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Abstract 

Severe acute dysphagia commonly results from head and neck radiotherapy (RT). A model 

enabling prediction of severity of acute dysphagia for individual patients could guide clinical 
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decision-making. Statistical associations between RT dose distributions and dysphagia could 

inform RT planning protocols aiming to reduce the incidence of severe dysphagia. We aimed 

to establish such a model and associations incorporating spatial dose metrics. Models of 

severe acute dysphagia were developed using pharyngeal mucosa (PM) RT dose (dose-

volume and spatial dose metrics) and clinical data. Penalized logistic regression (PLR), 

support vector classification and random forest classification (RFC) models were generated 

and internally (173 patients) and externally (90 patients) validated. These were compared 

using area under the receiver operating characteristic curve (AUC) to assess performance. 

Associations between treatment features and dysphagia were explored using RFC models. 

The PLR model using dose-volume metrics (PLRstandard) performed as well as the more 

complex models and had very good discrimination (AUC = 0.82) on external validation. The 

features with the highest RFC importance values were the volume, length and circumference 

of PM receiving 1 Gy/fraction and higher. The volumes of PM receiving 1 Gy/fraction or 

higher should be minimized to reduce the incidence of severe acute dysphagia. 

 

Abbreviations 

PM - pharyngeal mucosa; PLR - penalized logistic regression; SVC - support vector 

classification; RFC - random forest classification; AUC - area under the receiver operating 

characteristic curve; NTCP - normal tissue complication probability; RT - radiotherapy; 

IMRT - intensity modulated radiotherapy; CTCAE - Common Terminology Criteria for 

Adverse Events; PEG - percutaneous endoscopic gastrostomy; DVH - dose-volume 

histogram; DLH - dose-length histogram; DCH - dose-circumference histogram; 

 

 

1. Introduction 

Acute dysphagia is a common toxicity resulting from head and neck (chemo)radiotherapy 

(RT), having a substantial impact on patients’ quality of life [1] and personal relationships 

[2]. Around half of patients experience significant acute swallowing dysfunction [3]. 
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Moreover, severe acute reactions have been implicated in the development of “late” radiation 

toxicities [4,5], including late dysphagia [6]. Clinicians are unable to accurately predict which 

patients will experience severe acute dysphagia [7]. A normal tissue complication probability 

(NTCP) model with good predictive ability would, therefore, represent a highly useful tool for 

clinical decision-support, treatment plan comparison, treatment modality selection [8] and 

isotoxic dose escalation (as is being evaluated in lung RT [9]). Recently, NTCP models of 

dysphagia six months following RT [10,11] were successfully validated [12–14]. However, as 

many patients suffer severe acute dysphagia that resolves by six months following RT, these 

models do not capture the substantial early toxicity burden. The currently existing NTCP 

models for severe acute dysphagia, whilst promising and providing useful insights, [15–21] 

possess suboptimal discriminative ability and, hence, are not routinely used to guide clinical 

decision-making. 

 

In addition to the prediction of individual patient toxicity outcomes, there is substantial 

interest in determining statistical associations between RT dose metrics and toxicity to inform 

the optimal design of RT treatment planning techniques attempting to reduce the incidence of 

toxicity. A large number of studies, summarized in [22] and [23], with conflicting findings, 

have sought to establish substructures within the head and neck region that are radiosensitive 

for late dysphagia. However, the apparent differential radiosensitivity of substructures within 

the pharyngeal musculature is likely to be an artefact of the positions of the primary disease 

sites relative to those substructures in these study cohorts [24]. To overcome this bias, we 

combined multiple spatial dose metrics, which are sensitive to both the extent of the dose 

distribution and regional variations in radiosensitivity, to “tease apart” these effects. 

Additionally, we hypothesized that the addition of spatial dose metrics would increase the 

discriminative performance of NTCP models, compared with dose-volume metrics, as has 

previously been demonstrated for xerostomia [25] and rectal toxicities [26]. 
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The first aim of this study was to determine whether the addition of novel spatial dose metrics 

would improve the predictive performance of NTCP models for severe acute dysphagia. The 

second aim was to establish statistical associations between the RT dose distribution and 

severe acute dysphagia that could be used to inform RT planning techniques aiming to reduce 

the incidence of severe dysphagia. This study built upon previous acute dysphagia models 

[27,28] by introducing novel spatial dose metrics and using machine learning approaches. 

 

2. Material and methods 

2.1. Patient data 

Severe acute dysphagia models were generated and internally validated using a training 

dataset of 335 patients with DICOM RT data available, enrolled in one of six different 

clinical trials [29–33], with institutional review board approval and signed patient consent 

(table 1). Patients for whom clinical data (age, sex, primary disease site, use of chemotherapy) 

were unavailable (13 patients) were excluded from the analyses.
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Table 1: Patient cohorts making up the dataset. 

