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ABSTRACT
The clinical and immunologic implications of the SARS-
CoV-2 pandemic for patients with cancer receiving 
systemic anticancer therapy have introduced a multitude 
of clinical challenges and academic controversies. This 
review summarizes the current evidence, discussion 
points, and recommendations regarding the use of 
immune checkpoint inhibitors (ICIs) in patients with 
cancer during the SARS-CoV-2 pandemic, with a focus 
on patients with melanoma and renal cell carcinoma 
(RCC). More specifically, we summarize the theoretical 
concepts and available objective data regarding the 
relationships between ICIs and the antiviral immune 
response, along with recommended clinical approaches 
to the management of melanoma and RCC patient cohorts 
receiving ICIs throughout the course of the COVID-19 
pandemic. Additional insights regarding the use of ICIs in 
the setting of current and upcoming COVID-19 vaccines 
and broader implications toward future pandemics are also 
discussed.

BACKGROUND
The SARS-CoV-2 pandemic and its associated 
COVID-19 have left a catastrophic impact on 
a myriad of socioeconomic and public health 
systems. Severe cases of this novel viral infec-
tion provide an elevated mortality risk that 
appears to manifest through a life-threatening 
constellation of cytokine storm,1 2 prothrom-
botic hypercoagulability,3 4 and lympho-
penia.5 Although a direct correlation between 
the severity of lymphopenia and COVID-19 
mortality has been observed clinically,5 6 with 
CD8+ T-cell depletion serving as a partic-
ularly poor prognostic marker,7 the exact 
pathophysiological mechanisms of how these 
changes worsen mortality in patients infected 
with COVID-19 remain unclear. Studies have 
observed (1) highly heterogenous innate 
and adaptive immune response profiles in 
infected patients,8 (2) acutely hyperactive 
CD8+ T cells containing abnormally high 
concentrations of cytotoxic granules in severe 

cases,9 (3) increased markers of T-cell exhaus-
tion in severe and chronically symptomatic 
cases,6 as well as (4) prolonged immune 
dysregulation following an acute infection 
regardless of clinical severity.8 10 These find-
ings suggest that an initially overaggressive 
CD8+ T-cell response may negatively impact 
the clinical course of this novel viral infec-
tion through an initially hyperactive cytotoxic 
profile followed by a pro-apoptotic state with 
resultant lymphopenia in tandem with exces-
sive levels of T-cell exhaustion and eventual 
impairment in memory T-cell production.6 11

Those with a cancer diagnosis during 
these unprecedented times constitute a 
large cohort of high-risk individuals who are 
facing a growing degree of complexity in the 
navigation of obtaining safe and adequate 
cancer care, especially through the stages of 
a COVID-19 infection.12–16 Although patients 
with hematologic17 cancers have exhibited 
the highest mortality risk of all cancer types 
to date, those with lung,18 breast,19 or any 
metastatic cancer12 as well as patients with 
active comorbidities20 also appear to exhibit 
a more severe clinical course. The complex 
and multifactorial pathophysiology between 
metastatic disease and severity of infection 
remains poorly understood, with early studies 
showing advanced age,12 poor performance 
status,21 and smoking history13 as factors 
correlating with more severe outcomes.

The immunologic implications of advanced 
cancer and COVID-19 remains a topic of 
active study, as those with metastatic disease 
have been observed to express a baseline 
proinflammatory state and dysregulated 
immune profile that appears to worsen the 
severity and mortality of COVID-19 infections 
within this cohort.13 22 Further, those receiving 
systemic anticancer therapy possess an addi-
tional level of complexity, as conflicting 
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data have been observed regarding COVID-19 severity 
and mortality for those receiving chemotherapy12 13 and 
immunotherapy.23–25 For example, some studies have 
suggested that exposure to immune checkpoint inhibitor 
(ICI) therapies may serve as an independent risk factor 
for the development of a more severe clinical course of 
COVID-19 infection potentially due to increased T-cell 
cytokine production as well as ICI-induced immune-
related pulmonary toxicities.23 26–28 In contrast, multiple 
recent studies have not observed a significant risk in the 
contraction or mortality of a COVID-19 infection while 
receiving antiprogrammed cell death protein-1 (PD-1) 
ICIs in a variety of cancer types.25 29 30

