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Previous genome-wide association studies identified rs13281615 and rs11780156 on 8q24 as 
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In silico analysis indicated two putatively functional variants rs7815245 and rs1121948.   
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Abstract 

Previous genome-wide association studies among women of European ancestry identified two 

independent breast cancer susceptibility loci represented by single nucleotide polymorphisms 

(SNPs) rs13281615 and rs11780156 at 8q24. We conducted a fine-mapping study across 2.06 

Mb (chr8:127,561,724 -129,624,067, hg19) in 55,540 breast cancer cases and 51,168 controls 

within the Breast Cancer Association Consortium. We found three additional independent 

association signals in women of European ancestry, represented by rs35961416 (OR = 0.95, 95% 

CI = 0.93-0.97, conditional P = 5.8 × 10
-6

), rs7815245 (OR = 0.94, 95% CI = 0.91-0.96, 

conditional P = 1.1 × 10
-6

), and rs2033101 (OR = 1.05, 95% CI = 1.02-1.07, conditional P = 1.1 

× 10
-4

). Integrative analysis using functional genomic data from the Roadmap Epigenomics, the 

Encyclopedia of DNA Elements project, the Cancer Genome Atlas, and other public resources 

implied that SNPs rs7815245 in Signal 3, and rs1121948 in Signal 5 (in linkage disequilibrium 

with rs11780156, r
2
 = 0.77), were putatively functional variants for two of the five independent 

association signals. Our results highlight multiple 8q24 variants associated with breast cancer 

susceptibility in women of European ancestry. 
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Introduction 

Breast cancer is one of the most common malignancies among women worldwide.
1
 Genome-

wide association studies (GWASs) have identified approximately 100 loci associated with breast 

2
cancer.  Multiple independent variants on 8q24 have been shown to confer susceptibility for 

3,4
multiple types of cancer, including breast,  prostate, colorectal, bladder, ovarian, renal cell, 

5
glioma, chronic lymphocytic leukemia, and Hodgkin‘s lymphoma,  (also see Supplementary 

Figure S1). Although most of these loci are located in a ―gene desert‖ region, several hundred 

kilobases (kb) telomeric to several genes including FAM84B,  POU5F1B, MYC, and the long 

non-coding gene PVT1. A growing number of studies have shown that the 8q24 locus may 

6
harbor long-range regulatory elements involved in regulating expression of the MYC  or PVT1 

7
genes.  

 In most GWAS, only the single nucleotide polymorphism (SNP) showing the strongest 

statistical association at each locus (hereinafter referred to as the index SNP) is reported. Those 

index SNPs themselves are usually not the causal variants but are in linkage disequilibrium (LD) 

with the functional variants. In addition to the common variants identified by GWAS, low-

8
frequency variants in susceptible loci may also be associated with disease risk.  Furthermore, in 

each locus, there may exist allelic heterogeneity and multiple independent variants that may be 

8
associated with complex diseases.  Some of the missing heritability for disease may be derived 

from the incomplete coverage of genetic variants and poor representation of the full spectrum of 

9,10
causal variants on commercial genotyping arrays.  Therefore, it is necessary to conduct fine-

scale mapping studies to investigate comprehensively all genetic variants in the LD blocks where 

a GWAS index SNP is located.  
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 We conducted a fine-mapping study of the 8q24 region using data from 106,708 

individuals within the Breast Cancer Association Consortium (BCAC). We systematically 

evaluated the associations with breast cancer risk of the SNPs across 2.06 Mb in this 

chromosome region. We aimed to identify additional independent association signals and 

potentially functional variants that may be responsible for the observed associations of variants 

in this locus with breast cancer risk.   

 

Materials and Methods 

Ethics statement 

All studies were approved by the relevant institutional review committee and informed consent 

was obtained from all participants. 

 

Subjects 

Epidemiological and genotype data were obtained from 50 breast cancer case-control studies 

4
participating in the BCAC.  The sample set for the current project included 48,155 cases and 

43,612 controls of European ancestry from 39 studies, 6,269 cases and 6,624 controls of Asian 

ancestry from 9 studies, and 1,116 cases and 932 controls of African ancestry from 2 studies. 

The estrogen receptor (ER) status of the primary tumor was available for 35,824 cases of 

European ancestry; 28,038 (78%) cases were ER+ and 7,786 (22%) were ER-.  
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SNP selection and genotyping 

Fine-mapping SNPs were selected for inclusion on the custom Illumina iSelect array 

4,11–13
(iCOGS),  with the following criteria: 1) Defining the interval to include all SNPs with r

2 
> 

0.1 with the index SNPs rs13281615 and rs11780156 based on HapMap 2 CEU, which identified 

a region of 2.06 Mb (base positions 127,561,724 -129,624,067; NCBI build 37 assembly); 2) 

Identifying all SNPs in the interval using the 1000 Genomes Project CEU (April 2010), and 

