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The cell cycle is the essential biological process where one cell replicates its

genome and segregates the resulting two copies into the daughter cells dur-

ing mitosis. Several aspects of this process have fascinated humans since

the nineteenth century. Today, the cell cycle is exhaustively investigated

because of its profound connections with human diseases and cancer. At

the heart of the molecular network controlling the cell cycle, we find the

cyclin-dependent kinases (CDKs) acting as an oscillator to impose an

orderly and highly regulated progression through the different cell cycle

phases. This oscillator integrates both internal and external signals via a

multitude of signalling pathways involving posttranslational modifications

including phosphorylation, protein ubiquitination and mechanisms of tran-

scriptional regulation. These tasks are specifically performed by multi-

subunit complexes, which are intensively studied both biochemically and

structurally with the aim to unveil mechanistic insights into their molecular

function. The scope of this review is to summarise the structural biology of

the cell cycle machinery, with specific focus on the core cell cycle machin-

ery involving the CDK-cyclin oscillator. We highlight the contribution of

cryo-electron microscopy, which has started to revolutionise our under-

standing of the molecular function and dynamics of the key players of the

cell cycle.

Introduction
Orchestrating the cell cycle: switches, rheostats

and oscillators

The basic biology of multicellular organisms crucially

depends on the cell cycle. When a cell enters the cell

cycle, it grows, replicates its genome and segregates

the replicated sister chromatids into the dividing

daughter cells (Fig. 1A). The core mechanism of the

cell cycle is a background force in the development of

multicellular organisms, tissue homeostasis and tissue

repair upon injury. Misregulation of the cell cycle can

lead to genetic mutations, which are the basis for

human developmental disorders and cancer [1–3]. Dur-

ing cell cycle progression, the cell assumes distinct

functional states or phases and the transition from one

phase to the next is rapid, switch-like and unidirec-

tional [4,5]. Each functional state is characterised by a

unique cellular event, which is executed only once per

cell cycle. During S-phase, the DNA replication is per-

formed; during mitosis, the genome condenses in the

structure of the mitotic chromosomes, and the repli-

cated sister chromatids within each chromosome are

segregated by the mitotic spindle into the daughter

cells (Fig. 1A). Both the S and M phases are preceded

by gap phases where the cell either grows and prepares

for DNA synthesis (i.e. G1-phase), or prepares for

mitosis (i.e. G2).
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At the epicentre of the molecular network which con-

trols the cell cycle, we find the cyclin-dependent kinases

(CDKs) [6,7] (Fig. 1A). CDKs promote cell cycle transi-

tions by phosphorylating specific downstream targets,

which include the effectors of the cell cycle events. The

activity of the CDKs oscillates in a cell cycle-specific

manner according to the oscillating protein levels of the

cyclin subunit which forms the active CDK-cyclin pro-

tein complexes. Cyclin proteostasis is primarily regulated

by controlled protein degradation performed by the

ubiquitin–proteasome system [8,9], and it involves

two main classes of E3 ubiquitin ligases named the
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Fig. 1. The cell cycle and its key components are regulated by large molecular nanomachines. (A) Schematic cartoon illustrating the

overview of the cell cycle phases (G1, S, G2 and M), along with the respective CDK-cyclin complexes which are necessary for cell cycle

progression. The different phases within mitosis (M) are also represented. (B, C) Examples of bistable switches and oscillator systems

regulating cell cycle transitions. Influence diagrams of the cell cycle regulators involved are also represented. Relevant macromolecular

complexes are schematically represented: SCF and APC/C. The APC/C-coactivator Cdc20 is indicated. Switch-like cell cycle transitions

feature a positive feedback loop that is turned off by a negative feedback loop, thereby causing the oscillations in cyclin levels. (B) In a

simplified model, the G1/S transition is promoted by the positive feedback loop involving activating E2F1–3, CDK4/6-cyclin D and CDK2-

cyclin E, which lead to the inactivation of the pRb by phosphorylation and to rising levels of cyclin E. This positive feedback loop is turned

off by a negative feedback loop involving repressive E2F6–8 that are transcriptionally activated by the E2F1–3. Decreasing protein levels of

E2Fs at the end of S-phase depend on their SCFCyclinF-dependent ubiquitination and subsequent proteasomal degradation. p27Kip1 inhibits

the CDK2-cyclin E complex. (C) The G2/M switch (not shown for simplicity) is activated at the end of a successful S-phase, and results in

rising levels of CDK1-cyclin B activity, which stimulates the APC/C activity. Cyclin B oscillation depends on its APC/C-dependant

ubiquitination and subsequent proteasomal degradation during mitotic progression. Protein phosphatase 2A (PP2A) counteracts CDK1-cyclin

B activity. (D) Cartoon showing the reciprocal regulation between the APC/C and the MCC. The MCC consisting of BubR1, Cdc20, active

Mad2 (C-Mad2) [201] and Bub3 is assembled by the SAC at kinetochores which are improperly attached to the mitotic spindle. Two

molecules of Cdc20 take part in the APC/CMCC complex, one is the coactivator of the APC/C (Cdc20APC/C) and the other is the inhibiting

Cdc20 part of the MCC (Cdc20MCC). The MCC is both inhibitor and substrate of the APC/C.
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Skp1-cullin-F-box containing complex (SCF) [10] and

the anaphase-promoting complex/cyclosome (APC/C)

[11,12] (Fig. 1B,C). Many more E3 ligases have been

reported in the context of cell cycle regulation [13],

although these findings seem to be confined to tumoral

phenotypes, when, for example, the activity of the APC/

C is reduced [14]. E3 ligases catalyse the polyubiquitina-

tion of protein substrates, thereby targeting them to the

proteasome for proteolysis [15]. Moreover, cyclin genes

are subjected to transcriptional regulation by multiple

families of regulators including the E2F, the MuvB and

the retinoblastoma proteins (pRb) [16]. Ultimately, the

activity of the CDKs is regulated by cellular checkpoints,

which delay a cell cycle transition until the cellular events

of the previous cell cycle phase are successfully com-

pleted, in case of DNA damage [17], and within mitosis,

in case of either incomplete or wrong assembly of the

spindle [18].

Mathematical modelling efforts performed during

the last decades reveal that cell cycle transitions are

governed by bistable switches [19]. A bistable switch is

a system that can adopt only two defined steady states

and no intermediate states. In a bistable switch, the

transition between the underlying states is charac-

terised by a high degree of irreversibility [4].