The immune-mediated killing of various cancer cell 
types by ICIs, achieved through the interruption of several 
coinhibitory signaling pathways with antibodies targeting 
cytotoxic T lymphocyte antigen-4 (CTLA-4; ipilimumab), 
PD-1 (cemiplimab, nivolumab, pembrolizumab), and 
programmed cell death protein ligand-1 (PD-L1; atezoli-
zumab, avelumab), has provided a tremendous impact on 
response and survival rates for a variety of solid and hema-
tologic malignancies over the past decade,31 and further 
investigation is warranted regarding the safety and immu-
nologic implications of ICI therapy as it relates to COVID-
19. Here, we provide a review of current literature and 
share additional immunologic and clinical insights into 
the implications of COVID-19 infection and vaccination 
as they relate to patients with cancer receiving immuno-
therapy through PD-1 blockade, with a specific focus on 
patients diagnosed with renal cell carcinoma (RCC) and 
melanoma given their high prevalence of ICI utilization 
as a widely accepted standard of care.31 32

COMMON THEMES OF THE ANTIVIRAL IMMUNE RESPONSE
The typical cellular response and immunologic profile 
associated with an acute viral infection begins with the 
activation of innate immune receptors, including several 
toll-like receptors (TLR3, TLR7, TLR8, and TLR9),33 that 
trigger the secretion of proinflammatory type 1 inter-
ferons for localized cytotoxic control of viral spread34 
with simultaneous (1) activation of natural killer (NK) 
cells to destroy infected host cells,35 (2) recruitment and 
activation of monocytes and macrophages to provide 
additional proinflammatory and free radical produc-
tion,36 and (3) ultimately facilitate the adaptive immune 
response, including the expansion and activation of 
CD4+ and CD8+ T cells.37 38 This response, although 
critical to viral clearance and eventual establishment of 
antiviral immunity, is facilitated through highly cytotoxic 
pathways that often result in local tissue damage to organs 
harboring infected cells39 40 as well as systemic tissue 
damage through a variety of complement38 and antibody-
mediated41 42 inflammatory reactions.

Several immunologic countermeasures exist to control 
these inflammatory pathways and limit tissue destruction.38 
Key components of these tissue-protective mechanisms 
include the production of anti-inflammatory cytokines such 

as interleukin 10 (IL-10) and TGFβ by activated dendritic 
cells, macrophages, activated regulatory T cells (Treg), B 
cells and NK cells,43–46 as well as the upregulation of inhib-
itory receptors by effector T cells including PD-1, CTLA-4, 
lymphocyte activation gene 3 (LAG-3), and T-cell immuno-
globulin and mucin domain 3 (TIM-3).47–49

Focusing specifically on the SARS-CoV-2 virus, initial infec-
tivity appears to occur within nasopharyngeal mucosa and 
lung alveolar epithelial cells after interfacing with locally 
expressed angiotensin-converting enzyme 2 (ACE2) recep-
tors to gain entry followed by S protein priming via the 
serine protease TMPRSS2.50–52 Pathways involving the viru-
lence and severity of this infection remain an active topic of 
study, with the initial innate response potentially triggered 
by a unique hyperactivation pattern by pulmonary bron-
chial mucosal-associated invariant T and γδ T cells,53 with 
subsequent acute lung injury and systemic organ failure 
appearing to be associated with a proinflammatory storm 
of cytokines including TNF-α, IL-1β, IL-6, IL-8, IL-9, IL-10, 
bFGF, G-CSF, and GM-CSF53 along with a hyperactive and 
lymphopenic immune profile of CD4+ and CD8+ T-cell 
subsets for which elevated neutrophil-to-lymphocyte ratios 
appear to serve as an independent prognostic biomarker of 
COVID-19 severity.54 Further, the pulmonary tissue damage 
observed in more severe infections55 appears to exhibit over-
active cytotoxic CD8+ and Th17 T cells9 as well as a unique 
prothrombotic immunologic milieu resembling macro-
phage activation syndrome56 57 and a distinct endothelial-
injury pattern that is topologically discordant to detectable 
virus within these tissues.58 These findings, in addition to 
potential cross-reactive autoimmunity between viral spike 
surface proteins and host epitopes,59 introduce a potentially 
viral-independent aberrant immune response causing the 
proinflammatory and prothrombotic sequalae observed in 
more severe cases of COVID-19.57 60 61

