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Summary

This study assessed the 3-
dimensional intrafractional
motion of tumors from rapid
3-dimensional magnetic
resonance imaging data of 56
patients with head and neck
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Purpose: To determine the 3-dimensional (3D) intrafractional motion of head and
neck squamous cell carcinoma (HNSCC).
Methods and Materials: Dynamic contrast-enhanced magnetic resonance images from
56 patients with HNSCC in the treatment position were analyzed. Dynamic contrast-
enhanced magnetic resonance imaging consisted of 3D images acquired every 2.9 sec-
onds for 4 minutes 50 seconds. Intrafractional tumor motion was studied in the 3 minutes
43 seconds of images obtained after initial contrast enhancement. To assess tumor
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squamous cell carcinoma.

The data showed that drifts
due to systematic motion
were <1.4 mm, drifts due
to random motion were
<2.1 mm, intrafractional
tumor motion was larger for
tumors in the hypopharynx
and larynx than for tumors in
the oropharynx, and the bony
anatomy was a poor surro-
gate for tumor motion.
motion, rigid registration (translations only) was performed using a region of interest
(ROI) mask around the tumor. The results were compared with bulk body motion from
registration to all voxels. Motion was split into systematic motion and random motion.
Correlations between the tumor site and random motion were tested. The within-subject
coefficient of variation was determined from 8 patients with repeated baseline measures.
Random motion was also assessed at the end of the first week (38 patients) and second
week (25 patients) of radiation therapy to investigate trends of motion.
Results: Tumors showed irregular occasional rapid motion (eg, swallowing or cough-
ing), periodic intermediate motion (respiration), and slower systematic drifts throughout
treatment. For 95% of the patients, displacements due to systematic and random motion
were <1.4 mm and <2.1 mm, respectively, 95% of the time. The motion without an
ROI mask was significantly (P<.0001, Wilcoxon signed rank test) less than the motion
with an ROI mask, indicating that tumors can move independently from the bony anat-
omy. Tumor motion was significantly (PZ.005, Mann-Whitney U test) larger in the hy-
popharynx and larynx than in the oropharynx. The within-subject coefficient of variation
for random motion was 0.33. The average random tumor motion did not increase
notably during the first 2 weeks of treatment.
Conclusions: The 3D intrafractional tumor motion of HNSCC is small, with sys-
tematic motion <1.4 mm and random motion <2.1 mm 95% of the time. � 2017
The Authors. Published by Elsevier Inc. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Radiation therapy (RT) for head and neck squamous cell
carcinoma (HNSCC) aims to deliver high radiation doses to
the target volume while sparing the organs at risk. The avail-
ability of in-room cone beam computed tomography (CBCT)
has enabled more accurate patient setup and minimized
interfractional uncertainties (1-3). Furthermore, advances in
intensity modulated RT (4, 5), such as volumetric modulated
arc therapy (6, 7), enable more conformal dose distributions
that better spare the organs at risk. However, such gains are
limited by patient misalignment due to tumormotion between
the CBCT and treatment delivery and during treatment.

To limit intrafractional tumor motion in HNSCC and to
improvepatient positioning reproducibility, patients are treated
in a thermoplastic shell (8-10). However, motion may still be
possible when the shell does not adequately immobilize pa-
tients, for instance,whenpatients loseweight during treatment.
Furthermore, internal motion caused by swallowing (11, 12),
respiration, or muscle tension and relaxation can occur.

Tumor motion has previously been estimated using radio-
graphic imaging techniques such as portal imaging (13, 14)
and computed tomography (15). However, several draw-
backs are related to radiographic imaging for motion tracking.
Because x-rays are ionizing radiation, imaging has been used
sparingly, resulting in poor temporal resolution (at most 1
image every 3 minutes). Furthermore, soft tissue is often
poorlydepictedon radiographic images, and thebonyanatomy
is tracked instead.Whether HNSCC tumor motion is reflected
in the motion of the bony anatomy remains to be investigated.

In contrast to radiographic imaging, magnetic resonance
imaging (MRI) does not use ionizing radiation. Furthermore,
MRI offers high soft tissue contrast, enabling excellent
definition of tumors (16, 17) including HNSCC (18).
Tumor motion as a result of swallowing has previously
been studied using fast 2-dimensional (2D) MRI acquisi-
tions (11, 12). However, such techniques only assess mo-
tion in 2 directions, and through-plane motion can yield
misleading measurements.