Bistable switches govern the cell cycle entry decision

(Fig. 1A,B). A cell is committed to divide from a rever-

sible cell cycle arrest state named quiescence or G0 [20]

when it is exposed to extrinsic signalling molecules

called mitogens. This allows for increased transcription

and subsequent increased protein levels of cyclin D that

in conjunction with CDK4 and 6 phosphorylate and

inactivate the pRb repressor. This repressor binds and

inhibits the E2F transcriptional activators, thereby

repressing the transcription of cell cycle genes. Once

pRb is phosphorylated by CDK4 and 6, the E2F tran-

scriptional programmes for S-phase entry are activated.

Once mitogens stimulate the accumulation of a thresh-

old level of CDK activity, the switch to S-phase is trig-

gered irreversibly. This is due to the fact that CDK

activity, inhibitory for pRb, is supported by a positive

feedback loop where the E2Fs activate the transcription

of cyclin E and cyclin A, which further strengthen CDK

activity [21,22] (Fig. 1B). Importantly, the positive feed-

back loop triggering the cell cycle transition is coupled

with a negative feedback loop, which completes the

oscillation of CDK activity and avoids relicencing of

replication origins [23,24] (Fig. 1B).

Entry into mitosis involves the counteracting activity

of CDK1-cyclin B and the protein phosphatase PP2A

[25] (Fig. 1C), and depends on the successful completion

of DNA replication and on the absence of DNA dam-

age, which switches off the G2/M checkpoint [17,26].

The molecular components that operate during

mitotic progression and orchestrate the chromosome

segregation process include the APC/C and its inhibi-

tor, namely the mitotic checkpoint complex (MCC).

The MCC is the effector of the spindle assembly

checkpoint (SAC), a signalling cascade starting when

kinetochores are improperly attached to the spindle

microtubules [18,27–29] (Fig 1A,C,D). Chromosome

segregation or anaphase is triggered by the APC/C-

mediated ubiquitination and proteasomal degradation

of two anaphase inhibitors, namely cyclin B [30] and

Securin [31]. Securin degradation leads to the activa-

tion of its target Separase, which cleaves the Kleisin

subunit of the cohesin complex [32]. This event relieves

intrasister chromatid cohesion and triggers sister chro-

matid separation [33]. Cyclin B and Securin degrada-

tion spring up once all the chromosomes achieve

correct bipolar attachments to the mitotic spindle. This

event switches off the SAC and stops MCC production

[18]. The APC/C is irreversibly activated because the

MCC, apart from being an inhibitor, is also an APC/

C substrate [34–36] (Fig. 1D). Since the strength of the

SAC and its effects on delaying anaphase depend on

the number of chromosomes with incorrect attach-

ments to the spindle, the transition to anaphase is

more rheostat-like, rather than switch-like [37,38].

In light of the above, biochemically speaking, the

underlying components of any cell cycle switch function

by establishing various protein–protein interactions,

which impact on the subunit composition of the protein

complex involved. Each key player of the cell cycle

interacts with a multitude of inhibitory or activating

modules, thereby forming a multitude of protein com-

plexes with cell cycle-specific functions. An additional

layer of regulation comes from the multitude of confor-

mational states which characterises the key players of

the cell cycle. For instance, at least four conformational

states have been described as functionally relevant for

the APC/C complex (reviewed in [39–41]). The scope of
this review is to highlight the contribution of recent

developments in structural determination by cryo-

electron microscopy (cryo-EM) in elucidating the role of

compositional and conformational heterogeneity in pro-

tein complexes regulating the cell cycle and discuss some

perspectives in this exciting field.

Main sections

Structural methods for investigating the cell

cycle machinery

Methods for studying the molecular biology of the cell

cycle have been recently reviewed in Ref. [42]. High-
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resolution structural studies of the cell cycle machinery

have been classically performed by X-ray crystallogra-

phy and NMR. Although these studies have been

hugely impactful in the field, they are limited mainly

to either rigid protein modules, or small domains, and

these need to be purified in large quantities to homo-

geneity [43–45]. Conversely, cell cycle regulators often

function in the context of large and complex protein

assemblies which are often difficult to obtain in large

amounts. Furthermore, these large complexes often

adopt multiple structural conformations [41], and their

components are engaged in transient interactions

involving intrinsically disordered regions [46].

Strikingly, the latest revolutionary developments in

cryo-EM [47,48] are now hugely enriching the field

with high-resolution structures of large protein

nanomachines where scaffolds, adaptors, substrates

and catalytic modules are captured simultaneously

while “in action,” and while they perform their bio-

chemical function [49]. In cryo-EM, a vitrified speci-

men is directly imaged on an EM support grid in the

vacuum of an electron microscope. The electron beam

that passes through the sample produces 2D projection

images of fields of particles on a detector in a transmis-

sion electron microscope set-up. The recorded electron

micrographs are fed into a single-particle analysis pipe-

line where images of individual particles are aligned

together after determining their relative orientation.

This produces 2D images with an improved signal-to-

noise ratio. When the sample assumes random orienta-

tions on the grid, 2D images representative of different

views are back-projected unto a 3D volume, which cor-

responds to the 3D reconstruction of the molecule of

interest. The recent developments in both the hardware

side and the software side of this pipeline allow the

determination of high-resolution 3D reconstructions of

the molecule of interest directly in solution, without

the need to obtain protein crystals, and without the

size limits imposed by NMR structural determination

[50]. One major breakthrough in single-particle cryo-

EM has been the introduction of direct-electron detec-

tion cameras with high detective quantum efficiency

(DQE). These cameras can run at high frame rate,

thereby allowing the recording of cryo-EM images as

movie stacks, which can be corrected for beam-induced

motion. This correction alleviates the effects of radia-

tion damage. The other major breakthrough came

from the new image processing algorithms, which

allow to classify structural heterogeneity in silico and

greatly improve the accuracy of image alignment of all

the particles used to reconstruct the density map [47].

In the following paragraphs, we attempt to sum-

marise the structural biology of the cell cycle core

components and highlight, where possible, the contri-

bution of single-particle cryo-EM in helping to deci-

pher the molecular function of this system.

Cyclin-CDK complexes in cell cycle progression

CDK-cyclin complexes form a large family of hetero-

dimeric serine/threonine protein kinases involved in

controlling progression through the cell cycle [51], with

some families also involved in gene regulation [52].

The CDK activity is counteracted by protein phos-

phatase complexes, which are reviewed in Ref. [53].

