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Abstract 

Identifying genetic variants with pleiotropic associations can uncover common pathways influencing 
multiple cancers and further understanding of cancer susceptibility. Our 2-staged approach used 
genome-wide association results for lung, ovary, breast, prostate and colon cancer from the GAME-
ON/GECCO Network (61,851 cases, 61,820 controls) to identify pleiotropic associations, and 
independent studies  (55,789 cases, 330,490 controls) for replication. We identified a novel pleiotropic 
association at 1q22 with a variant associated with breast and lung squamous cell carcinoma (overall 
(both stages) P-value for both cancers combined=8.9 x 10-8), with eQTL analysis showing a consistent 
association with ADAM15/THBS3 gene expression in lung tissues. New pleiotropic associations were also 
found at previously known cancer loci: variants at a known BRCA2 locus for lung and breast cancer were 
associated with serous ovarian cancer (overall p-value=4.0 x 10-8); a known breast cancer locus, 
CASP8/ALS2CR12, with a variant associated with prostate cancer (overall P-value=1.9 x 10-8), and a 
known breast cancer locus, CDKN2B-AS1, where one variant was associated with lung adenocarcinoma 
(overall P-value=1.0 x 10-5) and a second was associated with prostate cancer (overall P-value=9.5 x 10-

7). Our results provide important insights into common carcinogenesis across multiple major cancers and 
highlight the value of pleiotropy analysis.  
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Introduction 

Genome wide association studies (GWAS) have identified hundreds of genetic variants that are 
associated with risk of specific cancers1. It has been observed that some chromosomal regions 
demonstrate pleiotropic associations, where variants at one locus are associated with multiple cancers. 
One of the first identified pleiotropic loci is the 8q24 locus, where genetic variants are associated with 
breast, prostate, colorectal and ovarian cancer risk2, with some of the variants at this locus only 
associated with one cancer, while others are associated with multiple cancers3,4 . Similarly, genetic 
variants at the TERT-CLPTM1L region at 5p15.33 are associated with risk of lung, bladder, prostate 
cervical, pancreatic and other cancers5,6.  

The identification of pleiotropic loci is an important step in improving our knowledge of cancer etiology 
by potentially identifying pathways that influence carcinogenesis of different tumors, and in furthering 
understanding of susceptibility for cancer. Furthermore, analyzing genomic data across multiple cancer 
sites might identify novel susceptibility loci, as variants that do not meet the stringent criteria for GWAS 
significance for any one cancer site, might show a significant association when multiple cancers are 
analyzed together7.  

In this study we performed a genome wide investigation of pleiotropic associations across five common 
cancers - lung, ovary, breast, prostate and colorectal cancer using data from the Genetic Associations 
and Mechanisms in Oncology (GAME-ON) Network and the Genetic and Epidemiology of Colorectal 
Cancer Consortium (GECCO)8. The GAME-ON Network was launched by the National Cancer Institute 
(NCI) to capitalize on the extensive investment in GWAS, with the overarching goal to integrate post-
GWAS research and to facilitate analyses that address research questions that are common across 
multiple cancer sites. The GAME-ON Network is focused on tumors that currently represent a major 
public health burden and has assembled extensive genomic data from consortia investigating the cancer 
sites that constitute the basis of our cross-cancer analysis. Our study is the largest investigation of 
pleiotropic associations to date using GWAS results for 61,851 cases and 61,820 controls and testing 
nearly 10 million variants.    
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Results 

After applying quality control filters (see methods) we analyzed 9,916,564 variants for pleiotropic 
associations using 61,851 cases and 61,820 controls of European ancestry across five common cancer 
sites in the GAME-ON Network and GECCO (GAME-ON/GECCO). The characteristics of the contributing 
studies are summarized in Table 1. Figure 1 displays a Circos plot showing association test results for 
each of the five main cancer sites investigated. Multiple peaks can be seen for each site with breast and 
prostate showing the most genome-wide significant associations.  

We used the association analysis based on subsets (ASSET) meta-analytic approach7 to investigate 
pleiotropic associations across cancer sites using summary level data from the GAME-ON/GECCO 
discovery set. This method generalizes the standard fixed meta-analysis by jointly examining the 
association between each genetic variant within subsets of cancers and allowing for subsets with 
opposing directions of association and null associations. We supplemented this approach with a 
standard fixed effects meta-analysis and by reviewing regions where multiple sites were associated with 
a single variant (see Methods for details and rationale). One hundred and ninety variants in 33 regions 
were prioritized for follow-up in replication and generalizability based on the following criteria: (1) 
variant associations that were significant at the P-value threshold of 5 x 10-7 for two-sided or one-sided 
(positively or negatively associated) ASSET tests, or in standard fixed effect meta-analyses (using ASSET); 
or (2) variant associations with P-value of 5 x 10-3 or less for at least two cancer sites (including subtypes 
from different cancer sites) (Supplementary Table 1). Our replication data sets included a total of 55,789 
cases and 330,490 controls of European descent from deCODE (all 5 cancers), Harvard (lung cancer), 
iCOGS (breast cancer), PRACTICAL/iCOGS (Prostate cancer) and OCAC/iCOGS (ovarian cancer). An 
additional 46,785 cases and 42,892 controls from iCOG Breast cancer were used for validation of our 
novel pleiotropic association at 1q22 (see below). For generalizability, we conducted in silico look up of 
GWAS results from Nanjing (lung), Japan (lung), Shanghai (breast), San Francisco (breast for Latinos), the 
Japanese and Latino populations in Multiethnic Cohort (MEC) study (breast and prostate) the African 
American Breast Cancer GWAS Consortium (AABC), and the African Ancestry Prostate Cancer GWAS 
Consortium (AAPC) and with a total of 18,152 cancer cases and 21,410 controls (Table 1). Out of the 33 
regions selected for follow-up, we replicated associations at four regions (at P ≤ 0.05). We describe the 
most significant associations in each region below (see supplementary Table 1 and 2 for summary).  

