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Abstract:  

Patient-derived organoids (PDOs) have recently emerged as robust pre-clinical models, however, 

their potential to predict patient clinical outcomes remain unclear. We report a living biobank of 

PDOs from metastatic, heavily-pretreated colorectal and gastroesophageal cancer patients 

recruited in phase I/II clinical trials.  Phenotypic and genotypic profiling of PDOs showed a 

high-degree of similarity to the original patient tumor.  Molecular profiling of tumor organoids 

was matched to drug screening results, suggesting PDOs could complement existing approaches 

in defining cancer vulnerabilities and improving treatment responses. We compared ex vivo 

organoid responses to anticancer agents, and PDO-based orthotopic mouse tumor xenograft 

models to the response of the patient in clinical trials.  Our data suggest that PDOs can 

recapitulate patient responses in the clinic, and have the potential to be implemented in 

personalized medicine programs. 

 

One Sentence Summary:  

Patient-derived organoids predict response of metastatic gastrointestinal cancers to therapy. 
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Main text 

High-throughput sequencing has been extensively used in precision medicine to identify somatic 

mutations that can be exploited for cancer treatment and drug development (1).  However, the 

limited role of genomic profiling in predicting response to targeted therapies, and limitations of 

pre-clinical models currently used for drug validation, represent important obstacles hampering 

the success of personalized medicine (2). Co-clinical trials are defined as parallel studies where 

drug response in patients are matched to laboratory pre-clinical models, in order to personalize 

treatment and understand mechanisms of chemo-sensitivity through functional genomics and 

reverse translation (3).  Most co-clinical trials rely on the use of genetically engineered mouse 

models or patient-derived xenografts, posing logistic, ethical, and economic issues (4).  

 

LGR5+ stem cells can be isolated from a number of organs and propagated as epithelial 

organoids in vitro to study physiology and neoplastic transformation (5).  Most studies on human 

colorectal cancer (CRC) organoids have been conducted on cultures derived from primary 

tumors (6). In contrast, examples of PDOs from metastatic cancer sites remain sparse (7-9).  

Furthermore, very limited evidence is available on the ability of PDOs to predict response to 

treatment in the clinic (10).  Here we present a living biobank of PDOs from heavily-pretreated 

metastatic gastrointestinal cancer patients, and show examples of how these cancer organoids 

can be used to compare drug responses to those of the actual patient.    

 

A total of 110 fresh biopsies from 71 patients enrolled in four prospective phase I/II clinical trials 

were processed between October 2014 and February 2017.  In line with previous data (7), PDOs 



 4 

were grown from 70% of biopsies with a cellularity of 2+ and above, and their establishment rate 

strongly correlated with tumor cellularity in the parental biopsy (χ2 p<0.0001).  No inverse 

correlation was observed between PDO establishment rate and presence of necrosis (cut-off 

³20%).  Tumor percentage is a key limiting factor for genomic and transcriptomic analyses. 

When the 60% threshold used in large sequencing studies of primary CRC (11) or 

gastroesophageal cancers (GOC) (12) was applied in our cohort, we found no correlation 

between PDO take-up rate and tumor percentage, suggesting that PDOs can also be established 

in cases of a low tumor/stroma ratio thus allowing the ex vivo expansion of the cancer population 

in samples that would have otherwise failed quality control for next generation sequencing 

(NGS).   

 

PDOs presented in this study were derived from ultrasound (n=20), computer-tomography (CT)-

guided (n=7) or endoscopic (n=2) biopsies of metastatic CRC [mCRC; (n=16)], metastatic GOC 

[mGOC; (n=4)], and metastatic cholangiocarcinoma (n=1) patients (fig. S1).  Liver, pelvic, 

peritoneal, and nodal metastases of chemo-refractory patients were used to establish PDOs.  In 

several cases PDOs were established from sequential biopsies at baseline (BL), at the time of 

best response [partial response (PR) or stable disease (SD)], and at the time of disease 

progression (PD), as well as from multi-region biopsies (table S1).    

 

Histological evaluation revealed significant morphological similarities between PDOs and the 

patient biopsies from which they were originally-derived (Fig. 1A, Fig. 1B, fig. S2A and fig. 

S2B).  Immunohistochemistry markers routinely used in the diagnosis of CRC (CDX-2, CK7) 

showed that the parental tumor’s expression pattern was maintained in PDOs, even when derived 
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from sequential biopsies during treatment (fig. S2C, fig. S2D and fig. S2E).  Similarly, 

amplification of oncogenic drivers such as ERBB2 (Fig. 1C and fig. S2F) or rearrangements in 

FGFR2 (fig. S2G) were retained in PDOs from mGOC and metastatic cholangiocarcinoma 

respectively.      