CDK proteins are defined by a catalytic core compris-

ing the ATP-binding pocket, the PSTAIRE-like cyclin-

binding domain and an activating T-loop motif [54]

(Fig. 2A). The active site of a monomeric CDK is

blocked by a glycine-rich loop in the N-terminal lobe

which buckles the activation loop hanging from the C-

terminal lobe [55] (Fig. 2A). Cyclin binding repositions

the PSTAIRE motif-containing aC helix that results in

a repositioning of the aL12 helix at the start of the

activation loop [56] (Fig. 2B). Due to this, the activa-

tion loop loosens the interaction with the glycine-rich

loop and it opens up. Phosphorylation at Threonine

160 by the master cyclin-activating kinase (CAK)

induces melting of the aL12 helix. The latter causes a

further rearrangement of the activating loop, which

augments its interactions with the cyclin, thereby

allowing the formation of a complete active site [57]

(Fig. 2C). Although this mechanism of CDK activa-

tion is conserved between CDK2-cyclin A and CDK1-

cyclin B complexes [58], the CDK4-cyclin D complex

features a distinct activation mechanism that involves

a phosphorylated form of the CDK inhibitor (CKI)

p27Kip. In a landmark study from the Rubin lab, the

crystal structure of a CDK4-cyclin D complex with

phospho-p27Kip shows that p27Kip is required for

shaping the CDK4 catalytic site and that nonreceptor

tyrosine kinase (NRTK)-mediated phosphorylation of

p27Kip relieves the inhibition on the ATP-binding site.

This activation is required for pRb phosphorylation.

Importantly, this effect is specific for CDK4, and not

for CDK2 where p27Kip functions exclusively as an

inhibitor [59].

Cyclin proteins are defined by a ~ 100-residue-long

sequence called cyclin box. This region folds in a con-

served domain consisting of one central helix (a3) sur-
rounded by the remaining a1, 2, 4 and 5 (Fig. 2D).

Two copies of this structural domain are often present

in tandem. The cyclin box is also present in other cell

cycle regulators described later in the text such as the

retinoblastoma transcriptional regulators [60]

(Fig. 2E). More N-terminally to the cyclin box, both S
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and M-phase cyclins contain short linear motifs

(SLiMs) called degrons that serve as recognition motifs

for the APC/C and are required for their APC/C-

mediated ubiquitination and proteasomal degradation

during mitosis. SLiMs relevant in cell cycle regulation

are reviewed in Ref [46].
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absence of cyclin, CDK is autoinhibited. Segments relevant for autoinhibition and activation are depicted. For clarity, unmentioned loops are

not shown and helices are represented as cylinders. (B) Crystal structure of CDK2-cyclin A complex (PDB ID: 1FIN). Upon cyclin binding,

conformational changes lead to partial release of inhibition. (C) Crystal structure of the CDK2pThr160-cyclin A complex (PDB ID: 1JST). Thr160

phosphorylation fully activates the CDK-cyclin complex as described in the main text. In this model, also a full CDK substrate is depicted by

the superposition of PDB IDs: 2CCI, 1BUH and 4LPA. Substrate recognition involves multiple recognition sites with cyclin, CDK and cofactor

Cks all contributing to substrate positioning into the catalytic cleft of CDK. (D) Two different views of the cyclin A model from (B) are shown
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was superposed to the corresponding fold from the structure in (D). Peptide-interacting motifs relevant for the pRb function are depicted.

The cyclin fold is conserved across all eukaryotes, and it is also present in the Retinoblastoma family of proteins. The orientation of N- and

C-terminal cyclin box folds in cyclin A and pRb is different. (F) Crystal structure of CDK2-cyclin A-p27Kip1 complex (PDB ID: 1JSU). p27Kip1

competes with substrate recognition by masking the CDK active site and the substrate-binding region on the cyclin subunit.
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Substrate recognition involves the CDK active site

which recognises the consensus S/T-P-x-K/R sequence

[61], a conserved patch on the cyclin subunit which is

specific for the RxLxF motif [62], and an accessory

subunit named Cks which recognises phosphorylated

S/T-P motifs [63–66] (Fig. 2C) [66]. CKIs such as

p27Kip1 compete with CDK substrates by tightly bind-

ing to the substrate recognition sites on the CDK and

cyclin subunits. Moreover, p27Kip1 inhibits ATP bind-

ing and deform the catalytic site of CDK. [67]

(Fig. 2F). p27Kip1 is considered a marker of quiescent

cells [68]; conversely, p21Cip1 is associated with quies-

cence induced after DNA damage occurring during the

previous cell cycle [69].

Our current view of CDK activation and substrate

recognition for the cell cycle-related CDKs is mainly

based on a subset of CDK-cyclin complexes

[58,59,70,71], which are excellent targets for crystallisa-

tion in different phosphorylation states and in complex

with several types of inhibitors. Extending these stud-

ies to other cell cycle regulating CDK complexes and

to CDK-substrate complexes will be critical to aug-

ment our mechanistic view on substrate recognition

and regulation of this class of enzymes during cell

cycle progression. Recently, Greber et al. [72,73]

demonstrated that cryo-EM methods can be employed

to determine high-resolution structures of CDK-cyclin

complex refractory to crystallisation. In this study, the

structure of the human CAK, comprising CDK7,

cyclin H and the assembly factor MAT1, was deter-

mined by single-particle cryo-EM. This structure

shows that, contrary to the CDK2-cyclin A complex,

the C-terminal cyclin fold of cyclin H and the C-

terminal lobe of CDK7 are rotated away from each

other, thereby vacating a space occupied by MAT1,

which stabilises the overall complex assembly. The

study has huge potential in expanding the possibilities

of anticancer drug design targeting the CDK-cyclin

complexes [73–76]. Moreover, this system can also be

employed to study highly dynamic processes such as

the CAK-dependent activation of the downstream

CDK-cyclin complexes.

Furthermore, a cryo-EM structure of CDK4 in com-

plex with Hsp90-Cdc37 has provided key insights into

CDK4 maturation, another highly dynamic process

[77].

SCF complexes in interphase regulation

Timely protein degradation of cell cycle regulators

depends on the concerted action of multi-subunit E3

ubiquitin ligases belonging to the family of cullin-

RING ligases (CRLs). These E3s are responsible for

timely ‘culling’ cyclins, CKIs and a plethora of other

proteins via the proteasome, thus allowing cell cycle

progression. CRLs account for ~ 20% of all proteaso-

mal degradation [13,78,79]. During the last 20 years,

seminal studies on the CRLs have shed light on their

core complex assembly, interactions with substrates

and activation/inactivation mechanisms. Due to its key

role in cell cycle, early structural studies were focused

on a subfamily of CRLs, the Skp1-Cul1-F-Box-protein

or SCF E3 ubiquitin ligase which formed the archetyp-

ical member of the CRLs [80,81] (Fig. 3A). Cul1 forms

an elongated a-helical repeat-containing scaffold where

the N terminus interacts with the adaptor module S-

phase-kinase-associated protein-1 (Skp1). Skp1 inter-

acts with the F-box domain of one F-box protein

(FBP) that act as substrate receptors [82]. The C termi-

nus of Cul1 forms a globular complex with the cat-

alytic RING domain (RBX1) which is responsible for

recruiting and activating a ubiquitin-loaded E2 conju-

gating enzyme (Fig. 3A).

