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Abstract
Monte-Carlo (MC) simulations are considered to be the most accurate method 
for calculating dose distributions in radiotherapy. Its clinical application, 
however, still is limited by the long runtimes conventional implementations 
of MC algorithms require to deliver sufficiently accurate results on high 
resolution imaging data. In order to overcome this obstacle we developed 
the software-package PhiMC, which is capable of computing precise dose 
distributions in a sub-minute time-frame by leveraging the potential of modern 
many- and multi-core CPU-based computers. PhiMC is based on the well 
verified dose planning method (DPM). We could demonstrate that PhiMC 
delivers dose distributions which are in excellent agreement to DPM. The 
multi-core implementation of PhiMC scales well between different computer 
architectures and achieves a speed-up of up to 37× compared to the original 
DPM code executed on a modern system. Furthermore, we could show 
that our CPU-based implementation on a modern workstation is between 
1.25× and 1.95× faster than a well-known GPU implementation of the same 
simulation method on a NVIDIA Tesla C2050. Since CPUs work on several 
hundreds of GB RAM the typical GPU memory limitation does not apply for 
our implementation and high resolution clinical plans can be calculated.

Keywords: Monte Carlo simulation, photon dose calculation, CPU, 
multi-core
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1.  Introduction

Monte Carlo simulation is considered to be the most accurate method to calculate dose dis-
tributions in radiotherapy (RT). It is based on explicitly simulating the trajectories and dose 
depositions of individual particles traversing a target by sampling interactions according to the 
fundamental laws of physics. This technique was applied in general purpose particle physics 
simulation software such as EGS4/5 (Nelson et al 1985, Bielajew et al 1994, Hirayama et al 
2005), EGNSnrc (Kawrakow 2000), PENELOPE (Baro et al 1995, Salvat et al 1996, Sempau 
et al 1997, Salvat et al 2001) and Geant4 (Agostinelli et al 2003).

Because of the stochastic nature of this approach, a large number of particles has to be sim-
ulated in order to obtain sufficiently accurate results. Combined with the high complexity of 
individual interaction sampling this results in immense computational effort, which still limits 
a comprehensive clinical application of this dose calculation method in radiotherapy treatment 
planning. Therefore, several authors extensively investigated different elaborate methods to 
reduce the simulation times of MC algorithms, e.g. by variance reduction techniques (VRT) 
(Kawrakow and Fippel 2000, Buckley et al 2004, Wulff et al 2008) and/or by optimizing par-
ticle transport mechanics in various implementations specifically designed for clinical dose 
calculation purposes, like VMC++   (Kawrakow 2001), MCDOSE/MCSIM (Ma et al 2002), 
DPM (Sempau et al 2000).

In order to achieve a high performance the Monte Carlo simulation needs to be imple-
mented in a parallel computing environment. Monte Carlo simulations are commonly clas-
sified as so called embarrassingly parallel problems. This means that only little or even no 
effort is required to separate the simulation process into parallel tasks which can be processed 
concurrently. The achievable speedup is then expected to scale linearly with the available 
number of processors. This has been shown for instance by Tyagi et al (2004) for a 32 proces-
sor computer cluster. An independent Monte Carlo simulation was launched on each computer 
producing an individual dose cube each which were merged after the simulation. The authors 
report an almost 32× speedup of the simulation as expected. A similar experiment was con-
ducted by Pratx and Xing (2011) in a cloud computing environment. Given that the simulation 
time is high compared to the setup time, an almost linear performance scaling of the Monte 
Carlo dose calculation can be observed. For distributed-memory computing architectures the 
parallelization is straight forward.