 

NGS was used to profile 151 cancer-related genes in both PDOs (n=23) and their parental 

biopsies; archival material from primary cancer or pre-treatment diagnostic biopsy was also 

sequenced for 8 patients, and whole-genome sequencing (WGS) was performed for one PDO 

(table S2 and table S3).  The molecular landscape of our PDOs (Fig. 1D) largely overlapped that 

reported for mCRC and mGOC in the MSK-IMPACT study (1), with the exception of SRC and 

EGFR amplifications and ATM and BRCA2 mutations that were more frequent in our mCRC 

PDO cohort (table S4).  Overall, 96% overlap in mutational spectrum was observed between 

PDOs and their parental biopsies (Fig. 1D), while intra-tumor heterogeneity was observed 

between archival material (primary cancer) and metastatic deposits (biopsy or PDOs) (fig. S3A 

and table S2).  Interestingly PDOs were able to capture spatio-temporal intra-tumor 

heterogeneity when established from multiple biopsies at time of disease progression compared 

to PDOs at the beginning of treatment (Fig. 1D, fig. S3A and table S2).  Similar findings were 

observed for copy number alterations (CNAs) in PDOs and biopsies collected at different time-

points during treatment (fig. S3B and fig. S4).  WGS confirmed CNAs extrapolated from 

targeted NGS of PDOs or PDO-derived orthotopic tumors (PDO-xenografts) (fig. S3B and fig. 

S4); CNAs detected in key oncogenic drivers were further validated by digital-droplet PCR (fig. 

S5).  High concordance was observed in mutational, CNA, and transcriptomic profiling over 

successive passages when PDOs were tested before and after several months of continuous 
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culture (passage range: 5-13); mutations: R2=0.96 p<0.0001; CNA: R2=0.97 p<0.0001; gene 

expression (RNA-Seq): R2=0.7 p<0.001 (fig. S6).  

 

Next we tested the feasibility of using PDOs derived from metastatic cancers as drug screening 

tools, and validated the robustness of our approach by identifying several genotype-drug 

phenotype correlations across the PDO panel. We ran 3D screening assays over a period of two 

weeks, (fig. S7 and fig. S8) using a library of 55 drugs currently in phase I-III clinical trials or in 

clinical practice (table S5).  The heatmap shown in fig. S9A summarizes screening data; hit 

validation at lower drug concentrations is reported in fig. S9B.  For all 19 screens a very high 

correlation was observed among each screen’s three replicate assays and controls (fig. S10).  

 

F-013 was the only ERBB2-amplified PDO in our cohort (Fig. 1C), and it exhibited the strongest 

response to lapatinib (dual ERBB2/EGFR inhibitor); indeed, lapatinib potently inhibited the 

MAPK and PI3K/AKT signaling downstream of EGFR/ERBB2, inducing apoptosis in the F-013 

PDO (Fig. 1E and fig. S9A). Interestingly, in a PDO (F-014) that harbors amplified EGFR but 

no ERBB2 amplification, lapatinib had no effect on viability and only modestly reduced MAPK 

and PI3K/AKT signaling (Fig. 1E and fig. S9A).   

 

Similarly, across all PDOs, F-016 was the only tumor carrying an AKT1-amplification and E17K 

mutation (Fig. 1D), and is the only one strongly responding to both AKT inhibitors present in the 

drug library (MK-2206, GSK690693) (Fig. 1E and fig. S9A).  One mCRC PDO (C-004) 

harbored a BRAF V600E mutation (Fig. 1D) and is the only PDO that showed significantly 
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decreased viability following treatment with the BRAF inhibitor vemurafenib (fig. S9A). 

Consistent with this, vemurafenib selectively inhibited MEK/ERK signaling in the C-004 PDO 

(Fig. 1E), but failed to induce apoptosis in keeping with the lack of efficacy of single agent 

BRAF inhibitors in mCRC (13).  

