighboring
variants overlapped (ie. they affected at least one identical amino acid
position) were manually inspected to determine the frame-shifted neopeptides
that had to be generated. Finally, neopeptides generated by somatic mutations
in a protein were excluded if they were found elsewhere in the germline
version of the same protein (modified taking into account, if present, any
germline missense mutation and inframe indel; if two or more germline
variants were found within 8-11 positions of one another, we considered as
germline peptides the ones carrying all the germline mutations that were
present in the protein region they spanned). The in-house python scripts we
used to generate neopeptides are available upon request.

3. HLA types

: HLA-A, HLA-B and HLA-C types were predicted using the program
Polysolver’4 run on normal samples (shell_call_hla_type < normal_bam_file
> Unknown 1 hgl9 STDFQ 0 < output_file >).

4. Neoantigen prediction: neoantigens were predicted using the program
netMHCpan-3.07°. For each patient, we ran netMHCpan-3.0 against their
list of neopeptides as many times as the number of their predicted HLA-types
(minimum three and maximum six different types per patients) (netMHCpan
-p <list_of_peptides_file > -a <4-digit_hla_type > > < output_file >). For
each patient we generated 4 (possibly overlapping) lists of neoantigens
(Supplementary Data 6): high-affinity binders (<500 nM), strong binders
(rank<0.5; note that rank is HLA type-specific), weak binders (rank between
0.5 and 2.0) and strong + weak binders (rank<2.0). Doubles were not counted
in any list (i.e. a peptide that was predicted to be a e.g. strong binder for more
than one of the patient’s HLA-types was counted only once) and weak binders
for an HLA-type were not counted if they also appeared as strong binders for
a separate HLA type of the same patient

TCGA ids for the 40 patients for which we predicted neoantigens: TCGA-61-
2012, TCGA-61-1995, TCGA-24-2288, TCGA-24-2267, TCGA-24-1474, TCGA-
20-0987, TCGA-13-1410, TCGA-09-2051, TCGA-61-2002, TCGA-57-1994,
TCGA-29-2427, TCGA-25-2396, TCGA-24-2281, TCGA-24-2261, TCGA-13-
1496, TCGA-13-0805, TCGA-13-0795, TCGA-04-1348, TCGA-61-2104, TCGA-
61-2094, TCGA-24-2290, TCGA-24-1551, TCGA-23-1123, TCGA-13-0885,
TCGA-61-2000, TCGA-59-2351, TCGA-25-1313, TCGA-23-2084, TCGA-23-
2079, TCGA-23-2077, TCGA-20-0991, TCGA-13-2060, TCGA-13-0897, TCGA-
13-0723, TCGA-09-2044, TCGA-04-1357, TCGA-25-2392, TCGA-13-1484,
TCGA-13-0760, TCGA-09-0366.

Code availability. CRImage is available from Bioconductor. R code for performing
relevant analyses are provided as Sweave files for reproducibility online yuanlab.
org/software/diversification/sweave.pdf.

Data availability

Pathological images and clinicopathological information of the TCGA samples are
available in a public repository from the TCGA Data Portal (https://tcga-data.nci.nih.
gov/tcga/). All other data supporting the findings of this study are available as part of the
reproducible Sweave package.
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