
Physics in Medicine & Biology

PAPER • OPEN ACCESS

Fast CPU-based Monte Carlo simulation for
radiotherapy dose calculation
To cite this article: Peter Ziegenhein et al 2015 Phys. Med. Biol. 60 6097

View the article online for updates and enhancements.

Related content
A GPU OpenCL based cross-platform
Monte Carlo dose calculation engine
(goMC)
Zhen Tian, Feng Shi, Michael Folkerts et
al.

-

Towards real-time photon Monte Carlo
dose calculation in the cloud
Peter Ziegenhein, Igor N Kozin, Cornelis
Ph Kamerling et al.

-

GPU-based fast Monte Carlo simulation
for radiotherapy dose calculation
Xun Jia, Xuejun Gu, Yan Jiang Graves et
al.

-

Recent citations
Fast Monte-Carlo Photon Transport
Employing GPU Based Parallel
Computation
M. Mirzapour et al

-

Comparison between PRIMO and EGSnrc
Monte Carlo models of the Varian True
Beam linear accelerator
Hussin Aamri et al

-

Localized extra focal dose collimator angle
dependence during VMAT: An out-of-field
Monte Carlo study using PRIMO software
Firass Ghareeb et al

-

This content was downloaded from IP address 193.63.217.12 on 24/07/2020 at 14:26

https://doi.org/10.1088/0031-9155/60/15/6097
http://iopscience.iop.org/article/10.1088/0031-9155/60/19/7419
http://iopscience.iop.org/article/10.1088/0031-9155/60/19/7419
http://iopscience.iop.org/article/10.1088/0031-9155/60/19/7419
http://iopscience.iop.org/article/10.1088/1361-6560/aa5d4e
http://iopscience.iop.org/article/10.1088/1361-6560/aa5d4e
http://iopscience.iop.org/article/10.1088/0031-9155/56/22/002
http://iopscience.iop.org/article/10.1088/0031-9155/56/22/002
http://dx.doi.org/10.1109/TRPMS.2020.2972202
http://dx.doi.org/10.1109/TRPMS.2020.2972202
http://dx.doi.org/10.1109/TRPMS.2020.2972202
http://dx.doi.org/10.1016/j.radphyschem.2020.109013
http://dx.doi.org/10.1016/j.radphyschem.2020.109013
http://dx.doi.org/10.1016/j.radphyschem.2020.109013
http://dx.doi.org/10.1016/j.radphyschem.2020.108694
http://dx.doi.org/10.1016/j.radphyschem.2020.108694
http://dx.doi.org/10.1016/j.radphyschem.2020.108694
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvNhk9K7eVjGxKrGfeA3_J2hYs_jIua3nVy1OPSKmilo9XdS2rXiYryNshZd79tL1MjkOyz5CO2_pElaHFH1IvQxEnsb-ztDul6XWTocoDJahxt7ROhP_mN3L2gffjTprU5JEwIuZBDP6vFErgq8ElUmh59djNvj4m_AOcETbF4JY1QGPJknK3yTcQgOwlSXUYHmQb468hBsmT1CLixPomQRo03fW1MP9x6Vw8zXXStSKJZUNQi&sig=Cg0ArKJSzLfZ1NDaBejR&adurl=https://iopscience.iop.org/bookListInfo/physics-engineering-medicine-biology-series%23series

6097

Physics in Medicine & Biology

Fast CPU-based Monte Carlo simulation for
radiotherapy dose calculation

Peter Ziegenhein, Sven Pirner, Cornelis Ph Kamerling and
Uwe Oelfke

Joint Department of Physics at The Institute of Cancer Research and The Royal
Marsden NHS Foundation Trust, London, SM2 5NG, UK

E-mail: Peter.Ziegenhein@icr.ac.uk and Uwe.Oelfke@icr.ac.uk

Received 26 January 2015, revised 21 June 2015
Accepted for publication 25 June 2015
Published 27 July 2015

Abstract
Monte-Carlo (MC) simulations are considered to be the most accurate method
for calculating dose distributions in radiotherapy. Its clinical application,
however, still is limited by the long runtimes conventional implementations
of MC algorithms require to deliver sufficiently accurate results on high
resolution imaging data. In order to overcome this obstacle we developed
the software-package PhiMC, which is capable of computing precise dose
distributions in a sub-minute time-frame by leveraging the potential of modern
many- and multi-core CPU-based computers. PhiMC is based on the well
verified dose planning method (DPM). We could demonstrate that PhiMC
delivers dose distributions which are in excellent agreement to DPM. The
multi-core implementation of PhiMC scales well between different computer
architectures and achieves a speed-up of up to 37× compared to the original
DPM code executed on a modern system. Furthermore, we could show
that our CPU-based implementation on a modern workstation is between
1.25× and 1.95× faster than a well-known GPU implementation of the same
simulation method on a NVIDIA Tesla C2050. Since CPUs work on several
hundreds of GB RAM the typical GPU memory limitation does not apply for
our implementation and high resolution clinical plans can be calculated.

Keywords: Monte Carlo simulation, photon dose calculation, CPU,
multi-core

(Some figures may appear in colour only in the online journal)

P Ziegenhein et al

Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation

Printed in the UK

6097

PMB

© 2015 Institute of Physics and Engineering in Medicine

2015

60

Phys. Med. Biol.

PMB

0031-9155

10.1088/0031-9155/60/15/6097

Papers

15

6097

6111

Physics in Medicine & Biology

Institute of Physics and Engineering in Medicine

IOP

Content from this work may be used under the terms of the Creative Commons
Attribution 3.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.