 

Overall, PIK3CA mutations were not predictive of response to GDC-0980 (a dual PI3K/mTOR 

inhibitor) in the PDOs panel (Fig. 1D and fig. S9A). In line with this observation, in a patient 

where pre- and post- treatment PDOs were established from multiple metastases (R-009 BL, PD-

A and PD-B), a PIK3CA H1047R mutation common to all the PDOs was not associated with any 

response to GDC-0980. However, PDOs carrying a synchronous PIK3CA amplification (R-009 

PD-A) showed a dose-dependent reduction in cell viability in response to GDC-0980 (Fig. 1F 

and fig. S3A).  Finally, in keeping with published data (14), a significant correlation was 

observed between RB1 amplification and sensitivity of PDOs to palbociclib [CDK4/CDK6 

inhibitor; (Fig. 1G)].   

 

Following extensive molecular and functional characterization of our PDOs, we examined their 

clinical predictive value by comparing clinical responses observed in patients with ex vivo-

response data gathered in organoids in 21 comparisons (table S6). Taxanes are a standard second 

line treatment option for metastatic gastric cancer, however, efficacy is modest and no predictive 

biomarkers are available to inform clinical decisions (15).  We compared response to paclitaxel 

in sequential PDOs established before and after treatment in a paclitaxel-sensitive patient (F-014) 

with PDOs established from liver metastases of two paclitaxel-resistant patients (Fig. 2A and 

Fig. 2B).  PDOs derived from the responsive metastasis showed a ~4-fold lower GI50 for 
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clinically relevant paclitaxel concentrations (16) compared with PDOs from the same patient 

derived at progression; interestingly, these resistant PDOs demonstrated an identical paclitaxel 

dose-response profile to the two PDOs established from paclitaxel-refractory patients (Fig. 2B).  

Cell cycle analysis showed marked apoptosis and G2 arrest upon taxane treatment in the pre-

treatment F-014 PDOs, while no significant difference was observed in PDOs established at 

progression (Fig. 2C and fig. S11A).  Similarly, paclitaxel induced dose-dependent DNA 

damage, mitotic arrest and apoptosis in the pre-treatment F-014 PDOs, but had a much weaker 

impact on the progression (thus resistant) PDOs (Fig. 2D).  Consistent with data observed for 

second line treatment, a ~10-fold difference in GI50 was observed in response to the combination 

of 5-fluorouracil and cisplatin in PDOs collected from chemo-sensitive and chemo-refractory 

mGOC patients receiving first-line treatment (fig. S11B), highlighting the clinical potential of 

PDOs for treatment selection in cancers of unmet need. 

 

Anti-EGFR monoclonal antibodies, regorafenib, and TAS-102 represent FDA approved options 

for treatment of chemo-refractory mCRC, however, with the exception of RAS pathway 

mutations for anti-EGFR therapy, there are no validated clinical biomarkers for patient selection 

in this setting. We initially tested the predictive value of PDOs in mCRC by comparing response 

to anti-EGFR treatment with cetuximab in five PDOs and their respective patients (Fig. 2E).  

Two PDOs established from baseline biopsies prior to anti-EGFR treatment in the PROSPECT-C 

trial showed no response to cetuximab, in keeping with the primary resistance observed in these 

two patients in the clinic.  Unsurprisingly (17), both PDOs and their respective patient biopsies 

harbored either KRAS G12D (sub-clonal) or BRAF V600E (clonal) mutations (Fig. 2F).  The 

third cetuximab-resistant PDO (C-002) was established from the progression biopsy of a patient 
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who initially responded to cetuximab, and, interestingly, it harbored an EGFR amplification (Fig. 

1D and fig. S5), no RAS pathway mutational aberrations (Fig. 2F), and high amphiregulin 

mRNA levels. Despite these molecular markers being suggestive of responsiveness to 

cetuximab, the C-002 PDO showed no response (and in fact paradoxical enhanced proliferation) 

upon cetuximab treatment in line with the respective patient’s clinical outcome, thus highlighting 

the potential of PDOs to better predict clinical outcomes compared to molecular pathology alone.  

Another KRAS-wild type PDO derived from a slow growing progressing metastasis in a patient 

with otherwise stable disease [C-001; (fig. S11C)] showed a marginal response to cetuximab.  

Finally, the KRAS-wild type PDO established from a BL biopsy of a patient enrolled in the 

PROSPECT-R trial [R-007; (fig. S11C)] showed response to cetuximab at doses higher than 5 

µg/ml; this, however, could not be compared with clinical response as the patient did not receive 

anti-EGFR mAbs.  