Trial Patients 

available 

Primary 

disease site 

Radiotherapy 

technique 

Radiotherapy dose-fractionation* Concurrent 

chemotherapy 

COSTAR 

(Phase III, 

multicentre; 

NCT01216800) 

72 Parotid gland Unilateral; 3D 

conformal RT, 

IMRT 

65 Gy / 30 # (definitive RT),  

60 Gy / 30 # (post-operative RT) 

No 

PARSPORT 

(Phase III, 

multicentre) 

[25] 

67 Oropharynx, 

hypopharynx 

Bilateral; 3D 

conformal RT, 

IMRT 

65 Gy / 30 # (definitive RT),  

60 Gy / 30 # (post-operative RT) 

No 

Dose Escalation 

(Phase II, single 

centre) [26] 

26 Larynx, 

hypopharynx 

Bilateral; IMRT 67.2 Gy / 28 #,  

63 Gy / 28 # 

Yes 

Midline 

(Phase II, single 

centre) [27] 

116 Oropharynx Bilateral; IMRT 65 Gy / 30 # (definitive RT),  

60 Gy / 30 # (post-operative RT) 

Yes 

Nasopharynx 

(Phase II, single 

centre) [28] 

36 Nasopharynx Bilateral; IMRT 65 Gy / 30 # (definitive RT),  

60 Gy / 30 # (post-operative RT) 

Yes 

Unknown 

Primary (Phase 

II, single centre) 

[29] 

18 Unknown 

primary 

Bilateral; IMRT 65 Gy / 30 # (definitive RT),  

60 Gy / 30 # (post-operative RT) 

Yes 

Washington 

University 

School of 

Medicine in 

Saint Louis 

(Independent 

external 

validation) 

90 Oral cavity, 

nasal cavity, 

nasopharynx, 

oropharynx, 

hypopharynx, 

larynx, parotid 

gland, 

unknown 

Bilateral, 

unilateral; 

IMRT 

70 Gy / 35 #,  

66 Gy / 33 #,  

60 Gy / 30 # 

Both concurrent 

and no 

concurrent 

chemotherapy 
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primary 

The first six trials were used for model training and internal validation. The last trial was used for independent external validation. IMRT - intensity-

modulated radiotherapy; # - fractions; RT – radiotherapy; Unilateral – treatment delivered to ipsilateral parotid bed only; Bilateral – treatment delivered to 

ipsilateral and contralateral mucosa of relevant subsite (e.g. nasopharynx, oropharynx or larynx). * All fractionation regimens used 5 fractions per week with 

1 fraction per day from Monday to Friday. Where multiple fractionation schedules are listed for a single trial this means that multiple fractionation schedules 

were employed in those trials.
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The cohort includes a diverse range of primary disease sites and RT delivery techniques, 

ensuring a large variation in the dose distributions across the cohort. This increases the 

generalizability of the models and reduces the chance of introducing biases, for example, due 

to the primary tumour location. An independent external validation dataset was provided by 

Washington University School of Medicine in Saint Louis (table 1). This consisted of 90 

patients with a range of head and neck primary tumour sites. 

 

Toxicity data for the patients included in the training dataset were recorded prospectively, by 

experienced head and neck cancer specialists working according to standard trial protocols, 

prior to the start of RT, weekly during RT, weekly from 1 - 4 weeks following RT and at 8 

weeks following RT using the Common Terminology Criteria for Adverse Events (CTCAE) 

version 3 [34] dysphagia instrument. The toxicity endpoint of interest chosen for analysis was 

the peak grade of dysphagia, dichotomized into severe (grade 3 or worse) and non-severe 

(less than grade 3) dysphagia. Patients with grade 1 or higher baseline toxicity (14 patients) or 

missing baseline toxicity (9 patients) were excluded from the analysis. Patients with missing 

toxicity measurements and peak grade less than 3 were excluded from the analysis as these 

patients may have experienced unreported grade 3 or worse dysphagia (126 patients). The 

rationale for this strategy for handling missing toxicity data is described in appendix A. For 

the external validation cohort, severe acute dysphagia was defined as the patient requiring 

percutaneous endoscopic gastrostomy tube (PEG) insertion. It should be noted that there was 

a slight difference in the scoring systems due to the data available. All institutions treating 

patients used in this study, including the training and external validation cohorts, employed a 

reactive and conservative approach to PEG insertion. After removing patients with missing 

data, 173 patients were available for training and 90 patients available for external validation. 

The incidences of severe acute dysphagia were 66% in the training dataset and 48% in the 

external validation dataset. The training dataset incidence is artificially inflated by the 

strategy for handling missing toxicity data. 
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Induction chemotherapy, concurrent chemotherapy regimen (cisplatin, carboplatin, one cycle 

of cisplatin then one cycle of carboplatin or none), definitive versus post-operative RT, 

primary disease site (nasopharynx/nasal cavity, oropharynx/oral cavity, hypopharynx/larynx, 

parotid gland and unknown primary), sex and age were also included as covariates in the 

models. These clinical covariate data are given in appendix B. 