A promising alternative MRI dataset to study tumor mo-
tion is dynamic contrast-enhanced (DCE) MRI. DCE MRI
uses the contrast enhancement of tumors over time (typically
>4minutes) to assess several tissue perfusion parameters. To
study these properties, DCEMRI requires both high temporal
resolution and high spatial resolution. Therefore, DCE
acquisition protocols always aim to have the best trade-off
between spatial and temporal resolution. Modern protocols
allow for rapid (ie, approximately every 3 seconds) 3-
dimensional (3D) imaging (19, 20). Furthermore, DCE
MRI often uses T1-weighted sequences to study contrast
enhancement, which are considered one of the best image
types for depicting head and neck tumors (21). The aim of
this study was to determine the 3D intrafractional motion of
HNSCC.

Methods and Materials

Patients and treatment

This retrospective study was based on MRI scans of pa-
tients with HNSCC obtained as part of the INSIGHT study
(22). Patients were recruited at The Royal Marsden Hos-
pital between July 2013 and August 2016. The institutional
review board (CCR3926) and research ethics committee
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(13/LO/0067) approved this study (NCRI H&N CSG ID
13860). All patients gave written informed consent. Of the
56 patients analyzed, 36 received only chemoradiation
therapy (CRT) and 20 received induction chemotherapy
(IC) prior to CRT. Both treatment regimens were in
accordance with local institution protocols. Treatment de-
tails and patient characteristics are provided in Appendix
E1 (available online at www.redjournal.org).

Imaging

Patients underwent multiple MRI examinations. The IC-
CRT patients underwent MRI examinations prior to the first
cycle of IC, prior to the second cycle of IC (3 weeks into
treatment), prior to CRT (6 weeks into treatment), and
1 week into CRT (7 weeks into treatment). The CRT-only
patients underwent MRI examinations prior to CRT, 1 week
into CRT, and 2 weeks into CRT. For 8 patients, the MRI
examination prior to treatment was repeated on separate
days to assess test-retest precision.

All images were acquired on 1.5-T scanners (Magnetom
Aera; Siemens Healthineers, Erlangen, Germany) across 2
hospital sites. To replicate the RT treatment position, pa-
tients were set up on a flat-top MRI couch using a shoulder
board, headrest, and 5-point thermoplastic shell. A large
flex and spine coil array was used as described earlier (22).

All MRI examinations consisted of multiple image ac-
quisitions, including T1-weighted, T2-weighted, diffusion-
weighted, and DCE images. Only the DCE images were
analyzed in this study. The DCE acquisition was a series of
100 repeated 3D volume acquisitions (dynamic image) with a
2.9-second temporal resolution and a total acquisition time of
4 minutes 50 seconds. Each repeated measure was acquired
using a 3D spoiled dual gradient echo with a
200 � 200 � 88emm3 axial field of view; 2 � 2 � 2emm3

voxels; repetition time of 7.2 ms, first echo time of 2.4 ms,
and second echo time of 4.8 ms; flip angle of 24�; bandwidth
of 450 Hz/pixel; and the non-product measurement sequence
options time-resolved angiography with interleaved stochastic
trajectories (TWIST) view sharing, (A/BZ33/33%) and
controlled aliasing in parallel imaging results in higher ac-
celeration (CAIPIRINHA) parallel imaging (acceleration
factor RZ4) for acceleration (23). Dotarem (Guerbet, Ville-
pinte, France; 0.2 mg/kg, 2 mL/s, followed by a 20-mL saline
solution flush) was administered during the 10th dynamic
acquisition as a bolus through a peripherally placed cannula
using an automatic injector.

Analyses

A radiation oncologist (K.H.W.), in consensus with a
consultant radiologist (A.M.R.), used RayStation (version
4.6.1; RaySearch Laboratories, Stockholm, Sweden) to
delineate the primary tumor volumes (region of interest
[ROI]) under guidance of the T1-weighted, T2-weighted,
and diffusion-weighted images. In 10 patients the primary
tumor was absent after diagnostic tonsillectomy, so a
spherical target volume (2 cm3) was placed within the
target bed (KLN). Further image processing was performed
in MATLAB (version 2016b; The MathWorks, Natick,
MA), making use of the image registration program Elastix
(version 4.8) (24, 25). All statistical analyses were done in
the R program (version 3.3.2 [2016]; R Foundation for
Statistical Computing, Vienna, Austria) (26).

The ROIs were transferred to the subsequent MRI exam-
inations. Per the DCE image dataset (all dynamic images
from 1 examination), a mean DCE image was generated. The
mean DCE image from the first MRI examination was
registered to the mean DCE images from the subsequent MRI
examinations using the Euler transformation in Elastix. The
transformation parameters were applied to the ROI to create
ROIs for all DCE image datasets.