HapMap 3; 3) Selecting high-quality SNPs: only variants with the minor allele called at least 

twice in the 1000 Genomes Project and an Illumina designability score > 0.8 were included; 4) 

Selecting all SNPs with r
2
 > 0.1 with the index SNPs rs13281615 and rs11780156 from the CEU 

data set of the 1000 Genomes Project or HapMap 3; 5) Selecting tagging SNPs at r
2 

> 0.9 to 

capture the remaining SNPs that are not in LD with the index SNPs (r
2
 < 0.1). Genotyping of the 

iCOGS array and details of the genotyping calling and quality control has been described 

4,11,12
elsewhere.  In order to improve SNP density and imputation quality, we conducted one-step 

imputation (without phasing) using the program IMPUTE2 (see URLs) with the March 2012 

release of the 1000 Genomes Project as reference. Genotypes were successfully imputed for 

10,593 variants in samples of European ancestry, 9,218 variants in samples of Asian ancestry, 

and 17,964 variants in samples of African ancestry, all with imputation-r
2
 > 0.3. After excluding 

SNPs with minor allele frequency (MAF) < 0.02, the final genotype data in this project included 

6,631 SNPs in samples of European ancestry, 6,459 SNPs in samples of Asian ancestry, and 

10,830 SNPs in samples of African ancestry.  

 

Statistical analysis 
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The per-allele odds ratio (OR) and 95% confidence interval (CI) for each SNP was estimated for 

breast cancer risk using a log-additive logistic model with covariates of study site and principal 

components (PC; eight PCs with one additional principal component from the LMBC study in 

Europeans, two PCs in Asians and two in African Americans). Per-allele ORs and CIs were 

estimated separately for each population for overall disease, for ER+ and for ER- breast cancer. 

To identify potential independent susceptibility variant(s), stepwise forward logistic regression 

analyses were employed with or without the index SNPs rs13281615 and rs11780156 forced in 

the model. SNPs with a P value < 1× 10
-4

 from the single variant analysis were included in this 

11
analysis.  To identify potentially functional variant candidate(s), we computed a likelihood ratio 

for each SNP relative to the representative SNP in each signal and excluded SNPs with a 

likelihood ratio < 0.01. Because no SNPs showed p < 1×10
-4

 in Asian or African ancestry data, 

such analyses were performed only on data from subjects of European ancestry. We used the 

haplo.stats package in R for haplotype analyses for the SNPs that are independently associated 

with breast cancer risk in women of European ancestry, with study sites and principal 

components as covariates. The familial relative risk (FRR) was estimated with the formula 

ln(λ)/ln(λo), where λ is the FRR to offspring of an affected individual due to a single genetic 

locus or assumed multiplicatively interacting loci and λo is the overall FRR, which was assumed 

14
to be 1.8 for breast cancer.  All analyses were conducted using R version 3.0.1. 

 

Functional annotation 

We annotated a total of 245 breast cancer risk associated variants (p < 1× 10
-4

 from univariate 

analysis) for potential functional significance using data from the Encyclopedia of DNA 

Elements (ENCODE), the Roadmap Epigenomics Mapping Consortium, and The Cancer 
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Genome Atlas (TCGA) (see URLs). For each variant, we investigated whether it is mapped to 

transcriptional elements primarily associated with enhancers (H3K4me1) or promoters 

(H3K4me3), in any of nine cell lines: normal human mammary epithelial cell line (HMEC), 

GM12878, H1-hESC, K562, HepG2, HSMM, HUVEC, NHEK, and NHLF. The epigenetic 

landscape of histone markers H3K4Me1, H3K4Me3, and H3K27Ac was also examined through 

layered histone tracks on seven ENCODE cell lines, including GM12878, H1-hESC, K562, 

HSMM, HUVEC, NHEK, and NHLF from the UCSC Genome Browser (see URLs). DNase I 

hypersensitive and transcription factor (TF) ChIP-Seq datasets were investigated in all available 

ENCODE cell lines, including HMEC and the breast cancer cell lines T-47D and MCF-7. 

15 16
Publicly available tools RegulomeDB  and HaploReg v4.1  were also used to evaluate potential 

functional variants. 

        For regions lacking ChIP-seq peaks data, we collected raw ChIP-seq data for the estrogen 

receptor-α (ESR1) and forkhead box protein A1 (FOXA1) in MCF-7, TAMR and ZR751 breast 

17
cancer cell lines (Supplementary Table S1) from the study by Hurtado et al.  The raw ChIP-seq 

data in .FASTQ format from different lanes in the same experiment were first merged and 

18
mapped to the human reference genome (hg19) using the Bowtie2 program  with the default 

setting. Aligned data were processed and converted into Binary Sequence Alignment/Map format 

19
(BAM) files using the SAMtools program.  After removing duplicated reads, we used the 

20
MACS14 (version 1.4.2) algorithm  to identify peaks with 50 bp resolution using the matched 

DNA input data as the control. The peaks were ranked by the number of uniquely aligned reads 

and only the top 5% of peaks were selected for motif discovery. The summits of the top 5% 

peaks were extended by 100 bp on either side. Similar methodological strategy has been used 

21,22
elsewhere.  Motifs between 5 and 30 bp in length were identified on both strands. We 



 

13 
 

23
employed the MEME 4.9.1 toolkit  to search DNA motifs and enrichment significance for 

ESR1 and FOXA1. 