 
Novel susceptibility region: 1q22 for lung squamous cell carcinoma and breast cancer  

Standard meta-analysis of GAME-ON/GECCO discovery data identified an association between 
rs1057941 located at 1q22 and overall risk of cancer (P=1.74 x10-7, Fig. 2a). Overall lung, lung squamous 
cell carcinoma (lung SqCC) and breast cancer were strongly associated with this variant in GAME-
ON/GECCO data (Lung: OR=1.08, 95% CI 1.05-1.12, P=9.2 x 10-6; lung SqCC: OR=1.10, 95% CI 1.04-1.16, 
P=0.001; Breast: OR=1.07, 95% CI 1.04-1.11, P=6.08 x 10-5). The association for lung SqCC was replicated 
in deCODE and Harvard studies combined, with OR of 1.12 (95% CI 1.01-1.23, P=0.03). The association 
with breast cancer was replicated in deCODE and iCOGS combined (OR=1.02, 95%CI 1.00-1.04, P=0.01). 
The p-value for association from a meta-analysis of both discovery and validation sets (i.e., GAME-
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ON/GECCO-deCODE-Harvard) for lung SqCC and breast cancer approached genome-wide significance 
(P=8.9 x 10-8) (Fig. 2a).  

In addition to breast, lung and lung SqCC, the aggressive form of prostate cancer was selected by ASSET 
as part of the subset of cancers associated with rs1057941. We have no replication data for this cancer 
and we did not replicate the GAME-ON/GECCO association with prostate cancer overall (deCODE and 
PRACTICAL/iCOGS combined: OR=1.02, 95% CI 1.00-1.05, P=0.08). We did not see associations for lung 
SqCC or breast cancer in other ethnic groups (data not shown). 

Regional plots constructed from GAME-ON/GECCO results show a distinct peak in P-values in a 40kb 
region of LD at 1q22 that includes KRTCAP2, GBA, MTX1, MUC1, TRIM46, THBS3, ADAM15 and ASH1L 
(Fig. 2b). Although the strength of the meta-analysis signal led us to identify rs1057941 for replication 
other variants in the region with a weaker cross-cancer meta-analysis signal had the most significant 
site-specific associations: MUC1 variant rs4072037 for lung SqCC (P=3.21 x 10-4) and the TRIM46 variant, 
rs3814316, for breast cancer (P=3.06 x 10-6) (Fig. 2b and supplementary Fig. 1a-b).  

We conducted eQTL analysis for lung SqCC associated variants in this region in non-tumor lung tissues of 
1,111 patients from three studies assembled by Laval University (n=409), The University of British 
Columbia (n=339) and the University of Groningen (n=363). These analyses found that rs4072037 acted 
as a normal lung tissue eQTL for two genes in this region, ADAM15 and THBS3, with two studies showing 
significant associations after adjustment for multiple comparisons and the third showing a nominally 
significant association consistent in direction with the other two (ADAM15: Laval P=2.39 x 10-7,  
University of British Columbia P=4.09 x 10-5, University of Groningen P=0.08; THBS3: Laval P=1.71 x 10-5,  
University of British Columbia P=4.15 x 10-6, University of Groningen P=0.004) (Fig. 3a and b). The risk 
allele, A, was consistently associated with increased gene expression for all studies.  

 
Previously known cancer loci with newly identified pleiotropic associations 

13q13.1 BRCA2 (known for breast and lung cancer) and serous ovarian cancer 
We observed genome-wide significant pleiotropic associations for three rare BRCA2 variants 
rs11571815, rs11571818 and rs11571833 (ASSET two-sided P-values: rs11571815 P=5.53 x 10-10, 
rs11571818 P=5.45 x 10-10, rs11571833 P=6.14 x 10-10) in GAME-ON/GECCO. These variants are in perfect 
LD with each other according to 1000 genomes March 2012 release data (CEU). As results were nearly 
identical in our data sets we focus on rs11571833 (Fig. 4a), a potentially functional variant identified in 
previous GWAS as associated with breast cancer and lung cancer (primarily driven by lung SqCC), where 
the latter study used a subset of the lung cancer data included here 9,10. Our analysis indicates an 
additional association with serous ovarian cancer (OR=1.76, 95% CI 1.30-2.38; P=2.49 x10-4), that was 
replicated in iCOGS (OR=1.45 95% CI=1.22-1.72, P=3.08x10-5), meeting our corrected significance 
threshold of P ≤ 0.0003 (see methods) (Fig. 4a). Combining GAME-ON/GECCO and iCOGS resulted in a 
genome-wide significant association between rs11571833 and serous ovarian cancer (P=3.95 x10-8). We 
did not find a significant association with breast cancer for this variant (OR=1.22, 95% CI 0.96-1.54, 
P=0.10) in GAME-ON/GECCO. The associations for lung and serous ovarian cancers are in the same 
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direction, and the one sided ASSET test indicated an even stronger association for the subset that 
included these cancers (P=9.4 X 10-13) than the two sided p-value (Fig. 4a). Regional plots show that 
subset meta-analysis and serous ovarian cancer associations are strongest at rs11571833 and its two 
neighboring variants rs11571815 and rs11571818 (Fig. 4b and supplementary Fig. 2). Our investigation 
of ovarian eQTL for these variants did not produce a significant association. 
 