 

3. Calculations 

3.1. Radiotherapy dose metrics 

The pharyngeal mucosa (PM) was considered as the organ-at-risk for acute dysphagia. The 

PM was delineated, by clinical oncologists, from the roof of the nasopharynx to the level of 

the suprasternal notch (appendix C). The physical dose distribution was converted to the 

fractional dose distribution (physical dose delivered in each fraction), which was described by 

the dose-volume histogram (DVH) in 20 cGy intervals from 20 (V20) to 260 (V260) cGy per 

fraction. The use of the fractional DVH is appropriate as nearly all patients who developed 

severe acute dysphagia developed it before the full course of RT had been delivered (data not 

shown) and  follows recommendations for acute toxicity modelling by Tucker et al. [35]. 

Using the biologically effective dose in place of the fractional dose made very little difference 

to the results due to the fractionation regimens employed (data not shown). The dose 

distribution was also described spatially, using novel dose-length (DLH; L20 – L260) and 

dose-circumference histograms (DCH; C20 – C260) and 3D moment invariants describing the 

centre of mass (η001, η010, η100, η011, η101, η110, η111), spread (η002, η020, η200) and skewness (η003, 

η030, η003) of the dose distribution in the left-right, anterior-posterior and superior-inferior 

directions [25,36], detailed in appendix D. 

 

3.2. Statistical modelling 

Statistical analysis was performed using a machine learning pipeline specifically designed for 
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NTCP modelling [36]. Three types of model were compared, penalised logistic regression 

(PLR), support vector classification (SVC) and random forest classification (RFC). For each, 

a version with dose-volume mretrics (“standard”) and with the spatial dose metrics (“spatial”) 

was trained and validated. This is described in appendix E. 

 

4. Results 

The DVH, DLH and DCH data are summarized in figure 1. 
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Figure 1: Summary of the pharyngeal mucosa (a) DVH, (b) DLH and (c) DCH data grouped 

by severe or non-severe peak dysphagia. The lines represent the group medians and the error 

bars represent the 95 percentile confidence intervals. 

 

A correlation matrix of the data is shown in appendix F. Regarding the first aim, the 

predictive performances of the models are shown in table 2. 
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Table 2: Predictive performance of models. 

Model Hyper-parameters Internal validation mean (standard deviation)/ 

External validation (standard deviation) 

AUC Log loss Brier score Calibration 

slope 

Calibration 

intercept 

PLRstandard penalty = l2,  

C = 0.001 

0.76 (0.08)/  

0.82 (0.04) 

0.62 (0.04) /  

0.61 (0.02) 

0.21 (0.02) /  

0.21 (0.01) 

14.9 (13.5) /  

17.6 (3.9) 

-6.8 (6.8) /  

-8.3 (1.9) 

SVCstandard kernel = radial basis 

function,  

C = 0.0001,  

gamma = 0.001 

0.75 (0.08)/  

0.82 (0.04) 

- - - - 

RFCstandard max depth = 5,  

max features = square 

root 

0.71 (0.08)/  

0.78 (0.05) 

0.61 (0.09) /  

0.57 (0.04) 

0.20 (0.03) /  

0.19 (0.02) 

3.5 (1.6) /  

5.7 (1.3) 

-1.5 (1.0) /  

-3.0 (0.8) 

PLRspatial penalty = l2, 

C = 10.0 

0.75 (0.08) /  

0.73 (0.05) 

0.64 (0.04) /  

0.62 (0.02) 

0.22 (0.02) /  

0.22 (0.01) 

13.7 (11.1) /  

11.2 (3.6) 

-6.2 (5.6) /  

-4.9 (1.6) 

SVCspatial kernel = radial basis 

function,  

C = 0.0001,  

gamma = 0.001 

0.74 (0.08) /  

0.73 (0.05) 

- - - - 

RFCspatial max depth = 5, 

 max features = square 

root 

0.74 (0.07) /  

0.75 (0.05) 

0.58 (0.07) /  

0.61 (0.02) 

0.19 (0.03) /  

0.21 (0.01) 

4.5 (2.4) /  

8.6 (2.3) 

-2.2 (1.6) /  

-4.1 (1.1) 

PLR – penalized logistic regression; SVC - support vector classification; RFC - random forest classification; l2 - ridge regularisation; C – inverse of 

regularisation strength; gamma – kernel coefficient for radial basis function.
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The discrimination of the PLRstandard model was not outperformed by any of the more complex 

models, on internal (AUC = 0.76, s.d. = 0.08) or external validation (AUC = 0.82, s.d. = 

0.04). The log loss and Brier score were similar between all PLR and RFC models on internal 

and external validation. SVC models do not provide probability estimates; hence, only 

discrimination could be assessed. Platt scaling was employed to convert the SVC model 

outputs to probability estimates [37]. However, this led to substantial reductions in AUC 

related to the algorithm used (data not shown) so the non-scaled SVC models were preferred. 

The RFC models had better calibration (calibration slope closer to 1 and intercept closer to 0) 

than the PLR models on internal and external validation. The discriminative ability of 

PLRstandard model was good on internal validation and very good on external validation. The 

calibration curve, of the predicted probabilities of severe dysphagia against the actual toxicity 

outcomes, for this model applied to the external validation data is displayed in figure 2a.  
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Figure 2: (a) Calibration of the probabilities of severe dysphagia, as predicted by of the 

PLRstandard model (x-axis), against the observed fraction of severe dysphagia in the external 

validation dataset (y-axis). The curve shows a logistic regression model of the predicted 

probabilities (independent variable) against the observed fraction of patients with severe 

dysphagia (dependent variable). The inset figure shows the histogram of the predicted 

probabilities and the observed toxicity outcomes (1= severe dysphagia; 0 = no severe acute 

dysphagia). (b) Median dose-volume histograms (error bars show 95% confidence intervals) 

for external validation patients grouped by probability estimate quintiles using the 

recalibrated PLRstandard model. 