The structural basis of the Cul1-RBX1 interaction

involves a Cul1 cavity formed by a four-helical bundle,

which extends into an a/b domain nesting an RBX1 b-
strand. The latter is further stabilised by two Cul1

winged-helix motifs, namely WHA and WHB

(Fig. 3A). In this arrangement, revealed by X-ray crys-

tallography, the active module (the C-terminal Cul1-

RBX1 subcomplex) is located more than 50 �A apart

from the substrate-binding module at the N terminus

[82]. Many studies showed that in this orientation, the

SCF complex and many other CRLs are in an inactive

conformation. This conformation is further stabilised

by the binding of another factor, CAND1 [83,84].

CAND1 ‘hugs’ Cul1, thereby sterically inhibiting inter-

actions with Skp1 and the F-box substrate receptors

[84].

The activity of CRLs is stimulated by the covalent

attachment of NEDD8, a ubiquitin-like modification

[85,86]. NEDD8 ligation competes with binding of

CAND1, thereby shifting the equilibrium towards an

active SCF E3 complex [83,86]. A highly conserved

lysine residue within the WHB domain is the target of

this reversible NEDD8 modification [86]. NEDD8

induces large conformational changes allowing the

RING domain to move closer to the substrate receptor

and its bound target protein. A more definite struc-

tural model of this was only possible through the use

of cryo-EM [83,86–88] (Fig. 3B). In this study, a snap-

shot of the ubiquitin-transfer onto a phosphorylated

substrate recruited through an FBP was obtained, and

the key role of covalently attached NEDD8 into

inducing large structural changes on Cul1 was finally

revealed [87]. NEDD8 acts as a hub of interactions
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Fig. 3. Cryo-EM-obtained snapshots of active E3 ubiquitin ligases regulating cell cycle progression. (A) Ribbon model of the Cul1-RBX1

crystal structure (PDB ID: 1LDJ). Cul1 forms an elongated platform in which the RING-containing RBX1 protein is embedded. (B) Ribbon

model of the Cul1NEDD8-RBX1-Skp1-FBW1A complex cryo-EM structure (PDB ID: 6TTU). Upon NEDD8 (yellow) attachment onto Cul1 (blue),

structural rearrangements bring a Lys residue of an FBP-bound substrate (orange) in close proximity to the E2-activated ubiquitin (brown and

red, respectively) providing a snapshot of SCF-mediated substrate ubiquitination. FBW1A (purple) recognises its substrates through a D(pS)

Gφx(pS) phosphodegron where φ is a hydrophobic and x can be any residue. (C) Model of the cryo-EM structure of the APC/C complex in

the absence (left) and in complex with its coactivator Cdc20 (right). PDB ID codes are 5G05 and 5G04, respectively. For facilitating

visualisation, the TPR lobe is shown in transparent surface representation (grey colours) and only one TPR monomer per TPR dimer is

shown as cartoon representation. The platform subcomplex is shown in green. The rearrangement induced by coactivator binding on the

catalytic site (Apc2 and Apc11) conformation is shown. (D) Close-up of the APC/C catalytic site and substrate recognition modules, showing

a snapshot of the E3 ligase reaction (PDB ID: 5A31). Ubiquitin (red) in closed conformation is modelled. Upon Cdc20 coactivator binding,

APC11 RING domain becomes accessible for E2~Ubiquitin binding and the substrate is primed for ubiquitination. Colour code for cullin

subunit (blue), RING protein (red), substrate receptor (purple), substrate (orange), ubiquitin (red), E2 (brown) and adaptor module (green) is

the same as in figure (B) to facilitate comparisons. (E) Close-up on the APC/C catalytic site and substrate recognition modules, showing an

APC/C-Cdc20 complex inhibited by the MCC complex (PDB ID: 6TLJ). The MCC complex can act as a pseudosubstrate inhibitor of the APC/

C via its subunit BubR1 (orange). In the APC/CMCC closed conformation, (E) BubR1 occlude the E2-binding site on Apc2 and 11, thereby

inhibiting ubiquitin chain initiation. In the APC/CMCC open conformation, (F) the MCC module is moved away from Apc2 and 11, which

allows E2~Ub binding and the MCC is primed for ubiquitination. How the open/closed state equilibrium is regulated in the cell is unknown

and this is indicated with a question mark.
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between different parts of the Cul1 protein but also

enhances the active E2~Ub closed conformation by

making contact with the so-called ‘backside’ of the E2

[87] (Fig. 3B). These interactions allow the RING

domain to become mobile and prime the E2~Ub for

transfer onto the juxtaposed substrate. Single-particle

cryo-EM has also provided snapshots of how a related

multi-subunit complex, the COP9-signalosome (CSN)

binds to and removes the NEDD8 moiety from the

SCF complex thereby inactivating it [89,90].

SCF complexes rely on nearly 70 FBPs for substrate

recruitment, allowing them to polyubiquitinate very

diverse protein substrates related to the cell cycle but

also to every other aspect of eukaryotic biology

[81,91,92]. Apart from the cullin protein being regu-

lated by posttranslational modifications (i.e. NEDD8

attachment), an additional layer of control is exerted

on substrate recruitment. FBPs recognise their sub-

strates in multiple ways. Initially, a degron that bears

a phosphorylated residue (phosphodegron) was consid-

ered the paradigm for SCF substrate recruitment.

However, as more FBPs were paired with their respec-

tive substrates, it became evident that this rule has

many exceptions, some of which are discussed below

[92].

The founding member of the FBPs, cyclin F, is the

largest cyclin protein, and its protein levels oscillate

throughout the cell cycle. As the name suggests, it con-

tains a cyclin domain and, importantly, also a small

~ 40 residue motif which the Elledge lab named F-box

[91,93]. This F-box is responsible for the interaction

with the adaptor protein Skp1 as part of the SCF [94]

(Fig. 3B). Cyclin F differs from the canonical cyclin-

CDK paradigm as it does not activate a CDK and

plays no role in phosphorylating a substrate [95]. Simi-

lar to other cyclins, the cyclin fold of cyclin F interacts

with target proteins through an RxLxF-like motif that

in this context acts as a degron for polyubiquitination

by the SCF-cyclin F complex and subsequent protea-

somal degradation [92,95]. The majority of the vali-

dated SCF-cyclin F substrates are involved in cell

cycle regulation. Among them, we find the APC/C-

coactivator Cdh1, which is also an APC/C substrate

[95,96]. This contributes to inactivating the APC/C

during late G1-phase and allows for S-phase entry.