IMPLICATIONS OF IMMUNE CHECKPOINT INHIBITORS AND THE 
SARS-COV-2 ANTIVIRAL IMMUNE RESPONSE
Thorough reviews have outlined the immunologic 
patterns and clinical implications of chronic viral infec-
tions in patients receiving ICIs.25 62 63 For example, the use 
of ICIs in patients with cancer with known RNA viral infec-
tions including HIV and hepatitis C have exhibited similar 
toxicity and efficacy rates as the general population64 65 
without a significant increase in viral reactivation risk.66 
Further, ICI therapy appears to improve effector memory 
viral-specific CD8+ T cells in patients with chronic HIV,67 
hepatitis B,68 and hepatitis C69 infections, reinvigorating 
antiviral immune responses. Some patients with cancer 
have also exhibited reduced hepatitis C viremia when 
treated with ICI therapy.70 71

Additional efforts to define the implications of ICI in 
the setting of acute infection are ongoing. For example, 
Pauken et al observed that acute influenza infections in 
PD-1 deficient mice led to increased proliferation and 
enhancement of effector CD8+ T-cell function, resulting 
in more rapid viral clearance than in PD-1 wild-type mice.72 
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However, this study further exposed that PD-1 blockade 
also appears to trigger higher rates of CD8+ T-cell apop-
tosis, impaired CD8+ T-cell memory, and compromised 
immunologic recall on viral rechallenge. Therefore, the 
timing of PD-1 blockade may pose a modulatory role in 
host immune responses that warrants further exploration 
within the clinical setting.72–74 Lastly, evidence remains 
limited when attempting to define and understand the 
immunologic aberrancies associated with ICI treatment 
throughout a COVID-19 infection.24 75–78

Several hypotheses regarding the clinically detrimental 
effects of ICIs in patients infected with COVID-19 are 
currently under investigation. For example, ICIs are 
responsible for a multitude of immune-related adverse 
events (irAEs) with very rare associations to clinically 
significant inflammatory disorders such as cytokine 
release syndrome (CRS),79 immune reconstitution inflam-
matory syndrome,80 and hemophagocytic lymphohistio-
cytosis.81 These conditions exhibit clinical and serologic 
similarities to the aforementioned proinflammatory state 
of severe COVID-19 infections, and early studies have 
suggested that ICIs may worsen the severity of the infec-
tion in a variety of cancer types.12 24 82 Further, the irAE 
of pneumonitis is a rare but serious complication of ICI, 
with an observed incidence of 2.7% for all grade events 
and 0.8% grade 3 or higher for those on PD-1 blockade 
that results in a 40% mortality rate.83 COVID-19-related 
lung injury has been observed to present with a clinical, 
radiographic, and serologic constellation of pulmonary 
damage that mimics ICI-induced pneumonitis and there-
fore provides a diagnostic dilemma to clinicians that may 
delay the proper diagnosis and life-saving interventions 
needed to control these irAEs.84 Further, the manage-
ment of such irAEs includes aggressive immunosup-
pressive regimens with high-dose corticosteroids, tumor 
necrosis factor alpha blockade, and occasionally IL-6 
receptor inhibition, which may place patients at higher 
risk of contracting other serious infections.25 In addition, 
the aforementioned potential to develop cross-reactive 
autoimmunity between COVID-19 viral spike surface 
proteins and host epitopes adds an additional degree of 
complexity in the safety and management of symptomatic 
patients on ICI with suspected or known COVID-19.59 78