 

The model calibration assessed on the external validation dataset was modest. However, the 

limitations of model calibration assessment, particularly on a small dataset, should be 

considered [38]. Figure 2b indicates how the predicted probability of severe dysphagia in the 

external validation is related to the DVH. The regression coefficients, and covariate means 

and standard deviations required to standardize the covariates, necessary to use the model are 

provided in table 3. 

 

Table 3: Regression coefficients and covariate transformation values for the PLRstandard 

model required to use the model for clinical decision-support. 

Covariate Regression coefficient Mean Standard 

deviation 

intercept 0.002 - - 

definitiveRT -0.003 0.86 0.35 

male 0.015 0.66 0.47 

age -0.007 57.9 12.0 

indChemo 0.023 0.54 0.50 

noConChemo -0.029 0.47 0.50 

cisplatin 0.024 0.38 0.49 

carboplatin 0.009 0.08 0.27 

cisCarbo 0.002 0.006 0.24 

hypopharynx/larynx 0.014 0.14 0.35 

oropharynx/oral cavity 0.015 0.50 0.50 

nasopharynx/nasal cavity -0.003 0.10 0.31 

unknown primary 0.001 0.06 0.23 

parotid -0.029 0.20 0.40 
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V020 0.019 95.5 9.4 

V040 0.020 93.5 10.8 

V060 0.021 92.2 11.9 

V080 0.024 90.3 13.7 

V100 0.026 87.7 16.3 

V120 0.028 83.8 19.3 

V140 0.027 77.5 20.2 

V160 0.024 66.4 18.7 

V180 0.024 57.0 17.2 

V200 0.023 47.0 20.8 

V220 0.025 20.0 16.2 

V240 0.013 2.3 8.4 

V260 0.011 0.0 0.0 

definitiveRT – definitive radiotherapy (versus post-operative radiotherapy); indChemo – 

induction chemotherapy; noConChemo – no concurrent chemotherapy; cisCarbo – one cycle 

of cisplatin followed by one cycle of carboplatin; Vx – volume of organ receiving x cGy of 

radiation per fraction. 

 

The model is given by: 𝑁𝑇𝐶𝑃 =  𝑒𝑓/(1 + 𝑒𝑓) where 𝑓 = 𝛼 + ∑ 𝛽i𝑥ii  where 𝛼 is the 

intercept, 𝛽𝑖 is the regression coefficient for covariate i and 𝑥i is the, centred and scaled, value 

of covariate i. To use the recalibrated version of the model f is instead given by 𝑓recalibrated =

𝑐intercept + 𝑐slope(𝛼 + ∑ 𝛽i𝑥i𝑖 ) where 𝑐intercept and 𝑐slope are the external validation 

intercept and slope (table 2). 

 

Concerning the second aim, the feature importance values for the RFC models are displayed 

in figure 3. 
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Figure 3: Bootstrapped feature importance values for the covariates included in the (a) 

RFCstandard and (b) RFCspatial models. The whiskers indicate the 95 percentile confidence 

intervals (data non-normally distributed). Note that the y-axis scales are different in (a) and 

(b). 
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These indicate increasing importance of the DVH, DLH and DCH metrics, in terms of 

predicting severe dysphagia in the models, with increasing dose level up to a fractional dose 

of 180 cGy, for RFCstandard, or 220 cGy, for RFCspatial. There is a decrease in importance at 

higher doses in this, data-driven, analysis. In the RFCstandard and RFCspatial models, the V140 

and C220 were the covariates most strongly associated with severe dysphagia, respectively. 

The 3D moment invariant with the highest feature importance was η002, describing the spread 

of the dose in the superior-inferior direction. For completeness, the RFC feature importance 

values were calculated for a model including both dose-volume and spatial dose metrics 

(appendix G). 

 

In both RFC models, the clinical covariates with the highest feature importance were parotid 

gland primary disease site, no concurrent chemotherapy and age. Parotid gland primary 

disease site correlated strongly with the dose metrics (appendix F) as patients with parotid 

gland primaries received unilateral irradiation and, hence, a smaller volume of PM irradiated. 

No concurrent chemotherapy was correlated with parotid gland primary disease site and the 

dose metrics (appendix F) as the parotid gland cancer patients, treated in the COSTAR trial, 

did not receive concurrent chemotherapy. These correlations should be considered when 

interpreting the results. When interpreting the apparent importance of age it is important to 

consider that it may have been artificially inflated due to the larger number of possible values 

than the other clinical covariates [39]. The RFC model feature importance results agreed with 

the PLRstandard model regression coefficients (table 3). 