 

Expression quantitative trait (eQTL) analysis 

24
eQTL analysis was performed followings the method described previously.  Briefly, RNA-Seq 

V2 data (level 3) of 1,006 breast cancer tumor tissues were downloaded from the TCGA data 

portal (see URLs). DNA methylation data measured by the Illumina HumanMethylation450 

BeadChip and genotype data from the Affymetrix SNP 6.0 array were also retrieved from TCGA 

level 3 data. Genotype data of the flanking 2 Mb region of the index SNPs on 8q24 were 

extracted and then imputed to the 1000 Genomes Project data with Minimac (see URLs). Only 

common SNPs (MAF > 0.05) with high imputation quality (r
2
 > 0.3) were included in the present 

study. For the interrogated 2 Mb region, copy number variation (CNV) data spanning the 8q24 

genes FAM84B, POU5F1B, MYC, and PVT1 from TCGA tumor tissue samples were collected 

from the CbioPortal (see URLs).   

        We used the TCGA breast cancer data described above to perform cis-eQTL analyses in 

tumor tissues. Several steps were taken to reduce the batch and other technical effects on gene 

25
expressions following the approach described by Pickrell et al.  First, the RNA-Seq by 

Expectation-Maximization value of each gene was log2 transformed and genes with a median 

expression level of 0 across tissues were removed. We then performed the principal component 

correction on gene expression to remove potential batch effects. A linear regression of 

expression values on the first five principal components was constructed and the residuals were 

used to replace the expression values of each gene among tissues. To make the data more closely 

conform to the linear model for the eQTL analysis, we further transformed the gene expression 
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levels to fit quantiles of N(0,1) distribution based on the ranks of the expression values to their 

respective quantiles. Finally, to further adjust for the potential effects of methylation and CNV 

on the expression of each gene in tumor tissues, we constructed residual linear regression models 

26
to detect eQTLs according to the approach used by Li et al.  

 

Results 

Associations with breast cancer risk among women of European ancestry 

We first conducted univariate analysis for 2,391 genotyped and 4,240 well-imputed SNPs in 

samples from women of European ancestry. A total of 359 SNPs were associated with breast 

cancer risk with a statistical significance of p < 1× 10
-4

 (Figure 1 and Supplementary Table S2). 

Confirming previous GWAS results, the index SNPs rs13281615 (Signal 2 in Table 1) and 

rs11780156 (Signal 5 in Table 1) showed significant associations with ORs of 1.11 (95% CI = 

1.08-1.13, P = 2.0 × 10
-24

) and 1.07 (95% CI = 1.05-1.10, P = 4.1 × 10
-8

), respectively (Table 1, 

univariate analysis). We then conducted forward stepwise regression analysis for each of the 359 

SNPs to identify potential independent association signals. When two index SNPs rs13281615 

and rs11780156 were forced into the model, we found two additional independent association 

signals at statistical significance of P < 1 × 10
-4

 and a third one with suggestive evidence (P = 

1.1× 10
-4

) (Table 1 and Supplementary Figure S2). The first independent signal (Signal 1 in 

Table 1), represented by rs35961416 (chr8:128213561:I) with an insertion of base A, showed a P 

value of 5.8 × 10
-6

 after adjustment for other four signals (conditional OR = 0.95, 95% CI = 

0.93-0.97). The second independent signal (Signal 3) represented by rs7815245 (conditional OR 

= 0.94, 95% CI = 0.91-0.96, P = 1.1 × 10
-6

, Table 1), was in moderate LD with the index SNP 
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rs13281615 in Signal 2 (r
2
 = 0.48) but not with the second index SNP rs11780156 in Signal 5 (r

2
 

< 0.01). The third suggestive independent variant (Signal 4, rs2033101), not in LD with either of 

the two index SNPs, showed a conditional P value of 1.1 × 10
-4

 (OR = 1.05, 95% CI = 1.02-1.07, 

Table 1). We also performed forward stepwise regression analysis without the two index SNPs 

forced into the model. Five similar independent breast cancer risk associated SNPs were selected: 

Signal 1 (rs35961416) (conditional P = 3.2 × 10
-6

) and the suggestive Signal 4 (rs2033101) 

(conditional P = 1.4 × 10
-4

) remained the same; Signal 2 (rs13281615) was tagged by the highly 

correlated SNP rs10110330 (r
2
 = 0.97, conditional OR = 1.06, 95% CI = 1.04-1.09, P = 9.5 × 10

-

6
), Signal 3 (rs7815245) tagged by the most significant SNP rs17465052 (r

2
 = 0.93, conditional 

OR = 0.94, 95% CI = 0.91-0.97, P = 3.2 × 10
-6

), and Signal 5 (rs11780156) tagged by 

c8_pos129263191 (rs67397162, r
2
 = 1, conditional OR = 1.07, 95% CI = 1.05-1.10, P = 1.1 × 

10
-7

). These results consistently showed four independent risk association signals and another 

suggestive one (Supplementary Figure S2). No significant evidence of between-study 

heterogeneity was observed for any of these independently risk-associated SNPs (data not 

shown). 