Conversely, the use of ICIs has also been considered bene-
ficial and even therapeutic, in multiple infectious scenarios 
including SARS-CoV-2.62 63 67 In a recent review regarding 
the implications of various viral infections as they relate to 
the use of ICI, Gambichler et al emphasized the well-known 
concept of T-lymphocyte exhaustion as a distinguishing 
feature of several chronic viral infections, characterized by 
a functional loss of IL-2, impaired T-cell proliferation, and 
blunted cytotoxicity that simultaneously coincides with 
enhanced immunosuppressive cytokines including IL-10 
and TGF-ß and overexpressed checkpoint receptors such 
as PD-1, CTLA-4, and Tim-3.25 Similar immune profiles of 
T-cell exhaustion are well documented in various malignan-
cies and are therefore known targets of ICI.85 An additional 
potential benefit of ICI is to reduce the accumulation and 

upregulation of myeloid-derived suppressor cells which are 
associated with a proinflammatory state that subsequently 
impairs innate and adaptive immune responses in patients 
with cancer86 87 as well as bacterial,88 parasitic,89 and viral90 
infections. The concept of utilizing ICI to enhance the 
antiviral immune response has been observed in a variety 
of settings62 63 77 91 92 and is now under active investigation 
for patients infected with COVID-19 without a cancer diag-
nosis through several registered clinical trials including (1) 
a randomized, controlled, open-label, phase II clinical trial 
of anti-IL-6 (tocilizumab) in combination with pembroli-
zumab (MK-3475) in patients with COVID-19 pneumonia 
(NCT04335305), (2) an interventional parallel trial evalu-
ating the efficiency of nivolumab versus standard of care in 
obese individuals with severe COVID-19 (NCT04413838), 
(3) an interventional parallel trial evaluating the efficacy of 
anti-PD-1 antibody versus thymosin versus supportive care in 
patients with COVID-19 pneumonia (NCT04268537), and 
(4) a phase II randomized open-label multicenter interven-
tional trial evaluating the efficacy and safety of nivolumab 
compared with standard of care in hospitalized patients with 
COVID-19 (NCT04343144).

GENERAL CLINICAL CONSIDERATIONS REGARDING SARS-
COV-2 AND ICI USE
The above hypotheses regarding ICIs as a potential risk 
factor impacting the susceptibility, severity, and mortality 
of SARS-CoV-2 has become highly disputed in a variety 
of clinical settings.25 29 77 78 93 94 A recent meta-analysis of 
16 studies containing 275 patients with cancer on ICIs 
with a COVID-19 diagnosis found no significant differ-
ence in the risk of severe disease and mortality between 
immunotherapy and control groups.95 Additional cohort 
studies in various subsets of patients with cancer have 
provided similar findings regarding the safety of ICI use 
throughout a COVID-19 infection,18 with an emphasis 
that patients with advanced cancers, active comorbidities, 
older age, and a history of smoking are to be considered 
potentially higher-risk categories that warrant close clin-
ical monitoring.14 29 96 Further, the utilization of high-
dose systemic corticosteroids in the initial management 
of ICI-induced pneumonitis has also been increasingly 
observed to provide a mortality benefit in patients with 
severe COVID-19 infections.97 98 Hence, there remains 
no clear evidence that the risk of a SARS-CoV-2 diagnosis 
be considered a contraindication to patients receiving or 
initiating ICIs at this time.

MELANOMA-SPECIFIC CLINICAL CONSIDERATIONS REGARDING 
SARS-COV-2 AND ICI USE
The scientific community has provided numerous 
resources regarding the negative effects and clinical 
constraints that SARS-CoV-2 poses on the diagnosis,99 
prognosis,100 and outcomes101 of patients with known or 
suspected melanoma. Suboptimal healthcare access due 
to administrative restrictions, psychological stressors, 
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and infectious/symptomatic scenarios have led to signif-
icant delays in the diagnosis 100 and treatment of mela-
noma.15 102 For example, a recent US-based single-center 
study observed that patients diagnosed with melanoma 
during the COVID-19 pandemic exhibited significantly 
higher tumor depth, mitotic rates, satellitosis, and pT3/
T4 tumors compared with those diagnosed in the pre 
COVID-19 setting.103 In addition, a multicenter Italian 
study of 169 patients with advanced (stages III and IV) 
melanoma on ICI found 49 (29%) of these patients to 
experience a delay in their ICI treatment for a median of 
4 weeks due to clinician’s concerns of frailty and increased 
risk of contracting COVID-19, while actual COVID-19 
diagnoses of this entire cohort were ultimately found to 
be lower than the general population.93 With no clear 
evidence suggesting that ICIs worsen the risk or course 
of a COVID-19 infection, many sources have concurred 
that patients with melanoma, particularly those of an 
advanced stage, be treated without hesitation via standard 
of care regimens including ICIs and targeted therapy 
pending individual serine–threonine protein kinase 
B-RAF (BRAF) mutational status.30 95 104 We therefore 
agree with recently published consensus guidelines from 
the UK,105 106 including continued use of front-line ICI 
therapies and to consider the approved alternative dosing 
regimens of either pembrolizumab 400 mg every 6 weeks 
as opposed to initial 3-week standard of care dosing per 
KEYNOTE-555 Cohort B data as well as nivolumab 480 
mg every 4 weeks compared with every 2-week standard 
of care for those on nivolumab maintenance regimens.107