 

Next we tested the ability of PDOs to recapitulate response to regorafenib, a multiple tyrosine 

kinase inhibitor blocking oncogenic and angiogenic signaling pathways.  No response to 

regorafenib was observed in our 3D ex vivo screening assays (fig. S9A), an observation in 

keeping with our recently reported clinical results from the PROSPECT-R trial (18) suggesting 

that response to regorafenib is mainly driven by its anti-angiogenic effect (Fig. 3A). 

 

In order to match response to regorafenib in the clinic and in aligned PDOs we established an 

orthotopic human tumor xenograft model by implanting luciferase-expressing (Luc+) PDOs in 

the liver of NSG mice [PDO-xenografts; (fig. S12A)].  We initially compared response to 

regorafenib in PDO-xenografts from a patient with primary resistance [R-009 (n=11)] and from a 
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patient who achieved a durable (10 months) response [R-005 (n=6)] to regorafenib (fig. S12B 

and fig. S12C).  In keeping with clinical response (Fig. 3A), PDO-xenografts from the 

regorafenib-sensitive patient displayed a significant (p=0.03) reduction in their micro-vasculature 

in response to regorafenib as revealed by CD31 immunostaining; in contrast, no significant 

changes were observed in PDO-xenografts from the regorafenib-resistant patient (Fig. 3B). In 

order to mimic our clinical observations, we performed functional susceptibility-contrast 

magnetic resonance imaging (MRI) in PDO-xenografts of the responder patient [R-005 (n=10)] 

before and after treatment (fig. S12D).  In line with dynamic contrast-enhanced MRI (DCE-

MRI) results in patients (Fig. 3A), susceptibility-contrast MRI revealed a significant reduction in 

tumor fractional blood volume (fBV) in regorafenib-treated mice (Fig. 3C).  These changes were 

associated with a reduction in CD31 staining and increased necrosis (Fig. 3C).  Remarkably, 

across all animals, a robust correlation was observed between the fBV values obtained from 

susceptibility contrast MRI and the micro-vasculature assessment [CD31 (R2=0.64 p=0.006)] of 

the same samples (Fig. 3C). Interestingly, in line with our clinical data, changes in micro-

vasculature indicative of response appeared to be independent of changes in tumor volume (fig. 

S12E) (18).   Three different histopathological growth patterns [(HGPs); desmoplastic HGP; 

pushing HGP; replacement HGP] have been associated with different degrees of response to 

anti-angiogenic drugs, with the replacement HGP being frequently associated with vessel co-

option and primary resistance (19).  In our experiments a predominance of replacement HGP, 

and thus vessel co-option, was observed in PDO-xenografts from the resistant patient, whilst 

tumors established from the PDOs of the sensitive patient showed prevalence of desmoplastic 

and pushing HGPs (fig. S12F), suggesting that vessel co-option might be the mechanism 

underpinning primary resistance to regorafenib.  When the responder to regorafenib (R-005) 
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progressed and received subsequent treatment, he was enrolled in a phase I trial of the ATR 

inhibitor VX-970.  No response was observed in this patient with VX-970 monotherapy, and this 

was in keeping with lack of response to ATM/ATR inhibitors observed in his PDOs in the drug 

screening reported in fig. S9A.   

 

In order to test the PDOs’ ability to capture tumor evolution and acquired resistance to treatment, 

we generated xenografts using PDOs from the same liver metastasis before (BL) and after 

treatment (PD) in mCRC patient R-011 that exhibited initial response and subsequent 

progression to regorafenib (fig. S13A).  Mice were randomized to treatment and control arms, 

and, following treatment, each arm was further randomized for survival or functional analysis 

(Fig. 3D).  In line with clinical findings (Fig. 3E) (18), CD31 immunostaining revealed a ~60% 

reduction in micro-vasculature in response to regorafenib in BL PDO-xenografts, while no 

significant change was observed in PD PDO-xenografts [p:0.001; (Fig. 3F)].  More importantly, 

regorafenib treatment offered a selective survival benefit in mice carrying BL PDO-xenografts 

(Fig. 3G and fig. S13B), confirming the predictive value of PDOs and their ability to reflect 

cancer evolution upon treatment.  