2q33.1 CASP8/ALS2CR12 (known for breast cancer and malignant melanoma) and prostate cancer 
We identified a pleiotropic association between rs13016963 located in 2q33.1 and prostate (OR=1.08, 
95% CI 1.04-1.13, P=3.05 x 10-5) and breast cancer (OR=0.93, 95% CI 0.90-0.96, P=5.75 x10-5) (Fig. 5a) in 
GAME-ON/GECCO. This variant was associated with melanoma in a previous GWAS11.  The association 
we found with breast cancer can be explained through LD with previously identified breast cancer 
variants in the region12-15. The association with prostate cancer was replicated in deCODE and iCOGS 
(OR=1.05, 95% CI 1.03-1.08, P=7.6 x 10-5) meeting our corrected significance threshold of P ≤ 0.0003 (Fig. 
5a). The combined GAME-ON/GECCO, deCODE and iCOGS p-value was 1.9 x 10-8. This variant is in intron 
5 of ALS2CR12, adjacent to CASP8. It sits in a region of high LD that includes several variants at these two 
genes that show similar strength associations with prostate cancer (Fig. 5b).  

We conducted an eQTL analysis for variants showing the most significant associations with prostate 
cancer in the region, all of which were in strong LD (R2 ≥ 0.70) with rs13016963. We combined 145 
prostate tumour samples and 33 normal tissue samples from TCGA for the analysis. In figure 6, we show 
results for rs1035142, which was in perfect LD with rs13016963 in this sample and was associated with 
BZW1 (P=0.001, FDR=0.04).  

9p21.3 CDKN2B1 (known for lung SqCC and breast cancer) and lung adenocarcinoma 
The variant rs62560775 at CDKN2B-AS1 located in 9p21.3 showed evidence for pleiotropy in GAME-
ON/GECCO with associations for lung adenocarcinoma (OR=1.19, 95% CI = 1.08-1.31, P=2.77 x 10-4) and 
breast cancer (OR=1.11, 95% CI 1.05-1.17, P=5.30 x 10-4). Variant rs62560775 is in the vicinity of a 
previously reported breast cancer risk allele at the same gene. This region was previously reported as a 
lung SqCC susceptibility locus, but this is the first time that we observed an association with lung 
adenocarcinoma. It was replicated based on the combined data of deCODE and Harvard (OR=1.16, 95% 
CI 1.03-1.30, P-value=0.01). The combined p-value for GAME-ON/GECCO, deCODE and Harvard was 1.0 x 
10-5 (Fig. 7a). The association of this variant with lung adenocarcinoma was the most significant in the 
region (Fig. 7b).  Our lung eQTL investigation of this variant showed no significant association with gene 
expression in this region.  

A second variant in the region, rs1011970, was associated with prostate cancer (OR=1.10, 95% CI = 1.05-
1.15, P=7.3 x 10-5). This variant was found to be associated with breast cancer in a previous GWAS16. The 
association with prostate cancer was replicated in deCODE and iCOGS combined (P=0.001). The 
combined p-value for GAME-ON/GECCO, deCODE and iCOGS was 9.5 x 10-7 (Fig 8a) This variant was in LD 
with rs62560775 (R2 = 0.58) , but the association with lung adenocarcinoma was not as strong 
(rs1011970:  P=0.012, rs62560775: P=2.77 x 10-4). Fig 8b, shows that this variant has the second most 
significant association with prostate cancer in the region. The strongest association occurs at 
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rs72652411, a variant which is not in LD with rs1011970 and not associated with any cancer other than 
prostate. 

Other evidence for pleiotropic associations 

To investigate whether pleiotropic regions for pairs of cancers occurred more often than expected by 
chance, we used conditional QQ plots to assess enrichment of associations for a given cancer 
conditioned on p-value category of the other cancer (supplementary Fig 3a-c). As demonstrated by the 
leftward deflection of the Q-Q plots with decreasing p-value category, there is evidence of pleiotropic 
association for breast and ovarian cancer (supplementary Fig. 3a), breast and prostate cancer 
(supplemental Figure 3B), and prostate and colorectal cancer (supplementary Fig. 3c).  However, there is 
no evidence of pleiotropic associations for prostate and ovary cancer, or lung cancer with any of the 
other 4 cancer sites.   