RCC-SPECIFIC CLINICAL CONSIDERATIONS REGARDING SARS-
COV-2 AND ICI USE
Compared with the melanoma patient population, a less 
robust body of evidence is currently available regarding 
RCC patients and SARS-CoV-2. However, the available 
retrospective studies have once again observed no increase 
in the severity or mortality of a COVID-19 infection within 
patients with RCC,12 including those receiving ICI.108 109 
In regard to systemic therapeutic approaches, no available 
evidence suggests that the use of ICI worsens the risk or 
severity of a COVID-19 infection and therefore standard 
guideline-based approaches to treatment remain recom-
mended.110 However, it is worth re-emphasizing current 
standards of care including the use of pembrolizumab 
plus axitinib based on KEYNOTE-426111 and nivolumab 
plus ipilimumab based on CheckMate 214112 led to 27% 
and 29% of patients, respectively, requiring ≥40 mg/
day oral prednisone doses equivalents due to irAEs that 
included pneumonitis. Although alternatives to combina-
tion ICIs for patients with advanced RCC exist, such as 
antiangiogenic tyrosine kinase inhibitors combined with 
anti-PD1/PD-L1 agents,111 113 114 these also possess a clin-
ically meaningful side effect profile with up to 82.4% of 
patients developing grade 3 or higher adverse events.115 
It is therefore imperative to closely monitor patients on 
these regimens for such events and promptly rule out 

a COVID-19 infection at the time of symptom onset in 
order to appropriately and expeditiously treat a poten-
tially life-threatening irAE.

In addition, should a patient with RCC on ICI therapy 
develop any life-threatening irAE or be considered at 
high risk of such events beyond 2 years of treatment, it is 
not unreasonable to consider indefinite discontinuation 
of ICI therapy in certain clinical scenarios, as members 
of the Society for Immunotherapy of Cancer have recom-
mended stopping ICI in the setting of complete radiolog-
ical response (94% recommended) or non-progressive 
disease (56% recommended) in patients with RCC 
following 2 years of treatment.116

SHARED CLINICAL CONSIDERATIONS FOR MELANOMA AND 
RCC
As outlined above, there remain no reliable data to 
suggest that the use of ICI poses any additional risk to 
the susceptibility or severity of a SARS-CoV-2 infection in 
either RCC or melanoma patient cohorts.25 93 95 105 Besides 
the development of an acute COVID-19 infection, stan-
dard approaches to ICI therapy are advised throughout 
the course of the pandemic. One reasonable clinical 
consideration for these patients includes the utilization 
of approved dosing of pembrolizumab and nivolumab 
at longer intervals of every 6 and 4 weeks, respectively, 
in attempts to enhance practices of social distancing and 
limit healthcare-related exposures.105 107 Further, the risk 
or history of a COVID-19 infection should not serve as a 
sole determinant of pursuing a non-ICI regimen such as 
targeted therapies. A summary of our above recommen-
dations is provided in table 1.

ADDITIONAL CONSIDERATIONS REGARDING COVID-19 
VACCINES IN PATIENTS RECEIVING ICI
As of June 6, 2021, a total of 84 COVID-19 vaccines are 
under active clinical investigation at varying phases of 
development and 11 are authorized for use on an inter-
national level.117 Of those currently authorized, the most 
widely approved include the mRNA-based Pfizer/BioN-
Tech and Moderna vaccines as well as the viral vector-
based AstraZeneca and Johnson & Johnson (J&J) vaccines. 
The J&J vaccine has received publicized criticism for an 
initial reported efficacy of 66.1% in preventing moderate-
to-severe COVID-19 28 days post vaccination as compared 
with the striking 94.1%118 and 95%119 efficacy reported 
in the Moderna and Pfizer/BioNTech vaccine trials, 
respectively. However, it is worth noting that the defined 
severity endpoints differed among these trials, and when 
comparing these three vaccines from a public health 
standpoint, the J&J vaccine is the only current option 
approved as a single dose with proven efficacy against the 
recently defined B.1.351 coronavirus variant.120