 

TAS-102, a combination of the nucleoside analog trifluridine and the thymidine phosphorylase 

inhibitor tipiracil, is approved for the treatment of chemo-refractory mCRC but no validated bio-

markers are currently available (20).  We compared clinical and pre-clinical response to TAS-

102 in 6 organoids from 4 different patients treated with TAS-102.  Initially we tested response 

to TAS-102 in PDOs from a patient (R-019) who had a mixed response, with stability of disease 

in one of the liver metastases (segment 5) and rapid progression in another one (segment 2) (Fig. 
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4A). Ex vivo dose-response data showed a ~8-fold difference in GI50 between PDOs derived 

from the TAS-102 sensitive metastasis and those derived from pre- and post-treatment biopsy of 

the rapidly progressing metastasis (Fig. 4B), highlighting the ability of PDOs to recapitulate 

intra-patient heterogeneity.  TK1 has been proposed as a potential biomarker of response to 

TAS-102 (21); interestingly, TK1 protein expression was indeed higher in PDOs from the 

responding metastasis compared with those from the non-responding site (Fig. 4C).  When we 

extended the TAS-102 sensitivity analysis to 3 other PDOs/patients we confirmed that PDOs 

from patients who achieved disease control were sensitive to low uM concentrations of TAS-

102, while no significant effect on cell viability was observed in PDOs from resistant (primary or 

acquired) patients (Fig. 4D, left); in line with previous data, TK1 mRNA expression was higher 

in PDOs from patients that achieved stable disease in response to TAS-102 (Fig. 4D, right). 

 

Overall, for the PDOs we analyzed, we found 100% sensitivity, 93% specificity, 88% positive 

predictive value, and 100% negative predictive value in forecasting response to targeted agents 

or chemotherapy in patients [Fisher’s exact test p<0.0001; (table S7)].  Our data suggest that 

PDOs can be exploited for functional genomics to simulate cancer behavior ex vivo and integrate 

molecular pathology in the decision-making process of early phase clinical trials.   
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Fig. 1. Histopathological, molecular, and functional characterization of patient-derived 

organoids (PDOs). (A) Phase-contrast image of a mCRC PDO culture, and H&E staining 

comparing organoids to their matching patient biopsy. (B) Diffuse and intestinal growth patterns 

are retained in mGOC PDOs. (C) ERBB2 amplification and over-expression in mGOC PDOs and 

parental tissue biopsy; CISH= chromogenic in situ hybridization. (D) Heatmap displaying the 

most frequently mutated and/or copy number altered genes in PDOs (left). Venn diagram 

demonstrating 96% mutational overlap between PDOs and parental tissue biopsies (right). (E) 

Target engagement in genotype-drug phenotype combinations: pathway analysis downstream of 

ERBB2 in ERBB2-amplified and non-amplified PDOs treated with lapatinib (24h) (right panel); 

BRAF inhibition (24h) (central panel); AKT inhibition (4h) (left panel). (F)  Dose-dependent 

effect to the dual PI3K/mTOR inhibitor GDC-0980 in three PDOs from patient R-009, all 

carrying an acquired PIK3CA mutation (H1047R). PDOs established from a liver metastasis 

biopsied at disease progression (R-009 PD A) that also harbored PIK3CA amplification showed 

dose-dependent response to GDC-0980. PIK3CA-mutant but non-amplified PDOs established 

prior to regorafenib treatment (R-009 BL) or from a different liver metastasis biopsied at disease 

progression (R-009 PD B) did not respond to GDC-0980. Viability data show mean ± SEM of 

indicated independent experiments. (G) Correlation (Fisher’s exact test) between presence of 

RB1 amplification in PDOs (panel 1D) and response to the CDK4/CDK6 inhibitor palbociclib in 

the reported drug screen (fig. S9A). Abbreviations: BL= baseline; SD= stable disease; PD= post-

treatment/progressive disease. 
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Fig. 2. Patient-derived organoid-based ex vivo co-clinical trials in mGOC and mCRC.  (A) 

PDOs were generated from sequential biopsies of a liver metastasis (red circle in the bottom 

panel) of mGOC patient F-014 that showed initial response to paclitaxel (F-014 BL) and 

subsequently progressed (F-014 PD). Violet bars indicate overall tumor volume (according to 

RECIST 1.1. criteria) while red bars indicate volume of the target metastasis used to generate 

PDOs. (B) Cell viability upon paclitaxel treatment was compared in baseline (BL) and 

progressive disease (PD) PDOs from patient F-014 treated with paclitaxel, and those derived 

from patients that exhibited primary (F-015) or acquired (F-012) resistance to paclitaxel in the 

clinic. Viability data show mean ± SEM of indicated independent experiments.  (C) Cell cycle 

analysis upon paclitaxel treatment in the F-014 baseline (BL) PDO compared with the F-014 
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progressive disease (PD) PDO. (D) Dose-dependent DNA damage was observed in the F-014 

baseline (BL) PDO in response to paclitaxel, but not in PDOs from the same patient established 

at progressive disease (PD).  (E) PDOs were established from baseline (BL) (C-003, C-004) and 

progressive disease (PD) (C-001, C-002) biopsies from patients treated with the anti-EGFR 

monoclonal antibody cetuximab. PDOs were treated with cetuximab in vitro; data show mean ± 