0031-9155/15/156097+15$33.00  © 2015 Institute of Physics and Engineering in Medicine  Printed in the UK

Phys. Med. Biol. 60 (2015) 6097–6111 doi:10.1088/0031-9155/60/15/6097

mailto:Peter.Ziegenhein@icr.ac.uk
mailto:Uwe.Oelfke@icr.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/0031-9155/60/15/6097&domain=pdf&date_stamp=2015-07-27
publisher-id
doi
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://dx.doi.org/10.1088/0031-9155/60/15/6097

6098

1.  Introduction

Monte Carlo simulation is considered to be the most accurate method to calculate dose dis-
tributions in radiotherapy (RT). It is based on explicitly simulating the trajectories and dose
depositions of individual particles traversing a target by sampling interactions according to the
fundamental laws of physics. This technique was applied in general purpose particle physics
simulation software such as EGS4/5 (Nelson et al 1985, Bielajew et al 1994, Hirayama et al
2005), EGNSnrc (Kawrakow 2000), PENELOPE (Baro et al 1995, Salvat et al 1996, Sempau
et al 1997, Salvat et al 2001) and Geant4 (Agostinelli et al 2003).

Because of the stochastic nature of this approach, a large number of particles has to be sim-
ulated in order to obtain sufficiently accurate results. Combined with the high complexity of
individual interaction sampling this results in immense computational effort, which still limits
a comprehensive clinical application of this dose calculation method in radiotherapy treatment
planning. Therefore, several authors extensively investigated different elaborate methods to
reduce the simulation times of MC algorithms, e.g. by variance reduction techniques (VRT)
(Kawrakow and Fippel 2000, Buckley et al 2004, Wulff et al 2008) and/or by optimizing par-
ticle transport mechanics in various implementations specifically designed for clinical dose
calculation purposes, like VMC++   (Kawrakow 2001), MCDOSE/MCSIM (Ma et al 2002),
DPM (Sempau et al 2000).

In order to achieve a high performance the Monte Carlo simulation needs to be imple-
mented in a parallel computing environment. Monte Carlo simulations are commonly clas-
sified as so called embarrassingly parallel problems. This means that only little or even no
effort is required to separate the simulation process into parallel tasks which can be processed
concurrently. The achievable speedup is then expected to scale linearly with the available
number of processors. This has been shown for instance by Tyagi et al (2004) for a 32 proces-
sor computer cluster. An independent Monte Carlo simulation was launched on each computer
producing an individual dose cube each which were merged after the simulation. The authors
report an almost 32× speedup of the simulation as expected. A similar experiment was con-
ducted by Pratx and Xing (2011) in a cloud computing environment. Given that the simulation
time is high compared to the setup time, an almost linear performance scaling of the Monte
Carlo dose calculation can be observed. For distributed-memory computing architectures the
parallelization is straight forward.

Since its availability for general computing, exploiting graphics processing units (GPU)
has been very popular in medical physics to speed up computationally intensive tasks. GPUs
rely on a massively parallel architecture providing thousands of arithmetic units which are
able to work concurrently on shared data. A number of MC dose calculation algorithms have
been designed for GPUs such as gDPM 2.0 (Jia et al 2011), CPUMCD (Hissoiny et al 2011),
GMC (Jahnke et al 2012), ArchertRT (Su et al 2014) and accelerated algorithms by Badal and
Badano (2009). Unfortunately, within the scope of one processor (one GPU) when resources
are shared the simulation problem is no longer embarrassingly parallel and additional effort
has to be put into the parallel model. On the GPU for example Hissoiny et al (2011) and
Jia et al (2011) report that it is difficult to achieve high speed-up factors due to its single-
instruction multiple-thread (SIMT) architecture. SIMT dictates that all threads within a cer-
tain scheduling unit have to follow the same instruction path in order to be processed in
parallel. If one particle is simulated by one thread this limitation conflicts with the stochastic
nature of the Monte Carlo simulation. Another drawback of the GPU is that random accesses
to the memory are time costly and the memory itself is limited to a few GB.

Despite these limitations authors report speed-up factors ranging from 27× (Badal and
Badano 2009) to over 6000× (Jahnke et al 2012) of their GPU-based MC code compared to

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

6099

algorithms tested on CPUs. These impressive speed-up factors suggest that GPUs in general
are in the order of 100× or even 1000× faster than CPUs. However, these results have to be
analyzed with care and in the right context. The reported speed-up factors have mostly been
achieved by comparing a non-optimized, single-threaded implementation run on an out-dated
CPU-system against a multi-threaded implementation on a modern professional GPU. A fair
comparison between GPU and CPU results in a significant lower performance advantage (Jia
2015). Studies carried out for a wide range of computational algorithms show that there is
actually only about 2.5× performance advantage in favor of the graphic cards on average (Lee
et al 2010). GPUs might have a significant advantage for throughput problems for instance
in the field of image processing. However for the use in radiotherapy we often find that the
performance of GPUs is overrated.

In this paper we introduce PhiMC, a Monte Carlo simulation package which is optimized
for modern multi-/many-core CPU-based shared memory systems. PhiMC relies on the physi-
cal model implemented in DPM (Sempau et al 2000) for non-parallel processors and adapts
it for modern parallel architectures. Please note that our work is completely different from
Tyagi et al (2004). While Tyagi et al (2004) uses the original sequential DPM code pack-
age and applies it to a distributed cluster environment on several computer nodes, PhiMC
re-implements and optimizes the simulation physics for parallel execution within only one
shared memory node. Thus, high performance is achieved on a single server or even desktop
computer.

2.  Materials and methods

2.1.  DPM physics

The DPM MC-algorithm is a powerful sequential dose calculation MC-algorithm specifi-
cally designed and optimized for simulating the transport of electrons and photons through
a heterogeneous medium for radiotherapy class problems. For both particle types it employs
transport processes which permit long, heterogeneity boundary crossing simulation steps;
photons are simulated by applying the Woodcock δ-scattering technique (Woodcock et al
1965) whereas electrons are transported using a mixed class simulation scheme. The latter
method combines explicit sampling of hard inelastic interactions, such as Møller scattering
and bremsstrahlung, with a condensed history approach. Interactions causing a severe energy
loss of the primary electron are simulated using the random hinge technique as implemented
by Sempau et al (2000). Small deflections are accumulated according to the multiple-scat-
tering theory proposed by Goudsmit and Saunderson (1940). The energy losses due to latter
interactions are accounted for by the continuous slowing down approximation. The transport
of positrons is computed analogously to this of electrons with the difference that a positron
annihilates with an electron of the medium and forms a back-to-back photon pair when it
comes to rest. As shown by Chetty et al (2002) and (2003) the dose calculated by DPM
agrees within (±2%/1–2 mm) of experimental measurements for both, therapeutic photon
and electron beams.