 
Discussion 

Using data from the GAME-ON Network and GECCO we conducted a cross-cancer GWAS analysis 
investigating pleiotropic associations for five cancer sites (lung, breast, colorectal, ovary and prostate) 
including histology and subtypes. We identified four novel pleiotropic associations that were supported 
by results in GAME-ON/GECCO data and our independent replication data sets. We identified a 
pleiotropic association at the 1q22 region involving breast cancer and lung SqCC, neither of which was 
previously known to be associated with genetic variation in this region. The association with lung SqCC 
was further supported by the eQTL analysis. We found convincing support for an association between a 
known lung and breast cancer locus at BRCA2 and serous ovarian cancer risk. Our data also provide 
convincing support for an association of a locus at CASP8/ALS2CR12, known to be associated with breast 
cancer and melanoma, with prostate cancer; while genetic variation at the 9p21.3 region, known to be 
associated with breast cancer and lung SqCC, appears to be associated with lung adenocarcinoma and 
prostate cancer. 

The locus at 1q22 represented by rs1057941 was identified through standard meta-analysis with breast 
cancer and lung SqCC associated with this variant in GAME-ON/GECCO and in our validation sets. It is 
worthwhile to mention that the same locus at 1q22 was recently found be associated with blood lipid 
traits in an parallel analysis in GAME-ON (Zuber et al, submitted), which provides further support for the 
biological importance of this locus. Rs1057941 lies in a region of LD that includes KRTCAP2, MTX1, 
TRIM46, MUC1, GBA, THBS3, ADAM15 and ASH1L. While rs1057941 had the strongest association in the 
meta-analysis, the strongest signals by individual cancer site found in the GAME-ON/GECCO data set 
were represented by rs3814316 for breast cancer (at TRIM46) and rs4072037 for lung SqCC (at MUC1). 
Both of these sequence variants are in LD with rs1057941 (rs3814316: R2 = 0.57; rs4072037, R2 = 0.40) 
and all variants are within 15kb of one another.  

Of these variants, rs4072037 at MUC1 was previously suggested to be functional as it was shown to 
regulate alternative splicing of the second exon in MUC1 and modifies the gene’s transcriptional 
activity17. Aberrantly glycosylated MUC1 is overexpressed in most epithelial cancers and is known to 
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have an oncogenic effect. It mediates the production of growth factors such as connective tissue growth 
factor (CTGF), and platelet driven growth factor A and B (PDGF-A and PDGF-B) that promote activation 
of the MAPK and PI3k/Akt  pathways potentiating proliferation and survival of tumor cells18. It also plays 
a critical role in EGFR signalling, promoting survival of NSCLC cells19.  

Our lung eQTL investigation found no association with MUC1 expression but the risk allele, A, of 
rs4072037 was associated with increased expression of two other genes in the region (ADAM15 and 
THBS3). This result suggests other potential mechanisms by which this variant could influence cancer 
risk. ADAM15 is of particular interest as it is overexpressed in both lung and breast cancer20-22, which is 
consistent with our finding of pleiotropic associations of these two cancer sites. Overexpression in 
breast cancer is associated with Her2/neu expression and evidence from breast cancer cell lines 
indicates that ADAM15 catalyzes the cleavage of E-cadherin which in turn binds to and enhances ErbB 
receptor signalling22. rs4072037 may also influence risk of other cancers as an association with gastric 
cancer was found in a GWAS conducted in China23. Although this result did not reach genome wide 
significance (at P-value of 5 x 10-8) a recent meta-analyses provided further support for an association in 
Asian populations24,25.  

Our results provide strong evidence of a pleiotropic association for rs11571833 at BRCA2, that includes 
lung (previously known10) and ovarian cancer, as the subset meta-analysis reached genome-wide 
significance (for both two and one sided tests). This variant was recently also reported to be associated 
with upper aerodigestive tract cancer26. rs11571833 is an uncommon (minor allele frequency=0.01) and 
potentially functional variant resulting in an amino acid change (c.9976A>T) responsible for BRCA2 
p.Lys3326X. Thr9976 results in the loss of the C-terminal domain of BRCA2, a change hypothesized to 
inhibit the RAD51-BRCA2 interaction in BRCA2 mediated double strand-break repair thereby increasing 
the risk of cancer10.  

It is possible that the association could be explained by LD with a BRCA2 mutation. However, previous 
work from our consortium indicates that co-occurrence of the rare rs11571833 T allele and risk 
conferring BRCA2 mutations is unlikely as co-occurrence between this variant and highly penetrant or 
pathogenic BRCA2 mutations was not observed in several independent samples10. 

For 2q33.1, we found evidence for a pleiotropic effect for rs13016963 (at ALS2CR12) on breast and 
prostate cancer, with association between this variant and prostate cancer reaching genome-wide 
significance in the combined discover and replicate sets. This region was already known to harbor breast 
cancer susceptibility loci, in particular rs1045485 encoding the missense alteration D302H in CASP812,15 
(adjacent to ALS2CR12), was previously reported to be associated with breast cancer risk. Subsequently 
rs1830298 at ALS2CR12 and rs1045494 at CASP8 were also reported to be associated with breast cancer 
risk14,13.  