 

5. Discussion  

We met our first aim of determining whether the addition of novel spatial dose metrics could 

improve the predictive performance of NTCP models of severe acute dysphagia. We suggest 

that the PLRstandard model should be preferred over the other models, for prediction, on the 

grounds of at least as good discrimination as the other models, similar log loss and Brier score 



 
 

19 

and greater simplicity. The good discriminative ability of this model, on internal and external 

validation, makes it a suitable aid for supporting clinical decision-making. The “spatial” 

models trained in this study did not have better discriminative ability than the “standard” 

models so we do not recommend their use. This may have been due to the DLH and DCH 

metrics being highly correlated with the DVH metrics (appendix F). Hence, the spatial 

variations in the dose distributions across the cohort were captured by the DVHs. It is 

important to note that we cannot rule out the possibility that using different spatial dose 

metrics, combinations of features, models or datasets would improve model performance 

compared with dose-volume based acute dysphagia models. Potential uses of the model are 

discussed in appendix H. 

 

We also achieved our second aim of establishing associations between the RT dose 

distribution and acute dysphagia. The decrease in feature importance for the highest dose 

levels was due to a lack of variation in these metrics between patients, as they are either 0 or 

close to 0 for all patients, rather than indicating reduced biological effects at these dose levels. 

Our results do not support the existence of regional variations in radiosensitivity of the PM 

for severe acute dysphagia. The fact that η002 was the 3D moment invariant with the highest 

feature importance suggests that the length, which is correlated with the volume, of the PM 

irradiated is more important for toxicity than the irradiation of any sub-region of the structure. 

Other studies suggested that different pharyngeal muscles were more radiosensitive [19,21–

23]. However, this is likely related to the primary disease sites of the patients used in those 

studies [24]. The inclusion of multiple spatial dose metrics, sensitive to different spatial 

aspects of the dose distribution, and a cohort with a wide variety of dose distributions allowed 

us to explore regional variations in radiosensitivity more thoroughly than has previously been 

performed. However, we cannot exclude the possibility that different spatial dose metrics 

[19], combinations of features, models or datasets could support the existence of spatially 

dependent radiosensitivity for severe acute dysphagia. The feature importance measures 

(figure 3) indicate that the volume of PM receiving intermediate and high doses are most 
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strongly associated with severe acute dysphagia. This is in agreement with another study 

using the same data, but a different approach to statistical modelling [28]. RFC feature 

importance does not provide information on whether the correlations between features and 

outcome are positive or negative. However, the regression coefficients for the PLRstandard 

model (table 3) indicate that the higher the value of the dose metrics the greater the 

probability of severe dysphagia. There is a relatively large increase in feature importance 

between V80 and V100 (figure 3A). A pragmatic recommendation for RT planning 

techniques aimed at reducing the incidence of severe acute dysphagia, based on these 

findings, would be to reduce the volume of the entire PM receiving greater than 1 Gy/fraction 

as much as possible without compromising other aspects of the treatment plan. 

 

 

A previous model of severe acute dysphagia, without the novel spatial dose metrics, but with 

a different statistical modelling approach, functional data analysis, had similar discriminative 

ability to the models trained in this study, but superior performance in terms of the probability 

calibration [28]. Hence, we recommend that the model recommended in [28] should be 

preferred over the models presented here for clinical decision-support. The Groningen group 

have produced and validated models of dysphagia measured six months following RT [10–

13,40,41]. Models of severe dysphagia at earlier time points focused on establishing 

associations between covariates and outcome and, hence, either did not optimize or measure 

discrimination [15,18,20], included much smaller numbers of patients [19,21] or had lower 

discriminative ability than the PLRstandard model [16,17]. In addition, with the exception of one 

study [42], no external validation has been performed. We did not have access to data 

pertaining to all the covariates, for example genetic polymorphisms, in those published 

models and, so, were unable to validate them. Moreover, our study featured a more thorough 

exploration of RT dose-response associations for severe acute dysphagia, including multiple 

dose levels and different types of spatial dose metric, than previous studies. This resulted in 

novel insights that could inform RT planning. 



 
 

21 

 

Our study possesses several limitations. Firstly, the scoring systems used to assess dysphagia 

severity differed between the training data and external validation data. The threshold for 

“severe” dysphagia in the external validation data is higher than in the training data. 

However, the models generated using the training data generalized well to the external 

validation data. Whilst the limitations of the CTCAE dysphagia scoring system, which was 

almost exclusively used when the trials incorporated in this study were conducted, have been 

demonstrated [43], it has been shown to correlate well with multiple patient-reported quality 

of life measures [44]. As CTCAE grade 3 and PEG-dependence indicate clinical interventions 

these are relevant endpoints. The slight difference in the dysphagia scoring systems between 

the training and external validation cohorts may have reduced the performances of the models 

on external validation. However, the models performed at least as well on external validation 

as internal validation. Moreover, it is believed that severe acute dysphagia is a highly 

complex, multifactorial toxicity with a range of different factors having been implicated. 