Due to patients with cancer on active systemic therapy 
being excluded from initial vaccine registration trials, the 
safety and efficacy of COVID-19 vaccinations in patients 
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with cancer have become major topics of interest within 
the medical and scientific community. However, the 
US Centers for Disease Control and Prevention, Amer-
ican Society of Clinical Oncology, European Society for 
Medical Oncology, American Association for Cancer 
Research, and National Comprehensive Cancer Network 
have unequivocally recommended that all patients 
with cancer seek expeditious vaccination based on the 
observed safety profiles of currently approved vaccines, 
the historical tolerance to vaccines against other viruses, 
and the high rates of COVID-19 morbidity and mortality 
within this cohort.121–123

The ideal vaccine choice in patients with cancer, as 
well as the general population, has yet to be elucidated. 
A small amount of evidence has suggested that current 
mRNA vaccines may provide relatively favorable effi-
cacy following a single dose, especially in those previ-
ously infected with COVID-19,124 which could challenge 
support of the J&J vaccine. However, such an approach 
should be avoided until the generalizable efficacy of 
incomplete vaccine series is supported by peer-reviewed 
objective evidence, as the production and duration of 
neutralizing antibodies appear to decline prior to the 
second booster doses across all studied age groups125 

Table 1  Summarized treatment and vaccination recommendations for various clinical scenarios

Clinical scenario ICI recommendation Vaccination recommendation*†‡

No comorbidities or AID Treat with SOC or clinical trial* without delay Vaccinate promptly with first-available 
approved option

Known history of AID Use of clinical judgment is advised
If deemed fit for ICI, prioritize treatment with 
SOC or clinical trial*. Consider delay if AID 
exhibiting active and clinically significant flare
Consider approved longer interval of ICI 
doses§

Prioritize prompt vaccination with first-
available approved option¶

High risk of COVID-19 severity 
or mortality (advanced 
metastatic cancer,22 poor 
performance status,21 elderly,12 
active comorbidities,20 smoking 
history)13

Use of clinical judgment is advised
If deemed fit for ICI, prioritize treatment with 
SOC or clinical trial* without delay
Consider approved longer interval of ICI 
doses§

Prioritize prompt vaccination with first-
available approved option

Contraction of COVID-19 
infection while receiving, or prior 
to initiation of, ICI therapy

Recommend withholding ICI therapy 
regardless of symptoms
On resolution of acute illness (if symptomatic) 
and meeting criteria to discontinue isolation, 
use of clinical judgment is advised. If deemed 
fit for ICI, prioritize treatment with SOC or 
clinical trial* without delay‡
Consider approved longer interval of ICI 
doses§

►► No treatment with monoclonal antibodies 
or convalescent plasma:

Asymptomatic: prioritize prompt vaccination 
14 days following positive test
Symptomatic: vaccination recommended 
pending clinical judgment at 28 days 
from diagnosis or on symptom resolution, 
whichever is first**
Temporary delay in booster dose appears to 
be reasonable in case of vaccine shortages

►► Treated with monoclonal antibodies or 
convalescent plasma: Recommend at 
least 90-day delay from time of treatment 
to vaccine, regardless of vaccine series

*If enrolling in phase I trial involving investigational medicinal products with known or theoretical risk of cytokine release syndrome, as well as 
if administered in combination with ICI, consider waiting 2–4 weeks following completion of all COVID-19 vaccination(s) prior to the initiation 
of investigational treatment.132

†If two-dose vaccine provided, strongly recommend adherence to receiving second dose within timeframe of pivotal trials in attempts to 
optimize immunologic seroconversion.117 118 Deferral of vaccinations is ill advised and consideration to do so should be based on individual 
clinical context along with regional infectivity rates.
‡Clinical caution and shared decision-making are advised as provided recommendations are synthesized from available trial data that lack 
cancer and ICI-treated patients.
§Consider utilization of approved dosing of pembrolizumab and nivolumab at longer intervals of every 6 and 4 weeks, respectively, in 
attempts to enhance practices of social distancing and limit healthcare-related exposures.105 107