 Stratified by ER status, all five independent signals showed significant associations for 

ER+ breast cancer; however, with the exception of rs11780156 showing a P value of 0.012 

(signal 5), no significant associations were observed for ER- breast cancer (Table 2).  

        Haplotype analyses were performed using data from the five independent risk signals (Table 

3). In women of European ancestry, a total of 16 haplotypes with frequency of > 1% were 

observed. Compared to the reference haplotype, which carries the alleles associated with a 

reduced risk in all five SNPs, most haplotypes were associated with increased breast cancer risk. 

Haplotype 5, which carries the risk-associated alleles of the signals 1-3, showed the most 
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significant association (P = 3.4 × 10
-11

 for overall breast cancer) while Haplotype 1, which 

carries the risk-associated alleles of all signals except for Signal 4, was associated with the 

highest estimated OR (OR = 1.27, 95% CI = 1.15-1.39 for overall breast cancer) (Table 3). As 

shown in Table 3, similar haplotype associations were observed for ER+ but not for ER- breast 

cancer.  

 

Association with breast cancer risk in women of Asian or African ancestry 

Of the five independently risk-associated variants identified in women of European ancestry, 

only rs35961416 (Signal 1) showed a nominal association in African-American women at P < 

0.05 (P = 0.04, Table 4). Based on univariate analyses of all SNPs on 8q24 that passed QC, SNP 

rs76382129 showed a P value of 8.3 × 10
-4 

in women of Asian ancestry and five SNPs showed P 

values of between 9.6 × 10
-4

 and 1.6 × 10
-4 

in women of African ancestry (Supplementary Table 

S3). Another 16 SNPs showed breast cancer risk association with P values between 0.01 and 

0.001 in either population and in the same direction across the two populations (Table 4). 

 

Functional annotation 

For each of the five independent signals identified among women of European ancestry, we 

excluded SNPs with r
2
 ≤ 0.2 with the representative SNP in each signal region and then 

calculated the likelihood of all risk-associated variants to select potentially functional variant 

candidates. Setting a likelihood ratio threshold of > 0.01 relative to the representative/index SNP 

in each signal region, we did not identify any functional variant candidates for rs35961416 
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(Signal 1) and rs2033101 (Signal 4) whereas we identified 154 functional variant candidates for 

Signal 2, 170 variants for Signal 3 (143 variants overlap with those for Signal 2), and 62 variants 

for Signal 5, respectively (Supplementary Tables S4-S6). Thus, a total of 245 unique SNPs 

including the five representative SNPs in five signal regions were further evaluated for their 

potentially functional significance.  

        Our integrative functional annotation from ENCODE, Roadmap Epigenomics, the 

15 16
RegulomeDB , the HaploReg databases , and other public data identified the representative 

SNP rs7815245 in Signal 3 and SNP rs1121948 (in LD with rs11780156) in Signal 5 as most 

likely functional variant candidates underlying respective independent association signals 

(Figure 2).  Based on the Roadmap Epigenomics data, SNP rs7815245 in Signal 3 is mapped to a 

conserved enhancer region with a genomic evolutionary rate profiling (GERP) score of 5.04 

among eight tissues including breast variant human mammary epithelial cells (vHMEC) and 

breast myoepithelial primary cells. It is in a DNase I hypersensitive region in eight tissues 

including vHMEC. It is also predicted to change the transcription factor TCF12 binding motif.  

This SNP  is also located in the binding regions of two critical nuclear hormone responsible 

receptors, estrogen receptor-α (ESR1), and forkhead box protein A1 (FOXA1) (Supplementary 

Figure S3). ChIP-seq data from different breast cancer cell lines and technical replicates showed 

consistent results (Supplementary Figure S3A). DNA binding motif analysis further confirmed 

that SNP rs7815245 is located in the ESR1 DNA binding motif (P = 1.5 × 10
-3

) and is very close 

to the FOXA1 DNA binding motif (P = 5.2 × 10
-3

) (Supplementary Figure S3B). In addition, the 

breast cancer risk-associated T allele was correlated with decreased expression of the POU5F1B 

gene (P = 0.04, Supplementary Table S7).  
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SNP rs1121948, which is in strong LD with the index SNP rs11780156 (r
2
=0.77) in 

Signal 5, resides in the binding motifs of the TFs GATA-binding protein 3 (GATA3) and MYC-

associated factor X (MAX) in the breast cancer cell line MCF-7. HaploReg data shows that this 

SNP resides in promoter regions of lung and muscle tissues, in strong enhancer regions of 14 

tissues including HSMM and NHLF cells, and in DNase I hypersensitive sites of four tissues. 