Of these three breast cancer susceptibility variants, rs1830298 was found to have the most significant 
association with breast cancer (P=1.02 X 10-7) in our study, and was also associated with prostate cancer 
risk (P=5.2X10-4); whereas rs1045485 and rs1045494 were not. Although there is strong LD between 
rs1830298 and rs13016963 (R2 = 0.74), rs13016963 and other variants that it is in strong LD with 
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(R2≥0.80), have more significant associations with prostate cancer (P ≤ 3.05x10-5) than rs1830298, 
suggesting there might be multiple variants contributing to cancer risk in the region. Interestingly, 
rs13016963 was also found to be associated with risk of melanoma in a previous GWAS in subjects of 
European descent11 indicating this variant may be associated with both prostate cancer and melanoma 
in Caucasian populations. It was also found to be associated with esophageal squamous cell carcinoma 
in Han Chinese23.  

Previous research has examined associations between other genetic variants in this region and prostate 
cancer risk. A possible association between the CASP8 histidine variant D302H and the more aggressive 
form of prostate cancer in European populations was reported by two studies27,28. This variant was not 
associated with overall prostate cancer in GAME-ON/GECCO (P=0.14) and is only in very weak LD with 
rs13016963 (R2=0.11).  

Our prostate eQTL analysis suggested that rs13016963 influences the expression of BZW1. Previous 
studies indicate a role for BZW1 in carcinogenesis. BZW1 can activate histone H4 gene transcription and 
serves as a co-regulator of other transcription factors involved in cell cycling. It has been implicated in 
promoting mucoepidermoid carcinoma tumor growth29. We also found two potential functional variants 
in the region (rs700636 and rs1035142). These variants are in very strong LD with rs13016963 (R2≥0.97), 
have associations with prostate cancer similar in strength to rs13016963, and are predicted to sit in 
miRNA binding sites30.  
The 9q21.3 region encoding CDKN2B-AS1 has been much studied in cancer research. We observed a 
pleiotropic association of rs62560775 (located in the intronic region of CDKN2B-AS1) on lung 
adenocarcinoma and breast cancer. Timofeeva et al, found an association between rs1333040 at this 
locus and lung SqCC31, but this variant was not associated with adenocarcinoma in our data set (P=0.62) 
The association with breast cancer might to be due to LD (R2=0.38) with a previously identified breast 
cancer susceptibility variant, rs1011970. This variant is not strongly associated with adenocarcinoma of 
the lung (P=0.01), which suggests separate loci contribute to breast and lung adenocarcinoma 
associations in the region. Interestingly, we did replicate an association between rs1011970 and 
prostate cancer, suggesting this specific variant, or variants in LD with it contribute to risk for both of 
these cancers. Previous GWAS also report associations between this region and risk of  glioma32,33, 
melanoma11,34, and basal cell carcinoma35 and a recent pleiotropy study indicated an association with 
esophageal lung SqCC36. LD between these variants (4 of 5 of which are associated with only one of 
these cancers) and rs62560775 and rs1011970 range from R2 = 0.21 to R2 = 0.60, indicating that multiple 
variants in this region contribute to cancer risk.  

Modification of CDKN2B-AS1 activity could be the mechanism through which this locus influences cancer 
risk. CDKN2B-AS1, also known as ANRIL (antisense non-coding RNA in the INK4 locus) is known to recruit 
a polycomb repression complex (PRC2) that silences CDKN2B but not CDKN2A 37-39. Although there is no 
known function for rs62660775 or rs1011970, a variant with which rs62660775 is in  strong LD, 
rs3217986 (at R2=0.69), was identified to be located in a miRNA binding site30 and classified as likely to 
affect binding by Regulome40. 
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Our Q-Q plots for pleiotropy (supplementary Fig. 3a-c) suggest pleiotropic associations are present 
between some sites: breast and ovarian cancer, breast and prostate cancer and prostate and lung 
cancer, with some evidence provided for pleiotropic associations involving prostate and lung and 
colorectal and ovarian cancer. There was little evidence for pleiotropic associations involving other site 
combinations. However, the plots most effectively reflect strong associations at regions with extensive 
LD. More subtle effects could be missed.  
 
Our initial investigation using the GAME-ON and GECCO data set identified 33 regions and 190 variants 
that we further examined in replication data sets. We were able to replicate the associations for four of 
these regions. Since our replication datasets sample sizes were often smaller than that of our discovery 
set (depending on the cancer site), we may have insufficient power to replicate true associations 
particularly for less common variants, underlining the importance of sample size for investigations of 
pleiotropy.  
 
In summary, using data from the GAME-ON initiative and GECCO, we have found four regions that show 
associations with multiple cancers, including a novel association between genetic variation at 1q22 and 
breast cancer and lung squamous cell carcinoma. This is the largest study to date examining pleiotropy 
across multiple cancer sites. There are likely additional loci that are associated with multiple cancers but 
these will require additional efforts with larger data series for detection.   