DPM was optimized for a single thread execution on CPUs available at the late 90s. The
high performance of this implementation was mainly achieved by employing a multiple scat-
tering method for electrons which permits long transport steps across heterogeneity bounda-
ries (Sempau et al 2000). Furthermore, a modified version of the RANECU random number
generator implementation (James 1990) was used providing a period of ≈2 × 1018 on 32-bit
machines.

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

6100

2.2.  Multi- and many-core implementation

With PhiMC v1.0 we developed a software package specifically designed to deliver accurate
high speed dose-calculation by utilizing the full parallel potential of modern multi core and
many core CPUs. In order to achieve this our algorithm expands the physics and sequential
methods used in the well verified DPM package by high performance implementations, which
exploit multiple levels of parallelism modern CPUs offer: thread-level parallelism (TLP) and
data-level parallelism (DLP). We take advantage of TLP by subdividing the total number of inci-
dent particles into bunches and distributing them among the available CPU cores. In principle
each core is capable of simulating its own bunch of particles asynchronously and completely
independent of the others; this is commonly referred to as embarrassingly parallel. However,
due to the fact that during a simulation all cores need to access and alter data from the large
common shared memory, which holds essential information about the voxel-grid, the challenge
of orchestrating shared memory accesses arises. For this reason, we developed a sophisticated
memory scheme (section 2.2.1), which on the one hand schedules and pipelines reading from
and writing to the shared memory and optimizes the access times of frequently used data stored
in CPU caches on the other hand. In order to leverage the DLP, which technically is realized
by a single instruction multiple data (SIMD) architecture inside the processing unit of a CPU
core, we vectorized the instructions in the actual simulation process (section 2.2.2) where ever
possible. In contrast to most GPU-based MC-implementations, PhiMC consequently operates
on double precision data for the simulation itself as well as for storing the dose distribution.

2.2.1.  MC memory-scheme.  The right hand side of figure 1 illustrates the way PhiMC allo-
cates and accesses memory. Basically, the data required for simulating particle histories is
divided into two classes: on the one hand a large set of voxel-grid data containing information
about the density, material and deposited dose of each voxel. On the other hand much smaller
data packages encompassing pre-calculated look-up tables for different particle and material
types, current particle data as well as temporary simulation data and buffered dose values.The
latter (smaller) type of data is kept individually for every CPU core. This includes the data
used for generating random numbers. Each core uses its own instance of the random number
generator (RNG) that is initialized with an individual seed. The period length of the RNG used
for PhiMC (see section 2.3.1) is multiple orders of magnitude larger than the amount of ran-
dom numbers generated for a simulation. This prevents correlations between the concurrently
running Monte Carlo threads on each core.

Because of its enormous size, the voxel-grid data is stored in a shared address space, located
on the random access memory (RAM) of the system, which can hold up to several hundreds
of giga-bytes of data. In PhiMC we put special emphasis on orchestrating and optimizing the
data transfer between shared memory and the individual CPU cores. The fact that writing to
the shared memory is only possible sequentially is the sole limiting factor of TLP. This is
particular important for the process of adding dose to the voxel-grid stored in shared memory.
The multi-core implemenation of PhiMC has to guarantee that only one thread at a time can
write to the same grid location. Therefore, we implemented an intelligent memory manager
which buffers calculated dose values and pipelines back-writing to shared memory as efficient
as possible by preventing race conditions and idling times: When the buffer reaches a certain
filling level the corresponding thread liaises with other threads in the system to negotiate a
time slot for the write-back operation. During this time slot access to the shared dose cube is
denied for all other threads.

PhiMC is designed in a way, that small packages of data, which are frequently read, cre-
ated or altered, are stored separately in the cache of each processor core. Even if this leads to

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

6101

slight data redundancies, it ensures minimal access times as well as that all cores can simulate
particle histories completely asynchronously.

2.2.2. The simulation process.  After PhiMC has set up the memory structure as explained
above and a simulation unit on every available core, it generates incident particles according
to the applied source model (section 2.3.3). The particles are combined in batches fitting in
the cache of a CPU core and equally distributed among the available simulation units. On the
left side of figure 1 the simulation process of PhiMC is illustrated. In PhiMC we employ a
ping–pong approach for the simulation of particles. For the simulation of photons, first, the
vector of incident photons is transferred to the photon simulation interface, which propagates
them through the medium by executing vectorized simulation steps until all photons either are

Figure 1.  Simulation process (left) and memory model (right) as implemented in
PhiMC. The simulation unit simulates the transport of photons and electrons separately
whereas the data scheme ensures that each core holds its own set of frequently used
data as closely as possible to the processing unit and orchestrates their access to their
shared memory.

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

6102

absorbed or have left the phantom. Secondary photons, which are created during this simula-
tion loop are stored temporarily and copied back to the initial input vector after the simulation
of the primary particles is completed (I). This procedure is repeated until no new photons are
created during a simulation loop. Second, all electrons generated during this process are added
to the main electron vector and computed analogously directly thereafter by the electron simu-
lation interface (II). In the third step all secondary photons created during the simulation of the
electron vector are passed to the photon simulation interface again (III). This process contin-
ues until all particles have been absorbed or have left the target.

The ping–pong approach for the simulation of particles as shown in figure 1 is similar to
the approach introduced for the GPU-based implementations in Jia et al (2011). The goal is
the same for both platforms: to process only one type of particle at the same time. However the
effect is different. On the GPU this leads to a reduction in thread divergence which improves
parallelism. On the CPU the ping–pong approach leads to an efficient use of cache memory
which improves the bandwidth of the system.

2.3. The PhiMC framework

In order to ensure that the simulation algorithm scales well on different CPU-types and future
processor architectures, PhiMC is implemented with no dependency on the employed operat-
ing system and hardware. This is achieved by including pervasive state-of-the-art libraries.
Due to its modular multi-layer structure, all proprietary parts of PhiMCs’ simulation unit can
be substituted by other libraries and application programming interfaces (API) without much
effort. Some of the key modules are described briefly in the following.