Two active epigenetic markers (H3K4Me1 and H3K27Ac) were enriched in the interval 

containing rs1121948 in seven ENCODE cell lines (Figure 2C). We examined the effect of the 

associations of the 62 SNPs from the likelihood analysis for Signal 5 and expression of genes 

within 1 Mb of the index SNP rs11780156. We found that the risk-associated G allele of 

rs1121948 was weakly associated with decreased expression of the PVT1 gene (P=0.037, 

Supplementary Table S7). 

 

Discussion 

In this study, we conducted a fine-mapping investigation at the breast cancer susceptibility locus 

on 8q24. Among women of European ancestry, we identified four independent association 

signals represented by rs35961416, rs13281615, rs7815245 and rs11780156, respectively, and 

another suggestive one tagged by rs2033101. This discovery increases the proportion of familial 

risk of breast cancer explained by variation on 8q24 from 0.25% (due to the GWAS index SNPs 

rs13281615 in Signal 2 and rs11780156 in Signal 5) to 0.55%.  

    SNP rs7815245 (Signal 3) showed a more significant association than the previously 

GWAS-identified index SNPs rs13281615 (Signal 2) and rs11780156 (Signal 5). This SNP is 

located in an enhancer region among eight tissues including breast variant HMEC and 
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myoepithelial cells. TF occupancy data showed that SNP rs7815245 falls within the DNA 

binding motifs for ESR1 and FOXA1, two critical DNA binding proteins for the development of 

several hormone-dependent cancers including breast cancer. Breast cancer susceptibility variants 

rs4784227 on 16q12.1 and rs2981578 on 10q26 have also been reported to modulate the affinity 

11,27
for these two transcription factors.  In addition, FOXA1 has shown a critical role in estrogen-

17,28,29
ESR1 activity and endocrine response in breast cancer cells.  These results imply that the 

association between SNP rs7815245 at Signal 3 and breast cancer risk might be mediated by 

their functional effects through these two transcription factors. The risk allele T of rs7815245 

down-regulated  expression of its downstream gene POU5F1B, which encodes a weak 

transcriptional activator highly similar to the POU class 5 homeobox 1 transcription factor and is 

30
overexpressed in prostate cancer.  However, further functional studies are needed to clarify the 

biological mechanism of this SNP in breast cancer susceptibility. 

        The most attractive candidate gene for cancer risk variants in the gene-desert 8q24 region is 

the proto-oncogene MYC, because it plays a vital role in tumorigenesis and metastasis of several 

31–33
types of cancer including breast cancer.  As a key transcription factor, MYC forms 

heterodimers with MAX, and then regulates transcription of genes involved in cell growth, and 

31
proliferation.  Aberrant MYC signaling can promote cell transformation and tumor 

32,33
progression.  Although most of the GWAS-identified SNPs on 8q24 for multiple types of 

5,34
cancers  are not mapped to the MYC genic region, they may cis-regulate nearby genes 

5
including MYC and its 53-kb downstream non-coding gene PVT1.  For example, cancer risk-

associated variants may regulate MYC expression by forming a large chromatin loop with the 

6,26,35
MYC locus.  This hypothesis has been partially supported by the fact that trait-associated loci 

26,36,37
are frequently found to be cis-eQTL.  Our e-QTL analysis of the TCGA breast cancer tumor 
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tissues showed a trend that rs1121948 in Signal 5 might affect MYC or PVT1 expression levels 

38
(Supplementary Table 7), consistent with a co-expression pattern.  However, the risk-increased 

alleles are associated with down-regulated gene expression of MYC or PVT1. This is inconsistent 

39–42
with overexpression of these two genes commonly observed in breast cancer tumors,  leaving 

challenges to link the risk alleles and the possible candidate gene(s) in malignancy.   

        Of the five independent association signals observed among women of European ancestry, 

only rs35961416 showed a significant association in women of African ancestry. This could be 

due to small effect size, different allele frequency, or allelic heterogeneity by race. Differences in 

GWAS findings across populations have commonly been observed for breast cancer and many 

43–45
other complex traits.  Taking the GWAS index SNP rs13281615 as an example, the risk allele 

46
frequency in women of European ancestry was 0.40.  Under an additive inheritance mode to 

detect the same per-allele effect (OR = 1.08) at P = 0.05, our Asian sample with 6,269 breast 

cancer cases and 6,624 controls (risk allele frequency of 0.53) and African American sample 

with 1,116 breast cancer cases and 932 controls (risk allele frequency of 0.44) has a power of 

0.09% and 0.1%, respectively. 