¶Vaccination is recommended regardless of use of immunosuppression. However, if immunosuppressive agent is temporary in patients 
with low risk of severe COVID-19 and adequately low regional infectivity rates, they may consider delaying vaccination until completion of 
immunosuppression in attempts to optimize immunologic seroconversion.133

**Vaccination appears safe in previously infected patients. Delay in vaccination is recommended in order to avoid both symptomatic 
transmission within healthcare facilities as well as misrepresentation of viral symptoms as adverse events to vaccine and advisable based on 
favorable immune profile of previously infected non-cancer patients.134

AID, autoimmune disease; ICI, immune checkpoint inhibitor; SOC, standard of care.
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and may ultimately lead to an increased susceptibility 
of contracting vaccine resistant variants.126 In addi-
tion, increasing age124 and early data from patients with 
cancer, especially those with hematologic malignan-
cies,127 are cohorts who appear to exhibit suboptimal 
immune responses to mRNA vaccines following a single 
dose, further supporting strict adherence to the vaccina-
tion schedules as studied in their initial clinical trials.125 
Therefore, a current approach to vaccine prioritization 
should simply focus on whichever approved option 
becomes available for these patients until additional effi-
cacy data are observed.128 129

Although the ideal timing of these vaccines in relation 
to ICI administration has yet to be elucidated, eligible 
patients on ICI are encouraged to receive this vaccine 
as it becomes available to them in efforts to provide 
much-needed mitigation of the short-term and long-term 
complications of a COVID-19 infection and its associ-
ated delays in cancer treatment.15 102 A minor caveat to 
consider should eventual prospective data for ICI-treated 
patients parallel the general population is to potentially 
consider avoidance of vaccine administration within 
24–48 hours prior to scheduled ICI, especially in inves-
tigational regimens, as the transient fever and occasion-
ally severe side effect profiles more frequently observed 
following the second dose of currently accepted Moderna 
and Pfizer/BioNTech vaccines may lead to misattribu-
tion of treatment-related adverse events and potentially 
interfere with a patient’s ability to attend and receive 
their scheduled ICI treatments.130 Patients with non-
hematologic cancers actively participating in clinical trials 
should also be prioritized for COVID-19 vaccination, with 
additional efforts to provide at least the first vaccine dose 
during the screening process for those being considered 
for enrollment.131 Although more detailed consider-
ations regarding the approach to vaccine timing and clin-
ical trials for various solid and hematologic malignancies 
are beyond the scope of this article and well-articulated 
elsewhere,131 a noteworthy example by Yap et al recom-
mends that patients enrolling in experimental phase I 
clinical trials involving investigational medicinal prod-
ucts (IMPs), for which human toxicity profiles remain 
unknown, should consider waiting 2–4 weeks following 
completion of all COVID-19 vaccination(s) prior to the 
initiation of an IMP, especially should these drugs confer 
any known or theoretical risk of CRS as well as if admin-
istered in combination with ICI.132 Lastly, patients on ICI 
who have previously been infected with COVID-19 are 
to follow guidelines outlined for the general population 
until prospective data within this cohort becomes avail-
able,128 129 including a delay in vaccination for (1) at least 
90 days if COVID-19 infection was treated with mono-
clonal antibodies or convalescent plasma, (2) approxi-
mately 14 days from diagnosis in asymptomatic patients, 
and (3) either 28 days from diagnosis or on symptom 
resolution in symptomatic patients (whichever occurs 
first).133 134 These recommendations are summarized in 
table 1.

Additional risk assessment regarding the impact of ICI 
therapy on the efficacy and safety of these vaccines are 
under active investigation. Previous encouraging safety 
and immunologic efficacy profiles have been observed 
with influenza vaccines for those on ICIs121 135 and only 
a single report is currently available at the time of this 
review regarding a case of CRS following the Pfizer/BioN-
Tech vaccine in a patient on long-standing ICI therapy.136 
In addition, although the presence of PD-1 is known to 
enhance CD8+ T-cell exhaustion during chronic infec-
tion and cancer,137 the exact timing of PD-1 blockade 
during CD8+ T-cell differentiation in the setting of an 
acute viral infection, as outlined in section III, may pose 
a modulatory role in host immune responses.72–74 Such 
observations, although compelling given the theoretic 
implications of suboptimal long-term T-cell memory or 
variable immune responses on vaccination in ICI-treated 
patients, require further study within the clinical setting.