These include tobacco and alcohol use, a patient’s pain tolerance and genetic predispositions 

to severe (chemo)radiation-induced toxicity. Tobacco and alcohol use were not collected in 

the PARSPORT or COSTAR trials. Therefore, these factors could not be included in the 

analysis. It is also likely that chemotherapy is insufficiently characterized, using binary 

variables, in our analysis. Finally, like most radiotherapy outcomes modelling studies, the size 

of the training and validation cohorts are smaller than recommended for clinical decision-

support tools [45,46]. We suggest that investigators should strive to collect larger datasets for 

future development and validation of radiotherapy clinical decision-support tools. 

 

6. Conclusions 

In conclusion, we have trained and externally validated a NTCP model of severe acute 

dysphagia with very good discriminative ability (external validation AUC = 0.82). We 

suggest that this model may be suitable for clinical decision-support. Additionally, we 
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established that the volumes of the PM receiving intermediate and high doses, greater than 1 

Gy/fraction, are most strongly associated with severe acute dysphagia. These should be 

minimized in RT planning, where possible, to reduce the incidence of severe acute dysphagia. 

Our data did not support a regional variation in radiosensitivity for the PM. 
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Appendix A: Strategy for handling missing data 

If weekly toxicity data are incomplete this can lead to assignment of an incorrect peak toxicity 

grade. For example, a patient has grade 1 toxicity for weeks 1 to 3, grade 2 toxicity for weeks 

4 and 5, missing toxicity week 6 and 1 week following treatment and grade 2 toxicity from 2 

weeks following RT to 8 weeks following RT. They would be assigned a peak grade of 2. 

However, they may, in fact, have experienced grade 3 toxicity, which was not scored, as they 

were unable to attend their follow-up appointments. This would introduce an error into the 

analysis. As this type of error can only lead to peak toxicity being under-scored and not over-

scored it could introduce bias. Therefore, to reduce bias at the expense of statistical power, 

patients with any missing toxicity scores and a peak score below 3 were excluded from the 

analysis. Missing toxicity data were not imputed as many patients (with full toxicity data) 

with peak toxicity of grade 3 were only scored as grade 3 for one week. We previously 

investigated the effects of imputing missing toxicity measurements, where there were non-

consecutive missing values and found that this made little difference [36]. Patients with some 

missing toxicity measurements, but at least one measurement scored as grade 3 were included 

as they must have a peak grade of 3 or higher. It should be noted that retaining patients with 

missing data, but having a peak grade of 3 skews the apparent incidences of peak toxicity 

grades. Unbalanced outcome classes were accounted for in the statistical modelling, as 

described in the manuscript. It should be noted that our approach to handling missing data 

might still result in bias. Where there are missing data, there is always a risk of bias, 

particularly where the data are not missing at random. Ultimately, the performance of the 

model, including any bias introduced by the missing data handling strategy, is assessed by 

external validation. The external validation dataset had no missing PEG-dependence data. 
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Appendix B: Comparison of clinical covariate data between training and external 

validation datasets 

Table B.1: Clinical covariate data in the training and external validation data sets. 

Covariate ntraining (%) nvalidation (%) 

Definitive RT 148 (86) 44 (49) 

Male 114 (66) 68 (76) 

Induction chemotherapy 94 (54) 21 (23) 

No concurrent chemotherapy 82 (47) 46 (51) 

Cisplatin 66 (38) 28 (31) 

Carboplatin 14 (8) 0 (0) 

Cisplatin/Carboplatin 11 (6) 0 (0) 

Hypopharynx/Larynx 24 (14) 25 (28) 

Oropharynx/Oral cavity 87 (50) 41 (46) 

Nasopharynx/Nasal cavity 18 (10) 15 (17) 

Unknown primary 10 (6) 3 (3) 

Parotid gland 34 (20) 6 (7) 

Covariate mediantraining (range) medianvalidation (range) 

Age 59 (23 - 88) 58 (21 – 87) 

Concurrent chemotherapy was administered in two cycles, on days 1 and 29 of RT, in the 

training data cohort and in three cycles on days 1, 22 and 43 of RT for platinum 

chemotherapy or weekly during RT with the first dose 1 week before day 1 of RT for 

cetuximab in the external validation cohort. 
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Appendix C: Pharyngeal mucosa contouring 

Figure C.1 displays an example of the pharyngeal mucosa contouring technique employed. 

 

Figure C.1: Axial (left), sagittal (top right) and coronal (bottom right) views of an example of 

the pharyngeal mucosa structure used. 

In addition to the pharyngeal mucosa, irradiation of the cervical oesophagus can also cause 

dysphagia [21,47]. Therefore, the oesophagus, down to the level of the suprasternal notch, is 

included in the pharyngeal mucosa organ-at-risk structure. The cranial extent of the structure 

is the roof of the nasopharynx and the caudal extent is the level of the suprasternal notch. 