 In addition to a smaller sample size for women of Asian or African ancestry, there are 

several other limitations in this study. First, no functional laboratory experiments were conducted 

for any of the putative functional SNPs implicated in our study, preventing us from drawing a 

more definitive conclusion regarding the functionality of these variants. For example, our in 

silico analyses suggest that rs1121948 is located in binding sites of GATA3 and MAX, which 

may regulate MYC expression, but such potential interaction needs to be demonstrated 

47–50
experimentally.  Second, we limited our investigation to variants with a MAF > 0.02, and 
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thus it is possible that some rare variants in these loci may also contribute to the risk of breast 

cancer.  

 In conclusion, our fine mapping study identified two additional and another suggestive 

independent association signals on 8q24 among women of European ancestry, which together 

with two previous reported GWAS index signals plain approximately 0.55% of excess familial 

risk of breast cancer. In addition, our functional analyses revealed two putatively functional 

variants that can be further investigated experimentally. Our study provides additional evidence 

of the importance of common independent variants on 8q24 in breast cancer susceptibility.  
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FIGURE LEGENDS 

Figure 1. Manhattan plot of overall breast cancer risk association in Europeans at the 8q24 

locus. SNPs are plotted based on their chromosomal positions (hg19) and -log10 P-values for 

univariate association. The regions spanning five independent association signals (representative 

SNP for each signal are shown in Table 1) and their highly correlated SNPs are indicated by 

dashed rectangles. 

 

Figure 2. Functional annotation of the independent signal regions. (A) Chromatin states 

across the 45.6 kb region harboring two associated signals rs13281615 and rs7815245. The top 3 

tracks show enrichment of transcription regulatory histone markers H3K4me1, H3K4me3 and 

H3K27ac from seven cell lines in ENCODE. The next 9 tracks are the chromatin state annotation 

by ChromHMM derived from 9 cell types. ChromHMM color coding is as follows: orange, 

strong enhancer; yellow, weak enhancer; light green, weak transcribed; light gray, low signal. 

The next 5 tracks show the designated histone modifications in the HMEC cell line. The last two 

tracks show the open chromatin enrichment from DNase clusters and evolutionary conservation 

measurement by PhastCons from 100 vertebrates. (B) LD structure of the region harboring the 

index SNP rs13281615 and the independent signal rs7815245 in European samples. (C) 

Chromatin states across the 58.9 kb region harboring the second index SNP rs11780156 and the 

potential underlying functional SNP rs1121948. The contents of the tracks are the same as 

described in (A). (D) LD structure of the 58.9 kb region wherein SNPs rs11780156 and 

rs1121948 lie, marked with red arrows. 
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Table 1.  Identification of five independent association signals for overall breast cancer risk among women of European ancestry: a collaborative study 

of 48,155 breast cases and 43,612 controls. 

Signal SNP 

Base position 

Alleles
a
 MAF 

Imputation 

LD
b
 

(r
2
 ) 

Univariate Analysis   Conditional Analysis 

(hg 19) r
2
 per-allele OR 

(95% CI)
c
 

P
c
 

 
Adjusted per-allele 

OR (95% CI)
d
 

Adjusted 
P

d
     

Signal 1 rs35961416 128213561 A/- 0.44 0.75 - 0.95(0.93-0.97) 1.3x10
-5

  0.95(0.93-0.97) 5.8x10
-6

 

Signal 2 rs13281615
e
 128355618 G/A 0.40 0.97 - 1.11(1.08-1.13) 2.0x10

-24
  1.06(1.03-1.09) 6.6x10

-6
 

Signal 3 rs7815245 128383597 T/C 0.42 1 0.48 0.90(0.88-0.92) 1.3x10
-27

  0.94(0.91-0.96) 1.1x10
-6

 

Signal 4 rs2033101 128964222 T/C 0.19 0.95 - 1.05(1.03-1.08) 5.2x10
-5

  1.05(1.02-1.07) 1.1x10
-4

 

Signal 5 rs11780156
e
 129194641 T/C 0.16 1 - 1.07(1.05-1.10) 4.1x10

-8
  1.07(1.04-1.10) 1.7x10

-7
 

 rs1121948 129165056 G/A 0.20 1 0.77 1.07(1.04-1.09) 2.0x10
-7

  
- - 

Abbreviations: LD, linkage disequilibrium; OR, odds ratio; CI, confidence interval; MAF, minor (effect) allele frequency. 

a 
Minor/major alleles; effect alleles are shown in bold. 

b
 r

2
 for linkage disequilibrium with index SNP rs13281615 (0.48) and rs11780156 (0.77),respectively;  "-" indicates r

2
<0.01 with any index SNPs. 

c
 Adjusted for age, study site and principal components. 

d 
Adjusted for the other four signals, age, study site and principle components. 

e
 Independent index SNPs rs13281615 and rs11780156 from previously reported genome-wide association studies. 

 



Table 2. Association of the five independent signals with breast cancer risk by ER status among 

women of European ancestry. 