2.3.1.  Random number generation.  The backbone of every MC simulation is the optimal
choice of the underlying Random Number Generator. In the case of PhiMC the RNG not only
has to pass statistical test for randomness (Kendall and Smith 1938) but also be exceptionally
fast. Recently released hardware based true random number generators (TRNG)1 are too slow
to fulfill our requirements. Instead, we included the high-performance Intel MKL2 implemen-
tation of the widely used mersenne twister pseudo random number generator (PRNG) which
was proposed by Matsumoto and Nishimura (1998). This RNG has a period length equal
to 219937  −  1 which is significantly better compared to the RNG used in the original DPM
(≈2 × 1018) and gDPM (2192) on GPUs. In order to fully exploit the potential of the hardware
accelerated parallel capabilities of this implementation and to minimize the functions over-
head, we generate arrays of random numbers ∈ ()x 0, 1 instead of only one random number
at a time. When the simulation module requests a random number, a value is taken from that
pre-generated array rather then being calculated on the fly. When the last random number is
used up, the array is re-populated using the hardware accelerated parallel implementation.

2.3.2. TPL and DLP realization.  PhiMC uses open multi-processing (OpenMP), an API that
provides shared memory multi-processing functionality, to distribute the individual history
simulations among the available CPU-cores and control their shared memory access. OpenMP
is supported by almost all compiler and operating systems. In order to leverage the SIMD
potential of modern CPUs, PhiMC performs vectorized operations where ever possible. On

1 https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-
guide.

2 https://software.intel.com/en-us/intel-mkl.

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/intel-mkl

6103

that account our algorithm uses the C/C++ extension kit Intel Cilk Plus. Although it also sup-
ports multi-core parallelism, in PhiMC Intel Cilk is only used as a DLP catalyst.

2.3.3.  Source and patient modeling.  A simple source model was implemented in PhiMC to
test the simulation algorithm. A finite radiation source was modeled according to the method
provided by Altenstein et al (2012) which is based on Fippel et al (2003). The interpretation
of the CT-data was taken from the BEAMnrc implementation (Rogers et al 2001): The houn-
sfield units (HU)-range is divided into four major types of tissue (air, lung tissue, soft tissue
and bone) while the density in each voxel is linearly interpolated within the tissue classes.
In order to calculate intensity modulated radiotherapy (IMRT) plans, particles are generated
according to beam fluence maps. We implemented the same Metropolis sampling algorithm
using Markov chains (Hastings 1970) which was also used in Jia et al (2011) for gDPM 2.0.
This sampling method is not only well suited for GPUs but also efficient on modern CPUs.
All of these models have been implemented to be easily exchangeable against more accurate
implementations in the future. The discussion of more sophisticated source and patient models
is beyond the scope of this paper.

2.4. Test cases and performance metric

The dose value D of each voxel computed in a full MC simulation with a sufficiently large
number of simulated particles is a statistical quantity, which, according to the central limit the-
orem (CLT), is distributed normally with the standard deviation σ. To ensure that the require-
ments of the CLT are met, in the following, we only analyze voxels whose dose value exceeds
50% of the maximum dose value of the whole phantom. The uncertainty of the dose distribu-
tion is expressed using the mean relative error σ D/ max defined as:

σ =
∑ [−]

()
D

d d

D N N
/

/
N i i i

max

1 2 2

max 0
2

50

0� (1)

with N0 being the total number of histories simulated, N50 the number of dose entries which
exceed 50% of the maximum dose Dmax and di is the dose value in voxel i. Please note that
the relative uncertainties are defined using the maximum dose of the plan instead of the actual
dose of the voxel in question. This definition underestimates the mean uncertainties of the
dose distribution but it allows for a direct performance comparison to other publications (e.g.
Jia et al (2011)).

In order to prove that the results calculated by PhiMC are equivalent to those computed by
the reference algorithm DPM, we apply the two one-sided test (TOST) procedure as proposed
by Schuirmann (1987). A standard two tailed t-test is incapable of ascertaining statistical
similarity, since not neglecting the null hypothesis of indifference does in general not imply
statistically secured similarity. The TOST solves this issue by replacing the null hypothesis
H0 of indifference with an interval hypothesis of non-equivalence within the boundaries θ θ,u l:

θ θ: − ⩽ − ⩾H D D D Dort r l t r u0� (2)

θ θ: < − <H D D ,l t r u1� (3)

where Dt and Dr denote the dose of the considered voxel as calculated by PhiMC and DPM,
respectively. Therefore, neglecting the interval hypotheses is a direct proof that the results of
both algorithms lie within the equivalence interval θ θ[],l u .

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

6104

In this test, we ran n   =   m   =   40 simulations with both algorithms, our PhiMC and the
original DPM implementation in Fortran ‘as–is’. In each run we simulated a sufficient
amount of incident particles, so that the mean relative error σ D/ max of all voxels with a dose
higher than 20% of the max dose Dmax lies well below 1% in each simulation for all tested
phantoms. We then calculated the mean dose values Dt and Dr of each voxel as well as

= ∑ (−)s D Dt r t r
i

t r, , ,
2 in order to calculate the corresponding tl,u-values:

θ=
+

+ −
+

(− −)t
nm

n m

n m

s s
D D

2
l u

t r
t r l u, ,� (4)

As stated by Schuirmann (1987) the doses of a single voxel as calculated by both algorithms
are equivalent with a confidence of 90% if both one-handed parts of the interval hypotheses can
be neglected with a significance level of α = 0.05, i.e. if > α− + −t tl n m1 , 2 and < − α− + −t tu n m1 , 2. In
order to accumulate the results of this quantitative analyses for all considered voxels, the pass-
ing rates P, i.e. the number of voxels for which the hypotheses were neglected divided by the
total number of considered voxels, is calculated for all discussed phantoms and source types.