CONCLUSIONS
Patients with cancer, although comprised of a large 
and heterogenous cohort, are to be considered a high-
risk population amidst a global pandemic. Although 
additional studies are needed to conclusively define 
the implications of ICI and the SARS-CoV-2 virus, we 
are in agreement with the most up-to-date consensus 
guidelines stating that the current pandemic should 
not be considered a contraindication to ICI initiation or 
continuation,105 that ICI should be held on diagnosis of 
a COVID-19 infection until clinical stability is ensured, 
and that patients on ICI be expeditiously vaccinated.122 
Although our understanding of these topics is rapidly 
evolving, patients should be made aware that many of 
our current clinical approaches are based on consensus 
rather than controlled empirical evidence and that our 
vaccination guidelines are currently based on non-ICI 
treated and non-cancer patients.

Several knowledge gaps remain regarding the clinical 
and immunologic relationships between the SARS-CoV-2 
virus and anti-PD-1 therapies. Currently available litera-
ture appears to suggest that the use of ICI does not pose a 
significantly increased risk in the susceptibility or severity 
of a SARS-CoV-2 infection when adjusted for comorbid-
ities and other potential confounding factors,25 93–95 105 
although many of these studies remain underpowered 
and will require expanded sample sizes and longer obser-
vational periods in order to achieve adequate significance 
and generalizability. Further, the majority of available 
evidence supporting the safety and efficacy of ICI in the 
setting of a known viral infection are based on a chronic 
rather than acute viral infection status,67–70 requiring 
clinicians to remain vigilant to their ICI-treated patients 
throughout the course of a COVID-19 infection. Lastly, 
the impact of the innate and adaptive immune response 
in ICI-treated patients following COVID-19 infection 
and/or vaccination is largely unknown.
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Given the sparsity and mostly underpowered literature 
currently available regarding cancer patients and COVID-
19, larger and controlled prospective studies are needed 
to further investigate the potential risks and benefits of 
anti-PD-1 therapeutic pathways on the short-term and 
long-term clinical course and immunologic profiles 
associated with both the SARS-CoV-2 virus and various 
COVID-19 vaccines. One such dedicated project includes 
the COVID-19 Antiviral Response in a Pan-tumor Immune 
Monitoring (CAPTURE) Study (NCT03226886), evalu-
ating longitudinal clinical outcomes and immune profiles 
in cancer patients and healthcare workers in attempts 
to cultivate an enhanced understanding and evidence-
based clinical framework to minimize viral transmission 
and optimize cancer treatment approaches.129 CAPTURE 
study is actively evaluating B-cell and T-cell response 
to vaccination in patients with cancer, especially those 
with renal cell cancer and melanoma who are receiving 
immune checkpoint blockade. In addition, the ‘Vaccina-
tion Against COVID in Cancer’ Project (NCT04715438) 
is an exciting prospective, national, multicenter, longi-
tudinal, multicohort study observing the short-term 
and long-term immunologic profiles of patients with 
solid tumor cancers on multiple treatment modalities 
including ICI with a primary endpoint of a sufficiently 
mounted immune response 28 days following the comple-
tion of an mRNA vaccine series.128 This project will also 
further define the T-cell immunity observed against these 
vaccines, which will provide valuable insights into the 
potential differences of ICI-treated cohorts. Lastly, several 
aforementioned clinical trials utilizing various anti-PD-1 
therapies in attempts to reinvigorate the exhausted T cells 
observed in patients infected with COVID-19 and thereby 
promote viral clearance and immunity are ongoing.10 25 62

We eagerly await long-term clinical and immuno-
logic analyses of how the SARS-CoV-2 virus and vaccine 
may impact the antitumor and antiviral responses for 
those receiving anti-PD-1 therapy. These topics will most 
assuredly remain the source of many active and fruitful 
scientific projects in the near future, providing practice-
changing insights toward the navigation of current and 
future pandemics within both the oncologic and general 
population.
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