 
Methods 

Data and contributing consortia 

This study used summary level data to perform cross-cancer GWAS analysis of lung, colorectal, prostate, 
breast and ovarian cancers based on a subset-based meta-analytical approach. Forty-six studies from 
North America and Europe organized into cancer site specific consortia, within the GAME-ON Network 
(http://epi.grants.cancer.gov/gameon/) or GECCO, participated in this investigation. Table 1 provides 
details for contributing consortia and studies. In addition to the five main cancer sites the analyses also 
included the following cancer subtypes: adenocarcinoma and squamous cell carcinoma of the lung; the 
aggressive form of prostate cancer; estrogen receptor negative breast cancer, and serous and 
endometrioid cancers of the ovary (Table 1). All studies frequency matched cases and controls on at 
least age and sex, and all subjects were of European descent. 

Genotyping and imputation 

Genotyping was performed on Affymetrix or Illumina platforms (Table 1). Marker exclusion criteria were 
applied in each cancer consortium using standard exclusion criteria8,9,31,41-44. Genotype imputation was 
conducted for each cancer site using IMPUTE, BEAGLE, MACH and Minimac, with a threshold for 
imputation of R2 >  0.3 used throughout.  

Statistical Analysis 

Logistic regression analysis using a log additive model was carried out to test the association of variants 
with cancer risk for all of the forty-five studies. All effect estimates represent per allele adjusted odds 
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ratios (ORs) adjusted for age, principal components and gender where applicable. The study-specific 
results were then combined for each cancer site using a fixed effects model. The methodology and the 
results of the cancer-specific studies have been described previously8,9,31,41-44.  

A subset-based meta-analysis approach developed by Bhattacharjee et al. (ASSET) was then used to 
investigate pleiotropic effects across cancer sites7. The method generalizes the standard fixed effect 
meta-analysis by examining the association between genetic variants with subsets of cancers and 
allowing opposing direction of effects and null associations. Associations are summarized with an overall 
two-sided p-value with a penalty for the subset searches to adjust for multiple comparisons.  

Accounting for subsets of studies with no effects and/or effects in opposing directions (i.e., both 
increased and reduced risk subsets can be defined) is an advantage of the subset-based meta-analysis 
approach. However, in the situation where a large majority of underlying effects are in one direction 
subset meta-analysis can have lower power compared to standard fixed effect analysis.  For this reason, 
we also explored results based on standard fixed effects meta-analysis (when all cancer sites provided 
results), again using ASSET. 

Analysis was performed when at least three of five cancer sites had available data.  Subjects appearing 
in several studies with different cancer sub-types (e.g. overlapping controls for lung adenocarcinoma 
and lung SqCC) and across cancer types (e.g. UK ovary and UK breast GWAS both used controls from 
Welcome Trust Case Control Consortium, WTCCC) were accounted for in the covariance matrix when 
estimating standard errors for subset-based and standard meta-analyses.   

We set a significance threshold of 5 x 10-7 to identify variants of interest (i.e., variants with evidence of a 
pleiotropic effect) for the two sided subset-analysis test, for positive and negative associations that 
contributed to the two-sided subset-analysis test signal, and for fixed effect meta-analysis. We excluded 
variants where the association was obviously driven by a single cancer site. We also identified variants 
of interest as those where p-values for association between variants and individual cancer sites, 
including their subtypes, were less than 5 x 10-3 for at least two cancers. Among the variants of interest 
identified, we prioritized for validation those that showed the strongest pleiotropic association in a 
region (based on subset or standard cross cancer meta-analysis) and also included variants that  showed 
the statistically most significant associations in site-specific analyses in a region (with P≤ 5 X 10-3). We 
then sought to validate specific variant and cancer site associations that contributed to the pleiotropic 
signal in the region using independent sets of study populations of European descent based on all five 
cancers from deCODE 10,45, lung cancer from Harvard46,47, breast (region 1q22 only) from iCOGS, ovarian 
from OCAC/iCOGS and prostate from PRACTICAL/iCOGS9,42,48, with a replication threshold of P ≤ 0.05. 
We further assessed significance for these variants by number of effective tests, which accounts for the 
correlation among variants of interest. This resulted in an adjusted significance threshold of P=0.000349 
after accounting for testing in multiple phenotypes. For cross-ethnicity generalizability, we also 
examined results for our selected variants in different race/ethnicities using data from Japan (lung50), 
Nanjing (lung51), Shanghai (breast52), MEC, African American Breast Cancer GWAS Consortium (AABC), 
African Ancestry Prostate Cancer GWAS Consortium (AAPC), and San Francisco (breast for Latinas)53-56. 
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Further investigation of pleiotropic effects 

We further investigated pleiotropy between pairs of cancer sites (e.g., breast and lung, colorectal and 
prostate) using conditional Q-Q plots to examine enrichment of association signals (over-abundance of 
low p-values) in one cancer when conditioning on significance of p-values in the second cancer. 
Enrichment is reflected in a leftward deflection in the Q-Q plot with decreasing p-value categories of the 
second (conditioning) cancer57 indicating a higher degree of pleiotropy between two cancer sites than is 
expected by chance. 

eQTL data 

We obtained non-tumor lung eQTL data of 1,111 patients from three studies assembled by Laval 
University (n=409), The University of British Columbia (n=339) and the University of Groningen (n=363).  
Gene expression profiles were obtained using an Affymetrix array (see GEO platform GPLL0379). 
Genotyping was carried out using using the Illumina Human1M-Duo genotyping BeadChip. Analyses 
were adjusted for age, sex, and smoking status. Further details of this study are published elsewhere58-