For each DCE image dataset, we registered the dynamic
images to each other using rigid 3D transformation in Elastix,
making use of the group-wise principal component
analysisebaseddissimilaritymetric describedbyHuizinga et al
(27). This metric was found to outperform other common
metrics typically used for registration of functional images,
including DCE images (27). Additional registration options
used were as follows: reduced-dimension B-spline interpolator
(order 1 during iterations, order 3 for final image); adaptive
stochastic gradient descent optimizer; PCAmetric2; and an
initial registration at half resolution, followed by a final regis-
tration at full resolution. The ROI was dilated by 8 mm (4
voxels) to create an ROI mask containing the tumor and some
adjacent reference tissue. Only voxels within this ROI mask
were considered in the registration’s cost function. Elastix
returned right-left (RL), anterior-posterior (AP), and foot-head
(FH) transformations for each dynamic image that best overlaid
the tumor on the different dynamic images, such that the
registration represented the inverted tumormotion.We inverted
the transformation to obtain the tumor position for each dy-
namic image (hence, as a function of time). From here onward,
dx(t),dy(t), anddz(t) indicate the tumor position forRL,AP, and
FH, respectively, as a function of time (t). Positive numbers
indicate the left, anterior, and head directions.

To minimize the effect of contrast injection (during
acquisition of the 10th dynamic image) and contrast inflow
(approximately the first 40 seconds after injection), the first
1 minute 7 seconds of tumor positions was discarded. This
resulted in 223 seconds (3 minutes 43 seconds) of motion
data per DCE image dataset, which is similar to typical
volumetric modulated arc therapy times (28).
Baseline motion

We determined the effects of typical systematic and random
intrafractional tumor motion on tumor position. For sys-
tematic motion, the mean [dx, dy, dz] from each of the
dynamic images (3 minutes 43 seconds) was subtracted
from the mean [dx, dy, dz] during the last 4 dynamic im-
ages. The last 4 dynamic images were used as a reference
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as they were least affected by contrast inflow. For random
motion, the location of the tumor ([dx(t), dy(t), dz(t)]) with
respect to the average location of the tumor (mean [dx, dy,
dz]) was determined for each dynamic image. Probability
density function plots of tumor position due to systematic
and random motion were plotted. We defined the maximum
systematic shift as the 95th percentile of the 3D offset
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2 þ dz2

p
Þ due to systematic motion. We defined

the maximum random 3D shift per patient as the 95th
percentile of all random shifts (MAX95,pp). The overall
maximum random shift (MAX95) was defined as the 95th
percentile over all patients’ MAX95,pp. The 95th percentiles
were used because maxima are sensitive to outliers. The
vector magnitude of standard deviations of [dx(t), dy(t),
dz(t)] was used as patient-specific motion magnitude
(SD3D).

To assess the bulk motion of the head and neck within
the thermoplastic shell, the analyses were repeated without
an ROI mask during image registration (considering all
voxels in the cost function). A Wilcoxon signed rank test
(significance level aZ.05) between SD3D values from
registrations with and without an ROI mask tested whether
tumor motion was different from bulk motion. All further
analyses were performed on the results from the image
registrations with an ROI mask.

Typically, a 0.5- to 1-minute CBCT acquisition is used to
determine patient positioning immediately prior to RT de-
livery. To assess the motion between the CBCT acquisition
and treatment, we plotted the difference from the mean [dx,
dy, dz] from the first quarter (55 seconds) of dynamic im-
ages to the mean [dx, dy, dz] during the second, third, and
fourth quarters.

The patient-specific SD3D was plotted per tumor site to
assess tumor siteespecific motion. A 2-sided Mann-
Whitney U test (aZ.05) between the SD3D of oropharyn-
geal tumors versus hypopharyngeal and laryngeal tumors
was used to test for differences in motion magnitude among
anatomic sites.

Repeated measures

To evaluate the test-retest precision of the SD3D, we
calculated the within-subject coefficient of variation (wCV)
for the repeated pretreatment DCE image datasets. A
Bland-Altman plot was plotted for these data.