Runtime and accuracy of PhiMC was tested against a selection of phantoms and two clini-
cal cases. The phantoms have been chosen to match commonly investigated geometries in
other high ranked Monte Carlo studies. All phantoms consist of × ×61 61 150 voxel with
a voxel size of × ×0.5 0.5 0.2 cm3. We used a water phantom, a bone phantom and a lung
phantom. The bone- and lung phantom consist of a water box with a layer of the respective
material ranging from z   =   5 cm to z   =   10 cm. The material is isotropic in x- and y-direction
for all phantoms. The resolution and size of the clinical cases is given in table 2. Both patients
have been planned based on a pencil-beam pre-calculated dose data set.

In order to investigate the performance and scalability of our PhiMC implementation the
performance has been tested on several commonly available CPU-based systems: Two single
node workstation systems XeonV13 and XeonV34 and one low-cost desktop system which
will be denoted as i75.

3.  Results

3.1.  PMC accuracy

Table 1 shows the results of the TOST comparison between our newly developed PhiMC and
the original reference algorithm DPM. Tests have been carried out for electrons and photons.
The number of simulated primary particles is chosen high to eliminate statistical variation as
far as possible. The TOST passing rate for using electrons is found to be 100% for all three
phantom studies while the mean relative statistical uncertainty is below 0.5%. Using photons
the ratio of equivalent voxel pairs passing the test exceeds 99.5% for all phantom geometries.
According to the TOST procedure PhiMC is in excellent agreement with DPM. Comparative
iso-dose plots and integrated depth dose curves shown in figure 3 support this finding.

3.2.  Simulation speed and runtime scaling

PhiMC was explicitly designed to deliver high performance on modern CPU-based systems.
Thus extensive runtime and scaling studies have been conducted to demonstrate the perfor-
mance of our algorithm.

3 2 × Intel Xeon E5-2650 8 Core—2.00 GHz.
4 2 × Intel Xeon E5-2699 v3 18 Core—2.3 GHz (C1 Pre-Production Processors).
5 Intel i7-4770 4 Core—3.4 GHz.

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

6105

Figure 2 summarizes the runtimes of calculating dose in water on different CPU-based
systems depending on the number of photon histories. The graph reveals two important find-
ings: First, the simulation time scales linearly with the number of particles on all systems.
Although it is not shown explicitly, the same holds true for the simulation of electron histories.
Second, the runtime scales very well with the number of available cores of a CPU system and
with advancing processor technology. For example simulating 100 million photon histories
on the XeonV1 system takes about 174.7 s using a single CPU core. Using all available cores
results in a runtime of 12.9 s which is about 13.4× faster. The PhiMC implementation also per-
forms well on common desktop CPUs: The low-cost desktop i7 system is approximately 5.8×
faster than a single core simulation on a professional XeonV1 server. The fastest execution
times have been measured on the XeonV3 system. It provides runtimes which are up to 33.3×
faster compared to the XeonV1 system. Simulating 250 million photon histories in the water
phantom can be completed within 13.1 s. The respective simulation runtimes for 250 million
histories using the bone and lung phantoms can be extrapolated from the runtimes shown in
table 1 due to the linear scaling behavior of the simulation. Figure 2 also shows the simulation
runtime of the original DPM code executed on the XeonV1 system. Naturally DPM is only
tested on a single core since it is not capable of exploiting a multi-core CPU architecture.

Table 2 shows the performance of PhiMC on an IMRT prostate case and on an IMRT
head and neck case. The runtimes include the generation of the 250 million particle histories
according to the method described in section 2.3.3. The voxel resolution is of clinical qual-
ity while the number of histories has been chosen to keep the average relative uncertainty
well below 1%. Figure 4 shows the resulting dose distribution of both clinical cases. Dose is
reported as dose to water.

4.  Discussion and outlook

In this work we demonstrate that high-quality Monte Carlo simulations for advanced, clini-
cal RT can be performed on CPU-based systems in less than a minute. Our newly developed
framework PhiMC implements the physical models originally used in DPM which have been
proven to be accurate (Chetty et al 2002, 2003). Using the statistical Two One-Sided Test
procedure we validated that dose distributions calculated by PhiMC and DPM are in excellent
agreement.

The performance of PhiMC was investigated on several phantom cases and two typical clin-
ical patient cases. The number of histories was chosen to be comparable to other high-ranked

Table 1.  Comparison of PhiMC and DPM.

Source
No. of
histories Phantom

σ D/ max
DPM [%]

σ D/ max
PhiMC [%] P [%]

T PhiMC
[]s

20 MeV e ⋅9 106 H O2 0.49 0.48 100.0 7.2

MeV e ⋅9 106 H O2 -Bone-H O2 0.32 0.31 100.0 8.4

MeV e ⋅9 106 H O2 -Lung-H O2 0.50 0.49 100.0 8.4

MV γ ⋅9 108 H O2 0.47 0.47 99.7 47.3

MV γ ⋅9 108 H O2 -Bone-H O2 0.41 0.41 99.7 58.8

MV γ ⋅9 108 H O2 -Lung-H O2 0.46 0.45 99.6 44.7

Note: The dose of three phantom cases has been compared for electrons and photons using the
two one-sided test (TOST). Relative mean uncertainty and runtimes on the XeonV3 system are
also shown.

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

6106

publications. The dose of the optimized prostate case could be simulated in 26.7 s while the
simulation of the H&N case took only 18.8 s due to the smaller anatomical volume. Compared
to the GPU-based implementation of gDPM 2.0 presented by Jia et al (2011) we could achieve
a speed-up of up to 1.95× for a comparable IMRT H&N case. This speed-up was measured on
a dose grid which comprises four times more voxels compared to the patient case tested on the
GPU. On CPUs a larger amount of memory is available. PhiMC exploits this fact and is able
to calculate dose on a full clinical resolution voxel grid (see table 2) while the resolution of
the GPU test cases in Jia et al (2011) is reduced by a factor of 2 in x- and y-direction, respec-
tively. Assuming a linear runtime scaling with the number of particle histories simulated, the

Figure 2.  Absolute simulation times with respect to the number of incident photons in
water on different machines. The number of cores used is stated behind the machine
specifier (e.g. 16C means that 16 cores have been used for the calculation). The relative
speed-up of the simulation is summarized in the bar chart at the top right corner of the
graph.