62.  We included validated variants from our study which showed evidence of association with lung 
cancer and also evaluated eQTL data for variants in LD (R2 > 0.7) with these. A statistically significant 
result for a specific variant was declared if 2 of 3 studies showed a significant p-value after Bonferroni 
correction for multiple comparisons. We also obtained TCGA eQTL data for 402 high-grade serous 
ovarian cases and 145 prostate tumor samples and 33 normal tissue samples and again investigated 
variants with validated associations and those in high LD with them. Gene expression values for high-
grade serous ovarian cases were assessed by p-value.  Gene expression values for prostate cancer were 
adjusted for somatic copy number and CpG methylation as previously described 63. Significant 
associations were defined as those having both p-value and false discovery rate (based on Benjamini-
Hochberg method) of less than 0.05. 

 Functional data 

We used FuncPred from SNPinfo to assist with variant function prediction. The software determines a 
variant’s potential function in splicing regulation, TFBS prediction, miRNA binding site prediction and 
regulatory potential based on in-house algorithms and tools developed elsewhere (e.g., polyphen)30. In 
addition, we used RegulomeDB to further assess regulatory potential for variants of interest. This tool 
includes high-throughput, experimental data sets from ENCODE and other sources, as well as 
computational predictions and manual annotations to identify putative regulatory potential and identify 
functional variants40. We also further examined ENCODE data by examining region tracks using UCSC 
genome browser64. 
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Figure Legends 

Figure 1. Manhattan plots (-log10(p)) by chromosome for individual cancer sites (innermost to outermost ring – 
ovary(Ov) breast (Br), prostate (PR), colorectal/GECCO (Co), Lung (Lu)). 

Figure 2. Results for rs1057941: a) Forest plot for rs1057941 showing per allele ORs for risk allele A (of A/G). 
Standard fixed effects meta-analysis (also indicated by dashed line), and subset meta-analysis results (two-sided, 
one-sided and positive and negative subset associations) are shown.   b) Regional plot showing p-values from 
overall meta-analysis at region 1q22 using GAME-ON/GECCO discovery set data. The top breast cancer hit 
(rs3814316) and top squamous cell carcinoma hit (rs4072037) are also highlighted.  
 
Figure 3. Boxplots of gene expression levels in normal lung tissue for rs4072037 for A) ADAM15 and B) THBS3. 
Results are presented by study (Laval, UBC, Groningen). 

Fig 4. Results for rs11571833 a) Forest plot showing per allele ORs for risk allele T of (T/A). Standard fixed effects 
meta-analysis (also indicated by dashed line), and subset meta-analysis results (two-sided, one-sided and positive 
and negative subset associations) are shown. b) Regional plot showing two sided p-values from ASSET subset 
meta-analysis at region 13q13.1 using GAME-ON/GECCO discovery set data. Peak is at BRCA2. rs11571815 and 
rs11571818 have nearly identical association signals but are partially obscured by rs11571833.  

Fig 5. Results for rs13016963: a) Forest plot showing per allele ORs for risk allele G (of A/G). Standard fixed effects 
meta-analysis (also indicated by dashed line), and subset meta-analysis results (two-sided, one-sided and positive 
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and negative subset associations) are shown.  b) Regional plot showing P-values for GAME-ON prostate cancer 
GWAS at region 2q33.1 using GAME-ON/GECCO discovery set data. Peak is at ALS2CR12.  

Figure 6. Boxplot of BZW1 gene expression levels in prostate tumor and normal tissue for 
rs1035142/rs13016963. rs1035142 is presented as a surrogate for rs13016963, with which it shows perfect LD in 
eQTL data.  

Figure 7. Results for rs62560775: a) Forest plot showing per allele ORs for risk allele G (of A/G). Standard fixed 
effects meta-analysis (also indicated by dashed line), and subset meta-analysis results (two-sided, one-sided and 
positive and negative subset associations) are shown. b) Regional plot showing P-values for GAME-ON lung 
adenocarcinoma GWAS at region 9p21.3, using GAME-ON/GECCO discovery set data. Peak is at CDKN2B-AS1.    

Figure 8. Results for rs1011970: a) Forest plot showing per allele ORs for risk allele T (of T/G). Standard fixed 
effects meta-analysis (also indicated by dashed line), and subset meta-analysis results (two-sided, one-sided and 
positive and negative subset associations) are shown. b) Regional plot showing P-values for GAME-ON prostate 
cancer GWAS at region 9p21.3, using GAME-ON/GECCO discovery set data. Peak is at CDKN2B-AS1. 

 

 



Table 1. Contributing consortia and characteristics of data sets.  