Motion throughout sessions

For 38 patients (25 CRT-only and 13 IC-CRT patients),
DCE MRI was acquired during all MRI examinations
throughout treatment. For these patients, we plotted the
SD3D for the different treatment stages. To assess typical
SD3D changes throughout treatment, we calculated the
wCV of the SD3D during treatment. To test whether the
effect of treatment on the SD3D was larger than day-to-day
variations, we performed a Mann-Whitney U test (aZ.05)
between values of SD2M2 of the SD3D from the repeated
baseline measures and throughout treatment, where SD2M2

was the SD over the repeated measures of SD3D divided by
the squared population mean of SD3D.

Results

Figure 1 shows an example of a typical DCE MRI image
set from this study. Figure 2 shows examples of tumor
motion associated with swallowing, respiration, or drifting
of the tumor. Figure E1 (available online at www
.redjournal.org) shows 3D motion tracks for a representa-
tive group of patients.

Baseline motion

Both systematic motion and random motion were most
pronounced in the FH direction and least pronounced in the
RL direction (Fig. 3a-d). For 95% of all patients, motion
caused systematic tumor shifts of <1.4 mm (0.4 mm,
0.6 mm, and 1.1 mm for RL, AP, and FH, respectively) and
random tumor shifts of <2.1 mm (MAX95; 0.9 mm,
1.6 mm, and 2.0 mm for RL, AP, and FH, respectively)d
that is, the tumor was within 2.1 mm of the mean position
95% of the time (Fig. 4).

The motion of the head and neck within the thermo-
plastic shell (Fig. 3e-h) was significantly (P<.0001) less
than the motion of the tumor (Fig. 3a-d). This finding in-
dicates that tumor motion was independent of the immo-
bilized head and neck.

The distance between the tumor during the initial
55 seconds and the tumor during subsequent 55-second
periods increased over time, from 0.4 � 0.3 mm (second
quarter; mean � standard deviation over patients) to
0.5 � 0.4 mm (third quarter) to 0.7 � 0.5 mm (fourth
quarter) (Fig. 5). The tumor position during the fourth 55-
second period was, on average, 0.7 � 0.5 mm
(mean � standard deviation over patients; 0.3 � 0.2 mm,
0.4 � 0.3 mm, and 0.6 � 0.4 mm for RL, AP, and FH,
respectively) away from its initial position, with a
maximum shift up to 2.6 mm (0.8 mm, 1.7 mm, and
2.4 mm for RL, AP, and FH, respectively). The motion trail
of the patient showing the maximum displacement (brown
line in Fig. 5) is shown in Figure 2d and Figure E2
(available online at www.redjournal.org).

Hypopharyngeal and laryngeal tumors had a signifi-
cantly (UZ286, PZ.005) higher motion magnitude (me-
dian SD3D, 0.9 mm; quartiles, 0.8-1.1 mm) than
oropharyngeal tumors (median SD3D, 0.4 mm; quartiles,
0.3-0.7 mm) (Fig. 6).

Repeated measures

The wCV for the SD3D was 0.34 for the repeated
baseline acquisitions (Fig. E4; available online at www
.redjournal.org).
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Fig. 1. Different cross sections (coronal [top left], sagittal [bottom left], and transverse [right]) of the 50th dynamic image
(116 seconds after contrast injection) from a dynamic contrast-enhanced dataset. The arrows depict the patient’s untreated
oropharynx head and neck squamous cell carcinoma. AZ anterior; FZ foot; HZ head; LZ left; PZ posterior; RZ right.
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Motion throughout sessions

The wCV for the repeated SD3D through treatment was 0.41
for CRT-only patients and 0.45 for IC-CRT patients. These
wCVs were not significantly different from the wCVof the
repeated measures (PZ.70 for CRT-only patients and
PZ.80 for IC-CRT patients), and no global trends were
observed during the first 2 weeks of treatment (Fig. E5;
available online at www.redjournal.org).

Discussion

We analyzed 3D intrafractional tumor motion for
HNSCC patients using 3 minutes 43 seconds of DCE
MRI data obtained in the treatment position. Tumors
show irregular occasional rapid motion (eg, swallowing),
periodic motion (respiration), and slower systematic drifts
throughout treatment. The 95th percentiles of the sys-
tematic and random motion components contributed to
maximum displacements of 1.4 mm and 2.1 mm,
respectively. We demonstrated that tumors can move
independently from the head and neck, confirming that
the bony anatomy is a poor surrogate for tumor motion.
Intrafractional tumor motion was significantly larger for
tumors in the hypopharynx and larynx than for tumors in
the oropharynx. On average, intrafractional tumor motion
did not increase notably during the first 2 weeks of
treatment.