0

10

20

30

40

50

60

70

0 50 100 150 200 250

S
im

u
la

ti
o

n
 t

im
e

[s
]

Nr. of histories [106]

XeonV1 1C XeonV1 16C XeonV3 1C XeonV3 35C i7 4C

5

10

15

20

25

30

1.0

13.4

1.3

33.3

5.8

0.9

Relative performance scaling
DPM

XeonV1 1C

PMC

Table 2.  PhiMC runtimes and uncertainties acquired on realistic clinical cases using
the XeonV3 system.

Case No. of histories Size []voxel3 Resolution []mm3
σ D/ max

[%]
TPMC
[]s

IMRT prostate ⋅2.5 108 256 × 256 × 234 1.95 × 1.95 × 2.0 0.68 26.7

⋅1.0 108 256 × 256 × 234 1.95 × 1.95 × 2.0 1.06 10.8

IMRT HN ⋅2.5 108 × ×256 256 116 × ×1.56 1.56 3.0 0.55 18.8

⋅1.0 108 × ×256 256 116 × ×1.56 1.56 3.0 0.89 8.2

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

6107

speed-up of PhiMC is 1.26× and 1.31× for the lung phantom and bone phantom, respectively.
The average relative uncertainties produced by gDPM and PhiMC are comparable.

The performance evaluation across different platforms (figure 2) shows that PhiMC is able
to achieve competitive runtimes on both server CPUs and low-cost desktop CPUs. The per-
formance scales well with the number of cores. This was expected since on CPU core-level
Monte Carlo simulations can be formulated as embarrassingly parallel problems. Please note
that on modern server CPUs one cannot expect an ideal linear scaling with the number of
cores, since the clock frequency of the processor is reduced due to a power management
scheme when multiple cores are in use. Thus for example a performance scaling of 13.4× on

Figure 3.  Comparison of the simulation results of PhiMC and DPM using the bone
phantom (a), (c), (e) and the lung phantom (b), (d), (f), 900 million photons have been
calculated for figures (a)–(d) while 9 million electrons have been calculated for the
comparison in (e), (f). An open field of ×10 10 cm was used in all cases. (a) 6 MV
photons bone phantom. (b) 6 MV photons lung phantom. (c) Depth dose 6 MV photons
bone phantom. (d) Depth dose 6 MV photons lung phantom. (e) Depth dose 20 MeV
electrons bone phantom. (f) Depth dose 20 MeV electrons lung phantom.

y-direction [cm]
6 8 10 12 14 16 18 20 22 24

z-
di

re
ct

io
n

[c
m

]

0

5

10

15

20

25

30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PMC

DPM

y-direction [cm]
6 8 10 12 14 16 18 20 22 24

z-
di

re
ct

io
n

[c
m

]

0

5

10

15

20

25

30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PMC

DPM

Depth [cm]
0 5 10 15 20 25 30

R
el

at
iv

e
do

se

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 PMC

DPM

Depth [cm]
0 5 10 15 20 25 30

R
el

at
iv

e
do

se

0.4

0.5

0.6

0.7

0.8

0.9

1 PMC

DPM

Depth [cm]
0 5 10 15 20 25 30

R
el

at
iv

e
do

se

0

0.2

0.4

0.6

0.8

1 PMC

DPM

Depth [cm]
0 5 10 15 20 25 30

R
el

at
iv

e
do

se

0

0.2

0.4

0.6

0.8

1 PMC

DPM

(a) (b)

(c) (d)

(e) (f)

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

6108

16 cores compared to single core execution (see figure 2) is an excellent result. PhiMC runs
efficiently on a variety of CPU architectures. The processor used in the test platform XeonV1
was introduced at the beginning of 2012 while the XeonV3 version will be released in the
near future. Compatibility over this almost three year span in technology is handled through
the use of OpenMP and Intel Cilk which abstract the actual hardware. With the parallel model
introduced in this paper we are confident that PhiMC can also exploit future CPU technolo-
gies efficiently.

Figure 2 also shows the performance of the original DPM implementation as it is openly
provided by the author (Sempau et al 2000)6. PhiMC shows a slightly better single-core

Figure 4.  MC simulation results for a nine beam IMRT prostate plan (a1)–(a3) and a
nine beam head&neck plan (b1)–(b3) using the PhiMC package. The PTV contours are
outlined on the transversal views. The colormap consists of 64 colors which are equally
distributed between 25% and 100% of the maximal dose.

6 http://inte.upc.edu/downloads.

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

http://inte.upc.edu/downloads

6109

performance which is probably due to the use of Intels MKL random number generator and
explicitly exploiting wide SIMD register via Intel Cilk. A larger performance gap was not
expected since DPM was compiled with the lates Intel Fortran compiler which automatically
generates optimized serial code for the XeonV1 server system. However the compiler can-
not automatically generate parallel code which exploits multiple CPU cores. That is why the
development of PhiMC was necessary in the first place.

The performance scaling of PhiMC on multiple CPU cores is limited by the dose data trans-
portation process. While the particle simulation itself runs independently on each arithmetic
unit in parallel, the deposited energy values have to be scored into a shared dose cube in main
memory sequentially. The available memory bandwidth is efficiently used in PhiMC through
the buffered write-back memory scheme we introduced in section 2.2.1. However with a ris-
ing number of CPU cores involved in the simulation the pressure on the memory bandwidth
increases. Although we do not observe a problem on current technologies (XeonV3) a potential
bottleneck could form for future technologies since commonly arithmetic performance increases
faster than memory bandwidth. To prevent this issue we are currently investigating the use of a
buffered hash table technique to reduce the number of energy deposition write back operations.