Interestingly, in a double negative feedback loop con-

trol, APC/C is targeting cyclin F for degradation

through the Cdh1 component in early G1-phase [96].

Following the discovery of cyclin F, other proteins

that contain the F-box at their N terminus were identi-

fied. As in the case of cyclin F, these proteins form

distinct SCF complexes through a direct interaction

with Skp1 [81,92]. FBPs are categorised into three

main classes, depending on the structural fold at their

respective C terminus which mediates the protein–pro-
tein interaction with the E3 ligase substrate. FBXW

are FBPs that contain a WD40 domain, FBXL con-

tain a Leu-rich repeat (LRR) and FBXO proteins,

including cyclin F, have miscellaneous or ‘Other’

domains [91] (Fig. 3B).

Skp2 (S-phase kinase-associated protein 2, also

known as FBXL1) remains one of the best charac-

terised FBPs, both functionally and structurally. It is

well established that Skp2 is overexpressed in numer-

ous human cancers [97]. Skp2 plays a key role in the

G1/S transition as it targets CKIs of the Cip/Kip fam-

ily (namely p21Cip1, p27Kip1, p57Kip2) that interfere

with the activity of cyclin A-, B-, D-, E-dependent

kinase complexes [98,99]. In another negative feedback

inhibition example, p27Kip1 is phosphorylated by

CDK2-cyclin A/E on Thr187 [100]. This allows recog-

nition of the p27Kip1 phosphodegron by the SCFSkp2

and leads to its ubiquitination with the help of the

accessory subunit Cks1 [99,101]. The crystal structure

of the Skp1-Skp2-Cks1 complex bound to the p27Kip1

phosphodegron showed that Skp2 interacts with Skp1

through a canonical F-box interaction, whereas the

LRR motif of Skp2 embraces mainly Cks1 that in turn

binds the pThr187 of p27Kip1 [92,101]. Another Skp2

substrate is retinoblastoma-like protein 2 (RBL2; also

known as p130), a retinoblastoma-like ‘pocket protein’

which binds to and restricts activity of E2F transcrip-

tion factors [102–104]. As quiescent cells re-enter the

cell cycle, RBL2 is phosphorylated by cyclin D-CDK4/

6 leading to a conformational change and release from

the RBL2-E2F repressive complexes [102,105]. This

phosphorylated form of RBL2 is then recognised by

SCF-Skp2 in complex with Cks1 and is subsequently

ubiquitinated and degraded [103,104]. Future struc-

tural studies will show whether Cks1 plays a similar

role in RBL2 recognition by SCF-Skp2 as it does for

the recognition of p27Kip1.

Another SCF E3 ligase with a distinct mechanism of

substrate recruitment is SCF-FBXW7 which polyubiq-

uitinates cyclin E, the activating partner of CDK2, at

the G1/S boundary [106,107]. Structural analysis of

the Skp1-FBXW7-cyclin E complex shows that the

WD40 domain of FBXW7 can recognise two different

phosphodegrons of cyclin E: a doubly phosphorylated

pThr380/pSer384 peptide and a mono-phosphorylated

peptide around pThr62 [108]. Crystal structures of the

Skp1-FBXW7 complex bound to the two cyclin E

phosphodegrons showed that each phosphopeptide

occupies the same binding site on top of the main

FBXW7 WD40 cavity [108]. The authors additionally

showed that FBXW7 can dimerise, raising an
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interesting avidity-driven model of E3 ligase action

where two SCF-FBXW7 complexes bind one cyclin E

substrate through its two phosphodegrons leading to

increased processivity [108]. Future studies are

required to understand how the two E3s cooperate to

effectively ubiquitinate a single substrate and why this

is required, given that SCF E3 enzymes are highly pro-

cessive even when stoichiometric to their substrate.

Along this line, a recently published study reveals

another insight into this SCF substrate pair and

another E3 ligase, named ARIH1, which is required

for efficient ubiquitination of cyclin E [109–111]. A

series of cryo-EM structures show that ARIH1 binds

to the Cul1-RBX1 interface creating an E3–E3
superassembly where ARIH1 transfers the ubiquitin to

the substrate, while SCF has no catalytic role in this

instance [111]. The authors suggest that ARIH1 may

compensate for substrates that are bulkier or show less

mobility, a situation where a conventional SCF-only

catalysis is less effective.

Proteins from the FBXO family [91] remain largely

uncharacterised both in terms of their substrates but

also structurally. Recent structural studies have

revealed unique-binding domains, such as the double

b-barrel motifs of FBXO31 that interact with a phos-

phodegron of cyclin D1 as part of the DNA damage

response [112,113]. This structure begins to highlight

the structural diversity of FBPs and further hints to

the need for further characterisation of other SCF

E3s, given the tumour-suppressive or oncogenic func-

tions of many FBPs [114].

Within the last two decades, the majority of the

structural knowledge on the SCF E3 ligases came from

X-ray crystallography [81]. However, single-particle

cryo-EM has recently contributed with further answers

to long-standing questions regarding the structural

rearrangements and the activation/inactivation mecha-

nisms of the CRL E3 complexes [87–90,111]. With

cryo-EM methods now streamlined and further

improving at a fast pace, it is possible that we will

soon have further insights into ubiquitination mediated

by SCFs. How do different E2s coordinate ubiquitina-

tion? How does the conformation of the substrate-

bound SCF complex change to accommodate ubiquitin

chain elongation? Does the size and shape of the sub-

strate affect SCF polyubiquitination and is there any

correlation with the FBPs? What is the role of SCF

oligomerisation in enhancing substrate ubiquitination?

What is the optimal positioning (if there is an opti-

mum) and number of lysines at the ubiquitination

sites? Why very often only one partner in a multipro-

tein complex gets ubiquitinated and degraded, while

the others remain untouched? These are some of the

questions we anticipate will be answered in the near

future and might further help in the development of

novel therapeutics, including proteolysis-targeting chi-

meras that bridge E3s with non-native, medically

important substrates for degradation [115].