 GAME-ON/GECCO Analysis 

 

Replication Stage  
(European ancestry) 

Generalizability  
(Other ancestry) 

Cancer Site 
(Consortium) 

No.  
studies Cases Controls* Variants† Genotyping 

Platform 
Imputation 
threshold‡ 

 
Study Cases Controls* Study Cases Controls* 

Lung (TRICL)31 6 12160 16838 8492272  
 

Illumina 

 

 

 
 

R2>0.3 

deCODE10,45 3865 196658 Nanjing51 2331 3077
 Harvard46,47 984 970

Adenocarcinoma   3718 15871 8472145 deCODE 1434 198663 Nanjing 1304 3077
 Harvard 597 970 Japan50 1575 3363

Squamous cell  
carcinoma  

 
3422 16015 8478230 

deCODE 784 171059 Nanjing 822 3077
 Harvard 216 970

      
 

 
   

    

Colorectal (CORECT)44 6 5100 4831 7229595 Affymetrix 
Axiom None 

deCODE 3546 236404 
Colorectal (GECCO)8  13 10314 12857 9193926 Illumina, 

Affymetrix R2>0.3 

Prostate  (ELLIPSE) 
 

14160 12724 9084781  
Illumina, 

Affymetrix 

 
R2>0.3 

deCODE 4858 83103 LAPC/MEC53 1034 1046
6 iCOGS48 20219 20440 AAPC56 4853 4678
 JAPC/MEC53 980 1005

Prostate  
Aggressive 6 4450 12724 9003304 

Breast (DRIVE)9,43  

 

15748 18084 9331393 Illumina, 
Affymetrix R2>0.3 

Shanghai52 2867 2285

11 deCODE 
iCOGS9 

5318 
46785 

280808 
42892 

LABC/MEC, 
SF54 1497 3213 

 AABC55 3015 2743
Breast ER41  8 4939 13128 9250406
    

Ovary (FOCI)42 (FOCI) 3 4369 9123 9911464 

Illumina  R2>0.3 

deCODE 716 111373 
iCOGS42 16283 23491

Ovary - Serous  3 2556 9123 9911279 iCOGS 10316 23491
Ovary - 
Endometrial  3 715 9123 9910229  iCOGS 2338 23491

Total* 45 61851 61820 9916564     55789 330490  18152 21410 
* The number of unique individuals after accounting for cancer subtypes and overlapping controls. Breast iCOGS included only 1q22 variants, so total for replicates without breast iCOGS is shown. 
†Analyses were performed for a specific variant if at least 3 sites (i.e., three of lung, colorectal, prostate, breast or ovary) contributed data.  
‡Imputation performed using the 1000 genome reference panel. Exclusion threshold shown. 
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Figure 1. Manhattan plots (-log10(p)) by chromosome for individual cancer sites (innermost to outermost ring  - ovary(Ov) breast (Br), prostate (PR), colorectal/GECCO (Co), Lung (Lu)).
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Figure 2. Results for rs1057941: a) Forest plot for rs1057941 showing per allele ORs for risk allele A (of A/G). Standard fixed effects meta-analysis (also indicated by dashed line), and subset meta-analysis results (two-sided, one-sided and positive and negative subset associations) are shown.   b) Regional plot showing p-values from overall meta-analysis at region 1q22 using GAME-ON/GECCO discovery set data. The top breast cancer hit (rs3814316) and top squamous cell carcinoma hit (rs4072037) are also highlighted. 
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Figure 3. Boxplots of gene expression levels in normal lung tissue for rs4072037 for A) ADAM15 and B) THBS3. Results are presented by study (Laval, UBC, Groningen).



a)

b)
13q13.1 ASSET two sided p values from discovery set

gord
Text Box
Fig 4. Results for rs11571833 a) Forest plot showing per allele ORs for risk allele T of (T/A). Standard fixed effects meta-analysis (also indicated by dashed line), and subset meta-analysis results (two-sided, one-sided and positive and negative subset associations) are shown. b) Regional plot showing two sided p-values from ASSET subset meta-analysis at region 13q13.1 using GAME-ON/GECCO discovery set data. Peak is at BRCA2. rs11571815 and rs11571818 have nearly identical association signals but are partially obscured by rs11571833. 
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Fig 5. Results for rs13016963: a) Forest plot showing per allele ORs for risk allele G (of A/G). Standard fixed effects meta-analysis (also indicated by dashed line), and subset meta-analysis results (two-sided, one-sided and positive and negative subset associations) are shown.  b) Regional plot showing P-values for GAME-ON prostate cancer GWAS at region 2q33.1 using GAME-ON/GECCO discovery set data. Peak is at ALS2CR12. 
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Figure 6. Boxplot of BZW1 gene expression levels in prostate tumor and normal tissue for rs1035142/rs13016963. rs1035142 is presented as a surrogate for rs13016963, with which it shows perfect LD in eQTL data. 
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Figure 7. Results for rs62560775: a) Forest plot showing per allele ORs for risk allele G (of A/G). Standard fixed effects meta-analysis (also indicated by dashed line), and subset meta-analysis results (two-sided, one-sided and positive and negative subset associations) are shown. b) Regional plot showing P-values for GAME-ON lung adenocarcinoma GWAS at region 9p21.3, using GAME-ON/GECCO discovery set data. Peak is at CDKN2B-AS1.   
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Figure 8. Results for rs1011970: a) Forest plot showing per allele ORs for risk allele T (of T/G). Standard fixed effects meta-analysis (also indicated by dashed line), and subset meta-analysis results (two-sided, one-sided and positive and negative subset associations) are shown. b) Regional plot showing P-values for GAME-ON prostate cancer GWAS at region 9p21.3, using GAME-ON/GECCO discovery set data. Peak is at CDKN2B-AS1.
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