Since its availability for general computing, exploiting graphics processing units (GPU) 
has been very popular in medical physics to speed up computationally intensive tasks. GPUs 
rely on a massively parallel architecture providing thousands of arithmetic units which are 
able to work concurrently on shared data. A number of MC dose calculation algorithms have 
been designed for GPUs such as gDPM 2.0 (Jia et al 2011), CPUMCD (Hissoiny et al 2011), 
GMC (Jahnke et al 2012), ArchertRT (Su et al 2014) and accelerated algorithms by Badal and 
Badano (2009). Unfortunately, within the scope of one processor (one GPU) when resources 
are shared the simulation problem is no longer embarrassingly parallel and additional effort 
has to be put into the parallel model. On the GPU for example Hissoiny et al (2011) and 
Jia et al (2011) report that it is difficult to achieve high speed-up factors due to its single-
instruction multiple-thread (SIMT) architecture. SIMT dictates that all threads within a cer-
tain scheduling unit have to follow the same instruction path in order to be processed in 
parallel. If one particle is simulated by one thread this limitation conflicts with the stochastic 
nature of the Monte Carlo simulation. Another drawback of the GPU is that random accesses 
to the memory are time costly and the memory itself is limited to a few GB.

Despite these limitations authors report speed-up factors ranging from 27× (Badal and 
Badano 2009) to over 6000× (Jahnke et al 2012) of their GPU-based MC code compared to 
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algorithms tested on CPUs. These impressive speed-up factors suggest that GPUs in general 
are in the order of 100× or even 1000× faster than CPUs. However, these results have to be 
analyzed with care and in the right context. The reported speed-up factors have mostly been 
achieved by comparing a non-optimized, single-threaded implementation run on an out-dated 
CPU-system against a multi-threaded implementation on a modern professional GPU. A fair 
comparison between GPU and CPU results in a significant lower performance advantage (Jia 
2015). Studies carried out for a wide range of computational algorithms show that there is 
actually only about 2.5× performance advantage in favor of the graphic cards on average (Lee 
et al 2010). GPUs might have a significant advantage for throughput problems for instance 
in the field of image processing. However for the use in radiotherapy we often find that the 
performance of GPUs is overrated.

In this paper we introduce PhiMC, a Monte Carlo simulation package which is optimized 
for modern multi-/many-core CPU-based shared memory systems. PhiMC relies on the physi-
cal model implemented in DPM (Sempau et al 2000) for non-parallel processors and adapts 
it for modern parallel architectures. Please note that our work is completely different from 
Tyagi et al (2004). While Tyagi et al (2004) uses the original sequential DPM code pack-
age and applies it to a distributed cluster environment on several computer nodes, PhiMC 
re-implements and optimizes the simulation physics for parallel execution within only one 
shared memory node. Thus, high performance is achieved on a single server or even desktop 
computer.

2.  Materials and methods

2.1.  DPM physics

The DPM MC-algorithm is a powerful sequential dose calculation MC-algorithm specifi-
cally designed and optimized for simulating the transport of electrons and photons through 
a heterogeneous medium for radiotherapy class problems. For both particle types it employs 
transport processes which permit long, heterogeneity boundary crossing simulation steps; 
photons are simulated by applying the Woodcock δ-scattering technique (Woodcock et al 
1965) whereas electrons are transported using a mixed class simulation scheme. The latter 
method combines explicit sampling of hard inelastic interactions, such as Møller scattering 
and bremsstrahlung, with a condensed history approach. Interactions causing a severe energy 
loss of the primary electron are simulated using the random hinge technique as implemented 
by Sempau et al (2000). Small deflections are accumulated according to the multiple-scat-
tering theory proposed by Goudsmit and Saunderson (1940). The energy losses due to latter 
interactions are accounted for by the continuous slowing down approximation. The transport 
of positrons is computed analogously to this of electrons with the difference that a positron 
annihilates with an electron of the medium and forms a back-to-back photon pair when it 
comes to rest. As shown by Chetty et al (2002) and (2003) the dose calculated by DPM 
agrees within (±2%/1–2 mm) of experimental measurements for both, therapeutic photon 
and electron beams.

DPM was optimized for a single thread execution on CPUs available at the late 90s. The 
high performance of this implementation was mainly achieved by employing a multiple scat-
tering method for electrons which permits long transport steps across heterogeneity bounda-
ries (Sempau et al 2000). Furthermore, a modified version of the RANECU random number 
generator implementation (James 1990) was used providing a period of ≈2 × 1018 on 32-bit 
machines.