SNP 

ER+ cases (n=28,038)   ER- cases (n=7,786) P for  

Adjusted per-allele 

OR (95% CI)
a
 

Adjusted 

P
a
 

  

Adjusted per-

allele OR (95% 

CI)
a
 

Adjusted 

P
a
 

heterogeneity 

test
b
 

rs35961416 0.93(0.91-0.96) 4.8x10
-7

  0.97(0.93-1.01) 0.138 0.217 

rs13281615 1.08(1.04-1.11) 3.1x10
-6

  1.00(0.95-1.05) 0.971 0.032 

rs7815245 0.94(0.91-0.97) 1.6x10
-4

  0.96(0.91-1.01) 0.104 0.276 

rs2033101 1.06(1.03-1.09) 1.3x10
-4

  1.04(0.99-1.08) 0.140 0.307 

rs11780156 1.08(1.05-1.11) 6.6x10
-7

  1.06(1.01-1.12) 0.012 0.118 

Abbreviations: ER, estrogen receptor; OR, odds ratio; CI, confidence interval. 
a
 Adjusted for other four independent signal, age, study site and principle components. 

b
 Heterogeneity test between ER-positive and ER-negative disease. 

 



 

1 
 

 

 

ER- cases (n=7,786)

Table 3. Haplotype analyses of the two independent signals in relation to breast cancer risk among women of European ancestry.

All cases (n=48,155) ER+ cases (n=28,038)

S
N
P
 1
a

S
N
P
 2
a

S
N
P
 3
a

S
N
P
 4
a

S
N
P
 5
a

per-allele OR per-allele OR per-allele OR

Haplotypes A/- G/A T/C T/C T/C (95% CI)c (95% CI)c (95% CI)c

Baseline A A T C C 0.125 Reference (1.00) - 0.127 Reference (1.00) - 0.130 Reference (1.00) -

Haplo.1 - G C C T 0.029 1.27(1.15-1.39) 1.1×10-6
0.028 1.30(1.17-1.46) 2.9×10-6

0.028 1.22(1.03-1.46) 0.024

Haplo.2 - A C C T 0.017 1.24(1.11-1.40) 2.1×10-4
0.016 1.29(1.12-1.48) 2.9×10-4

0.016 1.19(0.96-1.48) 0.115

Haplo.3 - G C T C 0.033 1.23(1.13-1.35) 3.2×10-6
0.033 1.28(1.15-1.42) 3.0×10-6

0.032 1.10(0.93-1.30) 0.276

Haplo.4 A G C T C 0.031 1.22(1.12-1.33) 1.2×10-5
0.031 1.21(1.09-1.35) 3.6×10-4

0.030 1.08(0.91-1.28) 0.370

Haplo.5 - G C C C 0.140 1.17(1.12-1.22) 3.4×10-11
0.139 1.20(1.13-1.26) 1.1×10-10

0.136 1.06(0.97-1.15) 0.220

Haplo.6 A G C C C 0.131 1.13(1.07-1.19) 2.2×10-5
0.131 1.13(1.06-1.21) 2.1×10-4

0.130 1.04(0.94-1.16) 0.470

Haplo.7 - A T C T 0.029 1.13(1.03-1.23) 0.117 0.028 1.12(1.01-1.25) 0.038 0.029 1.04(0.87-1.24) 0.654

Haplo.8 A G C C T 0.024 1.11(1.01-1.23) 0.036 0.024 1.06(0.94-1.20) 0.339 0.024 1.03(0.85-1.25) 0.758

Haplo.9 - A C C C 0.089 1.11(1.05-1.17) 2.3×10-4
0.090 1.12(1.05-1.19) 5.7×10-4

0.089 1.02(0.92-1.13) 0.688

Haplo.10 - A T T C 0.037 1.11(1.02-1.20) 0.011 0.037 1.13(1.03-1.24) 9.5×10-3
0.037 1.05(0.90-1.22) 0.529

Haplo.11 - A C T C 0.020 1.09(0.98-1.21) 0.121 0.020 1.04(0.92-1.18) 0.510 0.021 1.27(1.05-1.53) 0.013

Haplo.12 A A C C C 0.034 1.05(0.97-1.15) 0.229 0.033 1.01(0.91-1.12) 0.877 0.035 1.09(0.93-1.28) 0.300

Haplo.13 A A T C T 0.023 1.04(0.92-1.16) 0.548 0.023 1.05(0.91-1.20) 0.494 0.023 1.11(0.90-1.37) 0.318

Haplo.14 - A T C C 0.148 1.02(0.97-1.08) 0.445 0.149 1.03(0.96-1.09) 0.447 0.153 1.03(0.92-1.14) 0.618

Haplo.15 A A T T C 0.029 0.97(0.88-1.08) 0.596 0.030 0.97(0.86-1.10) 0.654 0.030 0.96(0.80-1.16) 0.697

Haplo.rare * * * * * 0.060 1.20(1.13-1.28) 7.0×10-9
0.060 1.26(1.17-1.35) 6.1×10-10

0.058 1.09(0.96-1.22) 0.183

a SNPs1-5 represent signals rs35961416, rs13281615, rs7815245, rs2033101, and rs11780156, respectively; effect alleles are shown in bold.

b Haplotype frequency.

c Adjusted for age, study site, and principal components.