Most patients in the training data cohort were treated with extended neck positioning, to 

reduce oral cavity doses. Patients in the external validation cohort were treated with a neutral 

neck position. Contouring the structure took approximately 5 minutes per patient. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

31 

Appendix D: Spatial dose metrics 

For the “spatial” models, multiple different metrics, encoding different types of spatial 

information, were used to represent the fractional dose distribution. The longitudinal and 

circumferential extents of the dose distribution to the pharyngeal mucosa were extracted by 

transforming the Cartesian co-ordinates of the pharyngeal mucosa structure into cylindrical 

co-ordinates, with the long axis in the superior-inferior direction. Binary masks were 

generated with thresholds at each fractional dose level from 20 cGy to 260 cGy in 20 cGy 

intervals. For each binary mask, the longitudinal extent was calculated by summing the 

number of axial slices containing a 1 and multiplying this by the slice thickness. The 

circumferential extent was calculated by determining the maximum angle subtended in the 

axial plane by the binary mask, with the angle measured from the centre of mass of the 

pharyngeal mucosa. The absolute longitudinal and circumferential extents were normalized to 

the entire length (by dividing by the length of the pharyngeal mucosa OAR and converting to 

a percentage) and circumference (by dividing by 360 degrees and converting to a percentage) 

of the pharyngeal mucosa. It should be noted that the length and circumference could 

alternatively be characterized by the minimum or mean extent for each binary mask. 

However, due to the nature of the pharyngeal mucosa dose distributions for head and neck 

radiotherapy patients these are very similar to the maximum extent (data not shown). 

This approach differed from other methods used to characterize the spatial distribution of the 

dose to other tubular organs, such as 2D dose-surface maps for the rectum [48,49]. The 

reasons for this were two-fold. Firstly, the pharynx is a straight rigid structure (although there 

could be some deformation anteriorly), unlike some other tubular organs, like the rectum, 

which are more tortuous. Therefore, more sophisticated methods that account for this 

curvature in construction of the dose-surface maps would not be expected to offer any 

significant improvement in the accuracy of the spatial description of the dose distribution, 

compared with our pragmatic approach. Secondly, the pharynx is not a simple tubular shape, 

but contains “internal structure”, such as the uvula and glossoepiglottic fold. Hence, it is not 

trivial to “unwrap” it into a 2D map. 

3D moment invariants, 𝜂𝑎𝑏𝑐  [25] describing the spatial distribution of the dose were 

calculated using the expression 

habc =
mabc

m000

a+b+c

3
+1

        (Eq D.1) 

where 

m abc= | (x- x) |a (y- y)b(z- z)cD(x, y, z)I(x, y, z)
z

å
y

å
x

å    (Eq D.2) 

where x, y and 𝑧 are the voxel coordinates, D(x,y,z) is the dose delivered to the voxel with 

coordinates (𝑥, 𝑦, 𝑧), 𝐼(𝑥, 𝑦, 𝑧) is an identity function, which takes a value of 1 if the voxel 

belongs to the OAR and 0 if it does not, and (𝑥̅, 𝑦̅, 𝑧̅) is the centre of gravity of the OAR. The 

moments are translational and scale invariant. The left-right symmetry is accounted for such 

that the moments in the left-right direction describe how lateralized or centralized the dose is. 
Moments describing the centre of mass (η001, η010, η100, η011, η101, η110, η111), spread (η002, η020, 

η200) and skewness (η003, η030, η003) of the dose distribution in the three orthogonal directions 

(left-right, anterior-posterior, superior-inferior) within each structure were calculated. These 

allow for regional variations in radiosensitivity to be probed. These would manifest as 

differences in one or more of the moment invariants between patients who experienced severe 

mucositis and those who did not. The dose metrics were used as covariates in the statistical 
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modelling. 

The software, to extract the planned dose distributions to the pharyngeal mucosa from the 

DICOM data and compute the fractional DVHs and spatial dose metrics, was developed using 

the Python version 2.7.9 programming language [50] and the NumPy version 1.9.2 [51], 

SciPy version 0.15.1 [51], Matplotlib version 1.4.3 [52], Seaborn version 0.6.0 [53] and 

PyDicom version 0.9.9 [54] modules. 
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Appendix E: Machine learning methods 

All features were transformed to standardized scores (mean = 0, standard deviation = 1) to 

avoid scale-related feature dominance. Three different types of classification model were 

trained: penalized logistic regression (PLR) [55], support vector classification (SVC) [56] and 

random forest classification (RFC) [57]. The models all penalize complexity to prevent 

overfitting due to the high number of covariates per toxicity event. We have previously 

discussed these techniques and their advantages over “conventional” univariable and 

multivariable logistic regression models in NTCP modelling [36]. Two different versions of 

each of the three types of model were generated. One with “standard” dose covariates, 

describing the dose-distribution using the DVH, and the other with “spatial” dose covariates, 

describing the dose distribution using the DLH, DCH and 3D moment invariants. During 

model fitting the outcome classes, severe and non-severe dysphagia, were weighted inversely 

proportional to the class frequencies in the training data to account for the fact that the 

frequencies of the outcomes were unbalanced. Model hyper-parameter tuning was carried out 

using a cross-validated grid search with shuffled stratified cross-validation (with 80/20 

training/test split) with 100 iterations. The possible hyper-parameters over which the grid-

searchers were performed were:  

• PLR: regularization = {LASSO (L1), ridge (L2)}; inverse regularization strength (C) = 

{0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0}.  