APC/C complexes in mitotic progression

The APC/C is an unusually large cullin-RING E3

ubiquitin ligase. Structural efforts performed during

the last decades, which involved also the latest devel-

opments in cryo-EM unveiled an extremely complex

and dynamic cell cycle regulator [39–41,116]. Similar

to the SCF complex, the APC/C features a catalytic

module comprising a cullin subunit (Apc2) which

binds a RING domain protein (Apc11) via its C termi-

nus [117] and a substrate receptor protein named coac-

tivator involved in substrate recognition [39,118]

(Fig. 3A–D). Cdc20 is the coactivator required for

recognising the APC/C mitotic substrates cyclin B and

Securin. Conversely, the coactivator Cdh1 is required

for recognising substrates that are degraded later in

the cell cycle, such as Cdc20 during mitotic exit and

cyclin F in G1-phase [96]. The former is essential for

the execution of mitotic exit, establishment of G1 and

quiescence (G0) [119–121]. The molecular details on

how the APC/C-coactivator complexes recognise target

substrates have been reviewed extensively [39,46], and

it involves specific SLiMs on target substrates, namely

the D box [8], KEN box [122] and ABBA motifs

[123,124]. These motifs are recognised by distinct

patches on the coactivator WD40 domain [39]. The D

box is recognised by a coreceptor involving the coacti-

vator and the Apc10 core subunit [125]. Another SLiM

named MR motif is coactivator-independent [126–129].
Similarly to SCF, the APC/C recognises phosphode-

gron motifs as reviewed in Ref. [39]. When comparing

the APC/C with other E3 ligases, it is quite striking to

notice that the adaptor module connecting the cat-

alytic site with the substrate receptor is an unusually

large and complicated protein scaffold forming a cen-

tral cavity [117] (Fig. 3C). This adaptor module allows

substrate recognition and catalysis to happen in a con-

fined and highly regulated environment [39,130–132].
The APC/C adaptor module is composed of a so-

called tetratricopeptide repeat (TPR) [133] lobe and a

platform module (Fig. 3C). The platform module

includes the largest subunit of the APC/C called Apc1,

which, together with Apc4, recruits the catalytic mod-

ule [117,128] (Fig. 3C). The TPR lobe is composed of

TPR-containing homodimers which stack on top of

each other, thereby forming a TPR superhelix. The

TPR lobe, in synergy with the platform, recruits the
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coactivator subunit via specific ‘hook’-like dipeptide

motifs containing an arginine and a hydrophobic resi-

due [39,46]. One of these motifs, namely C box, is

located on the N-terminal domain (NTD) of the coac-

tivator and binds the APC/C in a cleft, right at the

centre of the APC/C cavity between Apc1 and the

Apc8 homodimer B, at the interface between platform

and TPR lobe [117] (Fig. 3C). As shown by cryo-EM,

this interaction induces a remarkable conformational

change on the catalytic site. Here, the Apc2 C termi-

nus and Apc11 are lifted upwards from the platform,

thereby exposing the recruitment site for the E2

enzyme [132,134] (Fig. 3C,D). As in the SCF complex,

the E2 contacts the C-terminal WHB domain of the

cullin subunit Apc2 and the RING domain of Apc11

(Fig. 3A–D).

Recent cryo-EM studies have shown that the com-

plex of APC/C with the mitotic coactivator Cdc20 and

its inhibitor complex MCC features striking conforma-

tional flexibilities [131,135]. In one conformation

named APC/CMCC closed, the MCC blocks substrate

recognition by obstructing the APC/C substrate recog-

nition sites with specific pseudosubstrate sequences

present in the MCC protein named BubR1 (Figs 1D

and 3D,E). Furthermore, in APC/CMCC closed, the

MCC obstructs the E2 enzyme-binding site thereby

competing with the E2 and inhibiting ubiquitin chain

initiation (Fig. 3D,E). In another conformer named

APC/CMCC open (Fig. 3F), the MCC module is

rotated in such a way that the catalytic inhibition is

released and the binding of both the MCC and the E2

becomes possible within the same molecule of APC/C.

In this complex, the MCC switches from an APC/C

inhibitor to an APC/C substrate [131,135]. Pioneering

work has demonstrated that the MCC is indeed ubiq-

uitinated by the APC/C during mitosis in a cellular

context and that this process depends on the small

subunit called Apc15 [34–36] (Fig 3C). Removal of

Apc15 locks APC/CMCC in closed conformation

[131,135] and prolongs mitosis [36]. These data support

a fascinating model where the APC/CMCC enzyme is

not fully inhibited. The APC/CMCC is capable of bind-

ing the E2 enzyme and promoting the ubiquitination

of its own inhibitor MCC. This allows the APC/C to

act as a ‘sensor’ of the MCC levels produced at kine-

tochores, where the APC/C activity against its mitotic

substrates is delayed by the MCC, which functions as

a competitive inhibitor substrate, until there are no

unattached kinetochores left. Once the attachments are

complete, the APC/C will extensively ubiquitinate the

MCC, which leads to MCC disassembly [136]. Then,

the APC/C-Cdc20 will readily ubiquitinate cyclin B

and Securin for triggering anaphase (Fig. 1A,D). Even

though this model is tempting and would help explain

how anaphase is synchronised with the assembly of

the spindle, it lacks experimental validation in vivo.

For example, it will be critical to assess whether muta-

tions that promote the APC/CMCC open state could

accelerate mitosis in an opposite fashion to Apc15

depletions. It is also critical to understand how the

APC/CMCC closed to open transition is regulated in

the cell by post-translational modifications such as

phosphorylation or SUMOylation.

In conclusion, cryo-EM has been an excellent tool

for exploring the APC/C complex assembly and con-

formational variability. The cryo-EM studies on the

APC/CMCC represent an example of how EM allows

to visualise multiple conformations within a single

sample preparation, thereby providing snapshots of a

‘nanomachine in action’. These structural data can

now be used for generating new hypotheses to probe

the APC/C function during mitotic progression in vivo.

Transcriptional complexes in cell cycle regulation

The majority of cell cycle-specific genes are transcrip-

tionally regulated by multiple families of regulators

including the E2F, B-MYB, FOXM1 transcription fac-

tors, the retinoblastoma ‘pocket proteins’ and the mul-

tivulva class B (MuvB) complex [16,23]. There are

eight human E2F1-E2F8 genes which encode several

protein products due to expression from alternative

promoters (such as E2F3a and b) and alternative splic-

ing (E2F7) [23,137]. Every E2F protein contains a con-

served DNA-binding domain (DBD) that engages its

target gene promoters at a similar consensus DNA

sequence. E2Fs can be classified based on their tran-

scriptional capacity, with some being activators (E2F1,

E2F2, E2F3a) and some repressors (E2F3b, E2F4-

E2F8) [23,137–139]. In a rather simplified model of

E2F function, oscillations in cell cycle-regulated gene

expression derive from sequential action of both E2F

activators and suppressors [137,140] (Fig. 1B).