While the embarrassingly parallel character of the MC simulation leads to an excellent scal-
ing on the core level, the exploitation of the instruction level parallelism on SIMD registers
is quite poor. Here the CPU has the same problems as the GPU which uses the similar SIMT
technique. Due to the fact that MC simulations are of statistical nature and particles never fol-
low the same execution path, the SIMD respectively SIMT concept cannot be used efficiently
with the DPM physics model. This issue has also been reported for other GPU-based Monte
Carlo implementation (Hissoiny et al 2011, Jia et al 2011). Since the width of SIMT on GPUs
is larger than for SIMD on CPUs, the divergence problem is expected to be more severe on
GPUs. Unfortunately, the execution path divergence in Monte Carlo will become more signifi-
cant. Due to technical issues and power limitations it is expected that performance on future
(GPU and CPU) processors will increase by employing an even higher degree of data level par-
allelism. Therefore we think it is worthwhile to invest future research effort concerning Monte
Carlo into the field of variance reduction techniques in view of modern processor hardware.

5.  Conclusion

In this work we demonstrate that an optimized CPU-based MC-algorithm achieves a higher
performance compared to a well-known GPU-based implementations. Simulating the dose
distribution on clinical cases in full resolution can be done in less than a minute with an
accuracy of under 1%. Thus it is not mandatory to invest in a specialized Tesla GPU device to
enable fast, high quality MC dose calculations. Conventional single node workstations can be
utilized as well as they are already present in most clinics and research facilities. Furthermore,
it is not necessary to write program code in a hardware specific language (like CUDA). PhiMC
is written in C++   which can be maintained by most scientist and software developer. Another
advantage is that modern CPUs can employ up to several hundreds of GB of RAM while
GPUs are limited to only a few GB. This allows the CPU-based implementation to simulate
dose for very large clinical therapy plans and for smaller voxel sizes.

Acknowledgments

This research at The Institute of Cancer Research was supported by Cancer Research UK
under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Cen-
tre at The Royal Marsden and The Institute of Cancer Research.

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

6110

We would like to thank the Intel Corporation (UK) Ltd. for providing access to the E5-2699v3
pre-production system from their Swindon HPC lab.

References

Agostinelli S et al 2003 Geant4—a simulation toolkit Nucl. Instrum. Methods Phys. Res. 506 250–303
Altenstein G, Nill S, Heller J, Heid O and Oelfke U 2012 A novel 2d binary collimator for IMRT dose

delivery: dosimetric characterization using Monte Carlo simulations Phys. Med. Biol. 57 N345
Badal A and Badano A 2009 Accelerating Monte Carlo simulations of photon transport in a voxelized

geometry using a massively parallel graphics processing unit Med. Phys. 36 4878–80
Baro J, Sempau J, Fernández-Varea J and Salvat F 1995 Penelope: an algorithm for Monte Carlo

simulation of the penetration and energy loss of electrons and positrons in matter Nucl. Instrum.
Methods Phys. Res. 100 31–46

Bielajew A F, Hirayama H, Nelson W R and Rogers D W O 1994 History, overview and recent
improvements of EGS4 NRCC Report PIRS-0436 National Research Council, Ottawa, Canada

Buckley L A, Kawrakow I and Rogers D 2004 CSnrc: correlated sampling Monte Carlo calculations
using EGSnrc Med. Phys. 31 3425–35

Chetty I J, Charland P M, Tyagi N, McShan D L, Fraass B A and Bielajew A F 2003 Photon beam relative
dose validation of the DPM Monte Carlo code in lung-equivalent media Med. Phys. 30 563–73

Chetty I J, Moran J M, McShan D L, Fraass B A, Wilderman S J and Bielajew A F 2002 Benchmarking
of the dose planning method (DPM) Monte Carlo code using electron beams from a racetrack
microtron Med. Phys. 29 1035–41

Fippel M, Haryanto F, Dohm O, Nüsslin F and Kriesen S 2003 A virtual photon energy fluence model
for Monte Carlo dose calculation Med. Phys. 30 301–11

Goudsmit S and Saunderson J 1940 Multiple scattering of electrons Phys. Rev. 57 24
Hastings W K 1970 Monte Carlo sampling methods using Markov chains and their applications

Biometrika 57 97–109
Hirayama H, Namito Y, Bielajew A F, Wilderman S J and Nelson W R 2005 The EGS5 code system

Stanford Linear Accelerator Center Report SLAC-R-730
Hissoiny S, Ozell B, Bouchard H and Després P 2011 GPUMCD: a new GPU-oriented Monte Carlo

dose calculation platform Med. Phys. 38 754–64
Jahnke L, Fleckenstein J, Wenz F and Hesser J 2012 GMC: a GPU implementation of a Monte Carlo

dose calculation based on Geant4 Phys. Med. Biol. 57 1217
James F 1990 A review of pseudorandom number generators Comput. Phys. Commun. 60 329–44
Jia X, Gu X, Graves Y J, Folkerts M and Jiang S B 2011 GPU-based fast Monte Carlo simulation for

radiotherapy dose calculation Phys. Med. Biol. 56 7017
Jia X et al 2015 GPU technology is the hope for near real-time Monte Carlo dose calculations Med.

Phys. 42 1474–6
Kawrakow I and Fippel M 2000 Investigation of variance reduction techniques for Monte Carlo photon

dose calculation using XVMC Phys. Med. Biol. 45 2163
Kawrakow I 2000 Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc,

the new EGS4 version Med. Phys. 27 485–98
Kawrakow I 2001 Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and

Applications (Berlin: Springer) pp 229–36
Kendall M G and Smith B B 1938 Randomness and random sampling numbers J. R. Stat. Soc. 101 147–66
Lee V W et al 2010 Debunking the 100× GPU versus CPU myth: an evaluation of throughput computing

on CPU and GPU ACM SIGARCH Computer Architecture News 38 451–60
Matsumoto M and Nishimura T 1998 Dynamic creation of pseudorandom number generators Monte

Carlo and Quasi-Monte Carlo Methods 2000 56–69
Ma C, Li J, Pawlicki T, Jiang S, Deng J, Lee M, Koumrian T, Luxton M and Brain S 2002 A Monte Carlo

dose calculation tool for radiotherapy treatment planning Phys. Med. Biol. 47 1671
Nelson W R, Hirayama H and Rogers D W O 1985 The EGS4 code system Standard Linear Accelerator