• SVC: kernel = {linear, radial basis function}; C = {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 

1000.0}; kernel coefficient for radial basis function = {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 

100.0, 1000.0}.  

• RFC: number of estimators = 1000; maximum depth = {5, 10, 15, 20}; maximum features = 

{number of features, number of features/2, square root of number of features}.  

To address the first aim, the generalizability of the models to correctly predict dysphagia 

severity for “unseen” patients was measured through internal and external validation. Internal 

validation used a nested shuffled stratified cross-validation, with 80/20 training/test split. 

Covariate transformation to standardized scores and hyper-parameter tuning with a 5-fold 

cross-validated grid search with 100 iterations, were nested within the internal validation 

cross-validation to give unbiased error estimates. For external validation NTCP was 

calculated for each of the 90 external validation patients, using the models generated with the 

training data, and compared with the known PEG-insertion data. The external validation was 

bootstrapped with 2000 replicates. 

Predictive performance was assessed, using several metrics, on internal and external 

validation. The area under the receiver operating characteristic curve (AUC) was used to 

measure discriminative ability for model training and validation. Log loss [58] was calculated 

to assess the model probability estimates and the Brier score [59] was calculated to evaluate 

the overall model performance. Model calibration was assessed, using the slope and intercept 

of a logistic regression model of the actual toxicity outcomes against the predicted 

probabilities of severe dysphagia [60,61]. Following external validation, the best model was 

updated for the Washington University patients with PEG-dependence outcome data by 

recalibrating it using logistic regression (logistic calibration) [62]. This improves model 

calibration, but does not affect discrimination. More complex model updating was not 

attempted due to the relatively small size of the external validation cohort [63]. 

To address the second aim of establishing associations between the model covariates and 

severe dysphagia, the feature importance values for each covariate in the RFC models were 
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bootstrapped with 2000 replicates. We have previously determined this approach to provide a 

more interpretable understanding of the relationship between the RT dose distribution and 

toxicity than, the conventionally used, logistic regression, in the context of correlated dose 

metrics [36]. The feature importance is the total decrease in node impurity, weighted by the 

probability of reaching that node, approximated by the proportion of patients reaching that 

node, averaged over all of the trees in the ensemble [57]. Larger values correspond to more 

important features. The importance values of all the covariates sum to 1. The Pandas version 

0.18.0 [64] and Scikit Learn version 0.17 [65] Python modules and val.prob.ci.2 [66] R 

package were used for statistical analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

35 

 

 

Appendix F: Correlation matrix 

Figure F.1 shows the correlation matrix of the covariates and outcome variables included in 

the study. 
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Figure F.1: Correlation matrix of the model variables. The colour scale shows the Spearman 

correlation coefficients between the model covariates. definitiveRT – definitive radiotherapy 

(versus post-operative radiotherapy); indChemo – induction chemotherapy; noConChemo – 

no concurrent chemotherapy; cisCarbo – one cycle of cisplatin followed by one cycle of 

carboplatin; independentValidation – patients included in external validation cohort and not 

used for model training or internal validation; Cx – normalized circumference of pharyngeal 
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mucosa receiving x cGy of radiation per fraction ; Lx – normalized length of pharyngeal 

mucosa receiving x cGy of radiation per fraction; Vx – normalized volume of pharyngeal 

mucosa receiving x cGy of radiation per fraction; etax – 3D moment invariants (described in 

appendix D); severe acute dysphagia – peak acute dysphagia severity (non-severe = 0, severe 

= 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix G: Combined dose-volume and spatial dose metrics feature importance 

 

Figure G.1 displays the feature importance values for a RFC model including both the dose-

volume and spatial dose metrics. 
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Figure G.1: Bootstrapped feature importance values for a RFC model containing all of the 

covariates considered in the study. The whiskers indicate the 95 percentile confidence 

intervals. 

 

For equivalent dose levels the volume of pharyngeal mucosa had higher feature importance 

than the length or circumference. For completeness, the discriminative ability of this model 

was measured on internal and external validation in the same manner as for the other models 

(described in the manuscript). The mean internal validation AUC = 0.73 (s.d. = 0.07) and 

external validation AUC = 0.75 (95 percentile confidence intervals = 0.64 – 0.85) for this 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix H: Potential applications of the model 

 

A potential application, for institutions operating a prophylactic, rather than reactive, 

approach to PEG insertion, would be to use the model to exclude a subset of patients, at low 
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risk of PEG-dependence, from receiving this prophylactic intervention. This may result in 

improved long-term swallowing outcomes for these patients, as early reliance on PEG feeding 

has been associated with poorer long-term swallowing function in some [67,68] studies. Other 

potential applications include treatment plan or regimen comparison, using the model to 

calculate and compare the probabilities of a patient experiencing severe acute dysphagia with 

alternative treatment plans. Alternatively, the model could be directly used in treatment plan 

optimisation in place of physical dose constraints [69], for informing treatment modality 

selection [8] and isotoxic dose escalation, in a similar manner to approaches being evaluated 

in lung RT [9]. We recommend the use of decision curve analysis [70] when determining the 

utility of a prediction model for individualized clinical decision-making for a specific 

intervention. 