The E2F transcriptional oscillator is intertwined

with the protein oscillator dictated by the SCF and

APC/C E3s [141]. The SCF-cyclin F E3 ligase is

responsible for degrading the transcriptional activators

E2F1–3a in late S-phase and after DNA replication,

whereas the APC/C-Cdh1 targets the repressive E2F7–
8 during G1, thereby allowing levels of E2F1-E2F3a

to increase and initiate another round of DNA replica-

tion [141–144]. Furthermore, targeting of E2F7–8 dur-

ing G2 by SCF-cyclin F is required for DNA repair

after DNA replication [145].

Additionally, the activity of E2Fs is modulated by pro-

tein–protein interactions. E2F1–6 bind to dimerization
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partners (DP1, DP2, DP3) whereas E2F7–8 need to

homo/heterodimerise for DNA binding [137,139,141].

Importantly, E2F1-E2F5 proteins also contain a trans-

activation domain that either recruits transcriptional

coactivators or one of the three RB proteins namely

pRB, and the RB-like proteins RBL1/p107 or RBL2/

p130. RB proteins mask the E2F transactivation

domain, thereby repressing its transcriptional activating

function [137,146,147]. The RB family of proteins are

key components of the cell cycle. However, their bis-

table switch controlling E2F-mediated transcription and

cell cycle progression [102,148] is often inactivated in

cancerous cells [149]. All three RB proteins share a sim-

ilar architecture, with a central domain that is termed

‘pocket’ region because, within this fold, a pocket

embeds the E2F transactivation domain. The pocket is

flanked by an N-terminal (RB-N) [150] and a C-

terminal domain (RB-C) [151] (Figs 2E and 4B). Both

the pocket domain and the RB-N are structurally com-

posed of two flexibly linked subdomains, A and B,

which bear structural homology to the cyclin box fold

[150,152] (Fig. 2E). The pocket domain interacts with a

plethora of RB-binding proteins, including the E2F

transactivation domain of the E2F-DP complex, the

Cdh1 substrate receptor of the APC/C and, impor-

tantly, proteins that contain a short LxCxE motif such

as cyclin D, histone deacetylases and chromatin remod-

elling complexes [146,147,151,153–157] (Figs 2E and

4B). The RB-N regulates the protein–protein interaction

capabilities of the pocket domain upon phosphorylation

[105,150]. The RB-C domain mediates further interac-

tions with the E2F1-DP1 heterodimer (Fig. 4B). Fur-

thermore, RB proteins recruit the CDK4/6-cyclin D

kinase at G1-phase via an RxLxF motif and a distinct

C-terminal helix [157,158]. It is estimated that a third

of the RB protein sequence lacks stable secondary

structure elements. Several disordered segments of RB

are targeted by CDK-cyclin-dependent phosphorylation

at multiple sites [151]. When RB proteins are hyper-

phosphorylated, RB-N interacts with the pocket

domain thereby masking the LxCxE-binding site and

indirectly inactivating the E2F-binding side. This inhi-

bits RB-E2F complex formation and promotes E2F

activity on its target genes [105,151,158]. E2F and RB

proteins present different affinities for each other:

E2F1-E2F3 interact almost exclusively with pRB,

whereas E2F4 binds to RBL1 and RBL2 (but also to

pRB in some cell types) and E2F5 associates with

RBL2 [23,137,159,160]. The RB-E2F complex forma-

tion varies throughout the cell cycle. pRb-E2F com-

plexes are most abundant when cells proceed from G1-

phase to S-phase, whereas RBL1-E2F complexes are

most prevalent in S-phase. RBL2-E2F complexes are

present mainly during quiescence and early G1-phase

[23,161].

Strikingly, when cells exit the cell cycle and enter

quiescence, a massive transcriptional suppression of

around 1000 cell cycle-specific genes occurs. This is

achieved by the repressive activity of the DREAM

(DP, RB-like, E2F and MuvB) complex, which is

formed through the association of the RBL2-E2F-DP

module with another multiprotein complex, the MuvB

(multivulva class B), containing LIN54, LIN9, LIN37,

LIN52 and RBBP4 [16,162]. The DREAM complex is

recruited to target gene promoters through E2F-DP,

which binds to a cell cycle-dependent element (CDE),

and LIN54, which binds to the downstream cell cycle

genes homology region (CHR) [16,162–165]. Struc-

tures of several cell cycle transcription factor DBDs in

complex with target DNA sequences have been deter-

mined and provide insights into DNA consensus

recognition. For example, structures are known for

the E2F4-DP2 DBD [166], the E2F8 DBD [167] and

the LIN54 DBD [168] (Fig. 4). The interaction

between E2F-DP-RBL complex and MuvB is medi-

ated through the smallest subunit LIN52 when phos-

phorylated by DYRK1A [169]. Biochemical and

structural analyses of this interaction revealed that

LIN52 binds to the LxCxE cleft of the pocket domain

of RBL proteins using the combination of a linear

peptide containing a suboptimal LxSxExL sequence

and a phosphate at a nearby Ser28 of LIN52 [170]

(Figs 2E and 4B). Importantly, the absence of the

phosphate-interacting region on the pRb protein

explains why MuvB complex specifically assembles

with RB-like proteins RBL1-RBL2 and not pRb

[170]. The functions of LIN9 and LIN37 are less

understood, both functionally and structurally, with

initial hints pointing towards LIN9 being a structural

component essential for DREAM complex formation,

and LIN37 being actively required for gene repression

[164,171,172]. RBBP4 is a subunit shared among sev-

eral chromatin-regulating complexes, and it has been

proposed to mediate the interactions between

DREAM and chromatin [173,174] (Fig. 4B).