Linear accelerators (LINACs) often require a minute-
long CBCT scan for patient positioning. Figure 5 shows
that when patient positioning is completed with longer
acquisitions (55 seconds) and treatment is simulated as a
55-second period 0 seconds, 55 seconds, and 1 minute
50 seconds after position verification, the systematic
mismatch between treatment and position verification on
average is 0.4 � 0.3 mm, 0.5 � 0.4 mm, and 0.7 � 0.5 mm
(mean � standard deviation), respectively. It should be
noted that these systematic tumor motion definitions reflect
trends in tumor motion during a treatment fraction. The
systematic error might average out over sessions and be
combined with the random component.

The 95th percentile over patients of the 95th percentile
of all random shifts (MAX95,pp) was 2.1 mm. However, 1
patient showed a much higher MAX95,pp of 4.6 mm
(Fig. 4). This large tumor motion was a result of both
respiration and swallowing (Fig. E3; available online at
www.redjournal.org).

When image registration is not guided by an ROI mask,
the motion is smaller than when guided by an ROI mask
(Fig. 3). These findings suggest that HNSCC moves inde-
pendently of the remaining anatomy. We assume that bulk
motion of the head and neck is representative of bulk
motion of the bony anatomy. In that case, motion of the
bony anatomy is not a perfect surrogate for tumor motion.
This agrees with findings from other tumor sites (29).
Therefore, studies based on radiographic imaging may
underestimate the tumor motion, and systems tracking the
bony anatomy during treatment (30, 31) are of limited value
for patients with HNSCC.

Tumors in inferior regions (hypopharynx and larynx)
showed significantly more intrafractional motion than
oropharyngeal tumors. Tumor subsites in the lower neck are
more prone to swallowing- and respiration-related motions.
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These observations could potentially be used to guide
individualized planning target volumes for different tumor
subsites during RT planning.

Intrafractional motion magnitude was characterized as
the SD3D. The SD3D had a test-retest precision (wCV) of
0.33, suggesting a 95% confidence interval that a patient’s
SD3D should not change >91% from day to day

ffiffiffi
2

p �
1.96 � 0.33 � 100% [32]). The wCVof the SD3D from the
repeated DCE MRI through the first 2 weeks of treatment
was not significantly different from the SD3D before treat-
ment. Furthermore, there was no substantial change in
mean SD3D throughout treatment (Fig. E5; available online
at www.redjournal.org). Therefore, we conclude that there
is no large effect of treatment on the SD3D during the first
2 weeks of RT.

To deal with setup uncertainties, such as from tumor
motion, target volumes are expanded by a safety margin.
For patients with HNSCC, the margins are often on the
order of 3 to 5 mm (7, 13, 14, 33). The observed motion is
within these margins.

Our imaging might underestimate motion from timescales
comparable to the acquisition time (2.9 seconds). Two studies
used rapid (0.15-second) 2D MRI to assess tumor motion and
found that swallowing occurs 0 to 1.5 times per minute, lasts
3.5 seconds on average, and causes shifts of 4.0 to 11.6 mm
(11, 12). For such irregular and infrequent motion, the tumor
is only briefly at a potentially missed location during RT, and
the dosimetric effect is limited.

However, the dosimetric effects of repetitivelymissing the
tumor due to respiratory motion may be larger. Our sequence
did pick up periodic motion that could be associated with
respiration (Fig. 2c); however, the acquisition frequency of
0.34 Hz (2.9 seconds per image) is close to the Nyquist fre-
quency for determining the frequency of typical respiration
(0.17 Hz, 6 seconds per image). This is reflected in the fact
that there are approximately 10 peaks every 100 seconds in
Figure 2c (blue line), whereas typical patient breathing fre-
quencies are higher. As the acquisition speed of the protocol
(2.9 seconds) is shorter than the typical respiratory cycle and
as MRI image composition is determined at the center of k-
space, which is acquired much more quickly, MRI will
sample representative tumor positions from the respiratory
cycle each acquisition. This results in correctly estimating
the magnitude of motion as long as the respiratory motion is
monitored long enough to obtain a large enough represen-
tative sample of tumor positions. This is illustrated in
Appendix E5 (available online at www.redjournal.org), in
which we used the Quasar MRI-Compatible Respiratory
Motion Phantom (ModusMedicalDevices, London,Ontario,
Canada). In the limited set of patients who show respiratory
motion of the tumor, it might be preferable to include the
respiratory motion in the treatment plan using faster 2D
imaging protocols (11, 12, 34) or 4-dimensionalMRI (35, 36)
or to track motion during treatment using a magnetic reso-
nanceeguided RT system (37).