SD from independent experiments performed in triplicate. (F) Molecular analysis of baseline 

(BL) and progressive disease (PD) PDOs, matching biopsy (tumor), and primary bowel cancer 

(archival); arrows indicate the presence of clonal or sub-clonal mutations in BRAF and KRAS 

respectively in two patients.  
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Fig. 3. Patient-derived organoid-based co-clinical trials mimic primary and acquired 

resistance to regorafenib in mice.  (A) mCRC patients on regorafenib treatment underwent 

biopsies at baseline (BL), partial response/stable disease stage (PR/SD), or post-treatment (PD) . 

An early reduction (15 days) in functional imaging (DCE-MRI) parameters correlated with 
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changes in micro-vasculature assessed by CD31 staining and clinical benefit from regorafenib 

(right panel).  (B) Changes in micro-vasculature in response to regorafenib were assessed in 

PDO mouse xenografts by quantification of tumor-associated CD31-positive vessels. Data show 

PDO xenografts from a primary resistant (R-009) and a long-term responder (R-005) to 

regorafenib. Mean ± SD from indicated number of mice (n) in a representative experiment is 

shown; significance was determined using Student’s unpaired t-test. (C) Reduction in fractional 

blood volume (fBV) in regorafenib-treated mice carrying long-term regorafenib responder (R-

005) PDO-xenografts. A total of ten animals were analyzed (five in each arm); data represent the 

mean ± SD of an individual experiment. Day 0 fBV values could not be obtained for two animals 

due to respiratory movement. Significance was determined using Student’s paired t-test for fBV 

and unpaired t-test for CD31 and necrosis. (D) Schematic representation of animal experiment 

using PDOs from patient R-011, established pre- and post-treatment with regorafenib. Mice 

carrying liver orthotopic R-011 pre-treatment (BL) and post-treatment (PD) PDO-xenografts 

were randomized to control and treatment arms, and treated with vehicle or regorafenib for 10 

days. Following-treatment, each arm was further randomized to a cohort culled for 

histopathological analysis and a survival cohort which was monitored over time. (E) CD31 

immunostaining in the parental patient baseline (BL), stable disease (SD), and post-treatment 

(PD) biopsies, demonstrating an initial reduction in tumor microvasculature in response to 

regorafenib. Data represent mean ± SD calculated by scoring ten high-power field tumor areas. 

(F) Representative images of CD31 immunostaining in the baseline (BL) and post-treatment 

(PD) R-011 PDO-xenografts. Data represent mean ± SD calculated by scoring at least ten high-

power field tumor areas per animal in an individual experiment; n= number of animals analyzed 

in each group. Significance was determined using Student’s unpaired t-test. (G) Kaplan-Mayer 
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curves of regorafenib- or vehicle-treated mice bearing baseline (BL) and post-treatment (PD) 

PDO-xenografts from patient R-011 from an individual experiment. (n= number of mice 

analyzed). Significance was determined using the Mantel-Cox log-rank test.  
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Fig. 4. Patient-derived organoids recapitulate intra- and inter-patient heterogeneity in 

response to TAS-102. (A) PDOs were established from a patient (R-019) with mixed response 

to TAS-102. While the segment 2 metastasis rapidly progressed, the segment 5 one remained 

stable upon TAS-102 treatment (white arrows in the CT-scan indicate metastases; bars indicate 

pre- and post-treatment measurement of the indicated metastases). (B)  Ex vivo dose-response 

curves in baseline (BL) and post-treatment (PD) multi-region PDOs from patient R-019 (with 

mixed response to TAS-102). N= independent experiments; viability values are expressed as 

mean ± SEM. (C) TK1 immunohistochemistry (IHC) expression in TAS-102 refractory (segment 

2) and sensitive (segment 5) PDOs. BL = baseline; PD = post-treatment/progressive disease. (D) 

Cell viability (left) and TK1 mRNA expression (right) in PDOs from TAS-102 responsive and 

refractory patients. BL= baseline; PD= post-treatment/progressive disease. N indicates 

independent experiments; viability values are expressed as mean ± SEM.  
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