Recent studies have established the key role of the

DREAM complex as a master regulator of cell cycle-

dependent gene expression and have shown that per-

turbations in DREAM complex formation are fre-

quently observed in cancers [16,175]. Despite the

importance of the DREAM complex, its precise molec-

ular function remains unclear. Unlike chromatin

remodelling complexes, the eight-subunit DREAM

complex lacks any obvious catalytic subunits posing

the question of how it exactly enforces transcriptional

repression. Currently, there are two proposed models
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Fig. 4. Transcriptional control of the cell cycle. (A) Schematic cartoon illustrating the subunit composition of the DREAM complex operating

in quiescence. The DYRK1 kinase phosphorylates LIN52 at serine 28, which stimulates RBL2-E2F4-DP1 binding to the MuvB complex and

DREAM assembly. MuvB consists of LIN54, LIN9, LIN37, LIN52 and RBBP4 subunits. The DREAM complex is a global repressor of cell

cycle-dependent transcription. DREAM is targeted to the cell cycle gene promoters via recognition of the CDE by E2F-DP and of the cell

CHR by LIN54. (B) The schematic overview in (A) is complemented with a gallery of structures available (PDB IDs: 1CF7, 2AZE, 1N4M,

4YOS, 6C48, 5FD3 and 6KIX). Domains of unknown structure are shown schematically. RB pocket and RB N-terminal domains are

represented in red. Serine 28 from LIN52 is shown in yellow. The coiled-coil domain of LIN9, which binds to LIN52 C terminus (grey), is

shown in pink. The intrinsically disordered C-terminal domain of RB binds to E2F-DP heterodimer C-terminal domains (green). The N-terminal

DBDs of the E2F-DP recognises the CDE element. The CHR element is recognised by LIN54 (light blue). RBBP4 WD40 domain (violet)

recognising a nucleosome (grey) is also shown. The mechanism of DREAM-mediated gene repression may involve the recruitment of HDAC

complexes. (C) Schematics of events leading to DREAM complex disassembly and formation of MuvBB-MYB-FOXM1 complex, which activates

transcription of cell cycle genes in proliferating cells. CDK-cyclin-dependant phosphorylation of RBL causes the dissociation of MuvB from

the RBL-E2F-DP complex. During cell cycle entry, MuvB associates sequentially with B-MYB and FOXM1 transcription factors, which is

required for converting MuvB from a transcriptional repressor to an activator. To achieve full transcriptional activation, B-MYB is

ubiquitinated by SCF and degraded, and FOXM1 is phosphorylated by Plk1.
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of action for the DREAM complex. In the first, the

DREAM complex acts as a bridging factor to recruit

protein complexes with enzymatic activity. In support

of this model, the DREAM complex was shown to

interact with Sin3B, a scaffolding protein interacting

with HDAC1 (histone deacetylase 1) that has well-

established roles in chromatin compaction and subse-

quent gene repression [120]. In the second model, the

DREAM complex could participate in nucleosome

assembly and positioning at gene bodies, a process

that can occlude RNA polymerase binding and tran-

scription initiation [176].

Another unanswered question is how the same

MuvB complex can switch from a quiescence-specific

repressor to an activator during cell proliferation. This

process involves the dissociation of RB-like proteins

from MuvB, which requires the CDK-cyclin-

dependent phosphorylation of RBL proteins upon cell

cycle entry [161] (Fig. 4A,C). Furthermore, during S-

phase, MuvB binds to the B-MYB transcription factor

and reassociates with the promoters of a subset of

DREAM target genes including mitotic genes

[165,177]. Binding of B-MYB to MuvB stimulates

recruitment of FOXM1 [177,178]. In late S-phase, B-

MYB is phosphorylated by CDK2-cyclin A kinase,

which leads to B-MYB ubiquitination by the SCF-

Skp2 E3 ligase and proteasomal degradation. Further-

more, FOXM1 is phosphorylated by Plk1. The latter

events stimulate the MuvB-FOXM1-dependant tran-

scriptional activation of genes required in the G2/M-

phase [179–182]. To date, it is not understood how B-

MYB mediates the recruitment of FOXM1 onto the

MuvB complex, but also why B-MYB needs to be

degraded for transcriptional activation [177,178]. The

crystal structure of the domains mediating the MuvB-

B-MYB interaction revealed a coiled-coil interaction

between LIN9 and LIN52 and a B-MYB helix-turn-

helix peptide that binds across this coiled-coil interface

[172]. Importantly, this structure shows that the RBL2

and the B-MYB-binding sites on LIN52 do not over-

lap, pointing to a more complex mechanism of MuvB

complex switching from a transcription repressor to

an activator [170,172].

In summary, the mechanistic role of MuvB and the

precise function of its complexes in regulating cell

cycle-dependant transcription remain largely unre-

solved. Structural studies by X-ray crystallography

have been limited to isolated modules of this complex

system, as many of these proteins have significant

regions of disorder. We envision that cryo-EM has

great potential to help in deciphering the structures

and the dynamics of these complexes, and in establish-

ing structure–function links that will elucidate their

precise mechanism of action. In fact, related

chromatin-associated protein complexes have been suc-

cessfully resolved by cryo-EM as reviewed in Ref.

[183]. Among these complexes, we highlight the poly-

comb repressive complex 2 [184–186], the mixed lin-

eage leukaemia complex [187–189] and the nucleosome

remodelling and deacetylase complex [190]. Intrigu-

ingly, all these complexes share the RBBP4 core sub-

unit with the MuvB complex, and therefore, it is

tempting to think that some of the mechanisms of

assembly and chromatin engagement may be conserved

among all of these complexes.

Conclusion

The eukaryotic cell cycle is a complex process, which

is central to the basic biology of multicellular organ-

isms, and its misregulation lies at the root of several

human diseases including cancer. At the heart of this

process, the biological oscillator system of the CDK-

cyclin kinases is controlled at both the gene level and

the protein level by transcription factors and E3 ubiq-

uitin ligases, respectively. During the last decades,

high-resolution structural studies on this system have

largely relied on X-ray crystallography and NMR to

reveal intricate details about the key proteins control-

ling the cell cycle proteome, actively contributing to

our current understanding of different cell cycle events.

With cryo-EM now being an integral part of the struc-

tural biology toolkit, it is possible to explore these pro-

teins as part of larger assemblies and gain insights into

their dynamic nature required for biological activity.

Due to the latest advances in both hardware and soft-

ware, the ‘fuzzy’ picture of these nanomachines has

started to clear up, revealing new high-resolution

structures and offering new avenues for structure-

based drug design.

Nevertheless, single-particle cryo-EM is still limited

by the intrinsic flexibility within the protein assemblies.

Therefore, X-ray crystallography, NMR and other

complementary methods including cross-linking mass

spectrometry studies converge together with single-

particle cryo-EM in an integrative structural biology

effort [191–193]. In addition, tools that allow visualisa-

tion of these complexes in their native cellular environ-

ment under near-physiological conditions are also

emerging very rapidly. Cryo-electron tomography

(cryo-TEM) and correlative light and electron micro-

scopy techniques are providing an exciting new era for

structural biology [194–197]. Ultimately, time-resolved

structural studies on cell cycle regulators will be essen-

tial to investigate intermediates of reaction, assembly

and remodelling involving these systems [198–200].
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