ER- cases (n=7,786)

Frequencyb P c

Abbreviations: ER, estrogen receptor; OR, odds ratio; CI, confidence interval. 

P c Frequencyb P cFrequencyb

All cases (n=48,155) ER+ cases (n=28,038)

S
N
P
 1
a

S
N
P
 2
a

S
N
P
 3
a

S
N
P
 4
a

S
N
P
 5
a
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Table 4.  Association of top SNPs identified in women of European and non-European ancestry with breast cancer risk 

among women of Asian (6,269 cases and 6,624 controls) and African ancestry (1,116 cases and 932 controls). 

Top SNPs Alleles
a
 

Univariate Analysis (Asian)   Univariate Analysis (African) 

EAF OR(95% CI)
b
 P

b
   EAF OR(95% CI)

b
 P

b
 

Identified in women of European ancestry 

 

rs35961416 A/- 0.10 1.01(0.91-1.13) 0.804 
 

0.39 0.85(0.73-0.99) 0.040 

 
rs13281615 G/A 0.53 1.02(0.97-1.08) 0.357 

 
0.44 1.02(0.90-1.16) 0.721 

 

rs7815245
c
 T/C 0.17 0.96(0.89-1.02) 0.202 

 0.36 0.99(0.87-1.13) 0.908 

 

rs2033101 T/C 0.33 1.00(0.95-1.05) 0.957 

 

0.09 0.85(0.67-1.07) 0.174 

 
rs11780156 T/C 0.20 0.99(0.93-1.06) 0.842 

 
0.04 0.97(0.70-1.34) 0.838 

Identified in women of non-European ancestry 

 rs16901629 G/A 0.14 1.12(1.03-1.22) 6.6×10
-3

  0.38 1.07(0.92-1.24) 0.407 

 rs974451 A/G 0.23 0.91(0.85-0.96) 1.4×10
-3

  0.56 0.99(0.88-1.13) 0.915 

 rs7014860 C/A 0.24 1.14(1.03-1.25) 9.8×10
-3

  0.25 1.01(0.83-1.24) 0.896 

 rs979200 C/T 0.45 1.07(1.02-1.13) 8.2×10
-3

  0.67 1.09(0.95-1.24) 0.230 

 rs16901857 G/A 0.24 1.08(1.02-1.15) 6.6×10
-3

  0.08 1.02(0.82-1.28) 0.841 

 rs75127456 A/C 0.10 0.89(0.81-0.97) 8.9×10
-3

  0.07 0.92(0.71-1.19) 0.524 

 rs56005245 C/T 0.26 1.09(1.03-1.16) 2.5×10
-3

  0.37 1.02(0.89-1.16) 0.780 

 chr8:128272219:I A/AG 0.04 1.32(1.10-1.59) 2.9×10
-3

  0.12 1.04(0.83-1.32) 0.715 

 rs28392817 T/G 0.17 1.10(1.03-1.18) 7.1×10
-3

  0.78 1.1(0.94-1.28) 0.237 

 rs4733807 A/G 0.12 0.89(0.82-0.96) 3.6×10
-3

  0.16 0.99(0.83-1.18) 0.907 

 rs55971392 G/A 0.10 0.88(0.8-0.96) 4.5×10
-3

  0.04 0.88(0.61-1.27) 0.501 

 rs35686742 C/T 0.09 0.87(0.79-0.96) 4.4×10
-3

  0.03 0.91(0.62-1.32) 0.619 

 rs6988558 G/C 0.44 0.98(0.93-1.04) 0.476  0.49 0.83(0.73-0.96) 9.6×10
-3

 

 rs73356177 A/G 0.05 1.05(0.93-1.19) 0.426  0.10 1.36(1.11-1.67) 2.8×10
-3

 

 rs1516964 C/T 0.04 0.88(0.76-1.01) 0.072  0.09 0.67(0.51-0.89) 6.1×10
-3

 

 

rs56142222 G/A 0.03 1.08(0.92-1.25) 0.351 

 

0.22 1.22(1.05-1.42) 9.8×10
-3

 

Abbreviations:  EAF, effect allele frequency; OR, odds ratio; CI, confidence interval. 
a
 Effect/reference allele; effect alleles are shown in bold. 

b
 Adjusted for study site and two principal components for each population. 

c
 Except for r

2
 of 0.23 and 0.43 for linkage disequilibrium between rs7815245 and the index SNP rs13281615 in Asians 

and African American, all other SNPs are not in LD with either of the index SNPs rs13281615 or rs11780156 in non-

European populations (r
2
 < 0.02). 

 

 