Report 265
Pratx G and Xing L 2011 Monte Carlo simulation of photon migration in a cloud computing environment

with mapreduce J. Biomed. Opt. 16 125003–39
Rogers D W O, Ma C M, Ding G X, Walters B, Sheikh-Bagheri D and Zhang G G 2001 BEAMnrc users

manual NRC Report PIRS 509 (a) revF

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1088/0031-9155/57/19/N345
http://dx.doi.org/10.1088/0031-9155/57/19/N345
http://dx.doi.org/10.1118/1.3231824
http://dx.doi.org/10.1118/1.3231824
http://dx.doi.org/10.1118/1.3231824
http://dx.doi.org/10.1016/0168-583X(95)00349-5
http://dx.doi.org/10.1016/0168-583X(95)00349-5
http://dx.doi.org/10.1016/0168-583X(95)00349-5
http://dx.doi.org/10.1118/1.1813891
http://dx.doi.org/10.1118/1.1813891
http://dx.doi.org/10.1118/1.1813891
http://dx.doi.org/10.1118/1.1555671
http://dx.doi.org/10.1118/1.1555671
http://dx.doi.org/10.1118/1.1555671
http://dx.doi.org/10.1118/1.1481512
http://dx.doi.org/10.1118/1.1481512
http://dx.doi.org/10.1118/1.1481512
http://dx.doi.org/10.1118/1.1543152
http://dx.doi.org/10.1118/1.1543152
http://dx.doi.org/10.1118/1.1543152
http://dx.doi.org/10.1103/PhysRev.57.24
http://dx.doi.org/10.1103/PhysRev.57.24
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1118/1.3539725
http://dx.doi.org/10.1118/1.3539725
http://dx.doi.org/10.1118/1.3539725
http://dx.doi.org/10.1088/0031-9155/57/5/1217
http://dx.doi.org/10.1088/0031-9155/57/5/1217
http://dx.doi.org/10.1016/0010-4655(90)90032-V
http://dx.doi.org/10.1016/0010-4655(90)90032-V
http://dx.doi.org/10.1016/0010-4655(90)90032-V
http://dx.doi.org/10.1088/0031-9155/56/22/002
http://dx.doi.org/10.1088/0031-9155/56/22/002
http://dx.doi.org/10.1118/1.4903901
http://dx.doi.org/10.1118/1.4903901
http://dx.doi.org/10.1118/1.4903901
http://dx.doi.org/10.1088/0031-9155/45/8/308
http://dx.doi.org/10.1088/0031-9155/45/8/308
http://dx.doi.org/10.1118/1.598917
http://dx.doi.org/10.1118/1.598917
http://dx.doi.org/10.1118/1.598917
http://dx.doi.org/10.2307/2980655
http://dx.doi.org/10.2307/2980655
http://dx.doi.org/10.2307/2980655
http://dx.doi.org/10.1145/1816038.1816021
http://dx.doi.org/10.1145/1816038.1816021
http://dx.doi.org/10.1145/1816038.1816021
http://dx.doi.org/10.1088/0031-9155/47/10/305
http://dx.doi.org/10.1088/0031-9155/47/10/305
http://dx.doi.org/10.1117/1.3656964
http://dx.doi.org/10.1117/1.3656964
http://dx.doi.org/10.1117/1.3656964

6111

Salvat F, Fernandez-Varea J, Baro J and Sempau J 1996 Penelope, an algorithm and computer code for
Monte Carlo simulation of electron–photon showers Technical Report Centro de Investigaciones
Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)

Salvat F, Fernández-Varea J M, Acosta E and Sempau J 2001 Penelope, a code system for Monte
Carlo simulation of electron and photon transport Proc. Workshop/Training Course, OECD/NEA
(5–7 November 2001) NEA/NSC/DOC (2001) 19

Schuirmann D J 1987 A comparison of the two one-sided tests procedure and the power approach for
assessing the equivalence of average bioavailability J. Pharmacokinet. Biopharm. 15 657–80

Sempau J, Acosta E, Baro J, Fernández-Varea J and Salvat F 1997 An algorithm for Monte Carlo
simulation of coupled electron–photon transport Nucl. Instrum. Methods Phys. Res. 132 377–90

Sempau J, Wilderman S J and Bielajew A F 2000 DPM, a fast, accurate monte carlo code optimized for
photon and electron radiotherapy treatment planning dose calculations Phys. Med. Biol. 45 2263

Su L, Yang Y, Bednarz B, Sterpin E, Du X, Liu T, Ji W and Xu X G 2014 Archerrt—a GPU-based
and photon–electron coupled Monte Carlo dose computing engine for radiation therapy: software
development and application to helical tomotherapy Med. Phys. 41 071709

Tyagi N, Bose A and Chetty I J 2004 Implementation of the DPM Monte Carlo code on a parallel
architecture for treatment planning applications Med. Phys. 31 2721–5

Woodcock E, Murphy T, Hemmings P and Longworth S 1965 Techniques used in the gem code
for Monte Carlo neutronics calculations in reactors and other systems of complex geometry
Applications of Computing Methods to Reactor Problems: Argonne National Laboratories Report
ANL-7050 vol 557

Wulff J, Zink K and Kawrakow I 2008 Efficiency improvements for ion chamber calculations in high
energy photon beams Med. Phys. 35 1328–36

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097

http://dx.doi.org/10.1007/BF01068419
http://dx.doi.org/10.1007/BF01068419
http://dx.doi.org/10.1007/BF01068419
http://dx.doi.org/10.1016/S0168-583X(97)00414-X
http://dx.doi.org/10.1016/S0168-583X(97)00414-X
http://dx.doi.org/10.1016/S0168-583X(97)00414-X
http://dx.doi.org/10.1088/0031-9155/45/8/315
http://dx.doi.org/10.1088/0031-9155/45/8/315
http://dx.doi.org/10.1118/1.4884229
http://dx.doi.org/10.1118/1.4884229
http://dx.doi.org/10.1118/1.1786691
http://dx.doi.org/10.1118/1.1786691
http://dx.doi.org/10.1118/1.1786691
http://dx.doi.org/10.1118/1.2874554
http://dx.doi.org/10.1118/1.2874554
http://dx.doi.org/10.1118/1.2874554