Several studies have attempted to determine intrafrac-
tional motion using radiographic imaging (13, 14, 38-42).
These studies often only obtained 2 images per treatment
session and only monitored motion of the bony anatomy.
Therefore, comparing results is challenging, and we limit
ourselves to themost comparable study, performed bySuzuki
et al (13). They acquired 6 projection images in 3-minute
intervals. Their systematic intrafractional motion (0.2-
0.8 mm) and random intrafractional motion (0.3-0.6 mm)
were similar to our findings without an ROI mask and lower
than our findings for tumormotion (Fig. 3). This substantiates
our assumption that image registration without an ROI mask
was representative of motion of the bony anatomy. The 2
studies depicting tumor motion on MRI found a mean
maximum resting shift (excluding swallowingmotion) of 1.5
to 3.1 mm (11, 12), which is larger than our systematic
displacement of 1.4 mm. This is possibly explained by the
longer time over which they quantified the shifts, 12 minutes
48 seconds, as compared with our observation time (3 mi-
nutes 43 seconds).

In this research DCE images were used to study tumor
motion. These images have several advantages over alter-
native sequences, the main advantage being that the
contrast enhancement improved the signal-to-noise ratio
and tumor conspicuity. Without the contrast-enhanced
signal-to-noise ratio and tumor contrast, monitoring tumor
position at such high spatial and temporal resolution would
be challenging using similar acquisition protocols.
Furthermore, DCE imaging protocols are often optimized
for speed and resolution, as DCE modeling requires both.
When motion is being assessed without contrast enhance-
ment, alternative sequences might be more useful, such as
balanced steady-state free precession (bSSFP) (36, 37, 43)
or alternating repetition time bSSFP (44, 45), which have a
more T2-like contrast.

Most of theobservedmotionwas at the sub-voxel (<2mm)
level. However, image registration algorithms are not limited
by resolution and can pick up suchmotion accurately (46, 47).
This is reflected in Figure 2a, in which the spread in tumor
positions is well below voxel level. Furthermore, Figure E8
(available online at www.redjournal.org) shows that motion
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of 0.2 mm of the Quasar Motion Phantom is detectable using
our sequence.

Contrast enhancement of the tumor and surrounding
tissue occurred during the acquisition. On one hand, the
contrast enhancement could have influenced the registra-
tion. Therefore, we discarded data from the first 40 seconds
after contrast injection, during which image contrast
changed most, and used an image registration algorithm
that was not based on contrast being similar over time. To
test whether contrast enhancement had influenced the re-
sults, we compared the results from registration from pa-
tients showing large drifts (>1 mm for AP, RL, or FH) with
manually determined motion by placing landmarks on
images (Appendix E5, Figs. E6 and E7; available online at
www.redjournal.org). This comparison shows that the reg-
istrations were not influenced by contrast inflow. On the
other hand, the improved signal-to-noise ratio and tumor
conspicuity improved image registration.
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Rotations and deformations were ignored during registra-
tion. This simplified the interpretation. Furthermore, the effect
of rotations on the dose to the primary tumor is often limited
(48, 49). Visual inspection of videos from the DCE images
after registration showed stable tumor position after registra-
tion, supporting the performance of the methodology. We
repeated the analysis with the Euler transformation and found
similar results (results not shown).

The patients in this studywere examinedwithMRI outside
the treatment room and not an MRI-LINAC system or ordi-
nary LINACsystem.However, carewas taken to have setup as
close as possible to typical treatment setup, using a flat-top
MRI couch, shoulder board, headrest, 5-point thermoplastic
shell, and coil holders tomake sure the coil did not deform the
patient contour. This would especially reflect a treatment
setup on an MRI-LINAC system, as the LINAC is positioned
behind the MRI bore in such a system. Therefore, we believe
that the motion monitored is representative of motion during
treatment, in particular on an MRI-LINAC system.

Conclusions

Head and neck tumors can show irregular occasional rapid
motion (eg, swallowing), periodic motion (respiration), and
slower systematic drifts throughout treatment. Systematic
motion was <1.4 mm, and random motion was <2.1 mm.
Reassuringly, these are well within clinical safety margins.
The bony anatomy is a poor surrogate for tumor motion as
tumor motion is significantly larger than bulk head and neck
motion. Intrafractional tumor motion is significantly larger
for tumors in the hypopharynx and larynx than for tumors in
the oropharynx. Average intrafractional tumor motion does
not increase significantly during the first 2 weeks of RT.
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