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097
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2.2.  Multi- and many-core implementation

With PhiMC v1.0 we developed a software package specifically designed to deliver accurate 
high speed dose-calculation by utilizing the full parallel potential of modern multi core and 
many core CPUs. In order to achieve this our algorithm expands the physics and sequential 
methods used in the well verified DPM package by high performance implementations, which 
exploit multiple levels of parallelism modern CPUs offer: thread-level parallelism (TLP) and 
data-level parallelism (DLP). We take advantage of TLP by subdividing the total number of inci-
dent particles into bunches and distributing them among the available CPU cores. In principle 
each core is capable of simulating its own bunch of particles asynchronously and completely 
independent of the others; this is commonly referred to as embarrassingly parallel. However, 
due to the fact that during a simulation all cores need to access and alter data from the large 
common shared memory, which holds essential information about the voxel-grid, the challenge 
of orchestrating shared memory accesses arises. For this reason, we developed a sophisticated 
memory scheme (section 2.2.1), which on the one hand schedules and pipelines reading from 
and writing to the shared memory and optimizes the access times of frequently used data stored 
in CPU caches on the other hand. In order to leverage the DLP, which technically is realized 
by a single instruction multiple data (SIMD) architecture inside the processing unit of a CPU 
core, we vectorized the instructions in the actual simulation process (section 2.2.2) where ever 
possible. In contrast to most GPU-based MC-implementations, PhiMC consequently operates 
on double precision data for the simulation itself as well as for storing the dose distribution.

2.2.1.  MC memory-scheme.  The right hand side of figure 1 illustrates the way PhiMC allo-
cates and accesses memory. Basically, the data required for simulating particle histories is 
divided into two classes: on the one hand a large set of voxel-grid data containing information 
about the density, material and deposited dose of each voxel. On the other hand much smaller 
data packages encompassing pre-calculated look-up tables for different particle and material 
types, current particle data as well as temporary simulation data and buffered dose values.The 
latter (smaller) type of data is kept individually for every CPU core. This includes the data 
used for generating random numbers. Each core uses its own instance of the random number 
generator (RNG) that is initialized with an individual seed. The period length of the RNG used 
for PhiMC (see section 2.3.1) is multiple orders of magnitude larger than the amount of ran-
dom numbers generated for a simulation. This prevents correlations between the concurrently 
running Monte Carlo threads on each core.

Because of its enormous size, the voxel-grid data is stored in a shared address space, located 
on the random access memory (RAM) of the system, which can hold up to several hundreds 
of giga-bytes of data. In PhiMC we put special emphasis on orchestrating and optimizing the 
data transfer between shared memory and the individual CPU cores. The fact that writing to 
the shared memory is only possible sequentially is the sole limiting factor of TLP. This is 
particular important for the process of adding dose to the voxel-grid stored in shared memory. 
The multi-core implemenation of PhiMC has to guarantee that only one thread at a time can 
write to the same grid location. Therefore, we implemented an intelligent memory manager 
which buffers calculated dose values and pipelines back-writing to shared memory as efficient 
as possible by preventing race conditions and idling times: When the buffer reaches a certain 
filling level the corresponding thread liaises with other threads in the system to negotiate a 
time slot for the write-back operation. During this time slot access to the shared dose cube is 
denied for all other threads.

PhiMC is designed in a way, that small packages of data, which are frequently read, cre-
ated or altered, are stored separately in the cache of each processor core. Even if this leads to 
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slight data redundancies, it ensures minimal access times as well as that all cores can simulate 
particle histories completely asynchronously.

2.2.2. The simulation process.  After PhiMC has set up the memory structure as explained 
above and a simulation unit on every available core, it generates incident particles according 
to the applied source model (section 2.3.3). The particles are combined in batches fitting in 
the cache of a CPU core and equally distributed among the available simulation units. On the 
left side of figure 1 the simulation process of PhiMC is illustrated. In PhiMC we employ a 
ping–pong approach for the simulation of particles. For the simulation of photons, first, the 
vector of incident photons is transferred to the photon simulation interface, which propagates 
them through the medium by executing vectorized simulation steps until all photons either are 

Figure 1.  Simulation process (left) and memory model (right) as implemented in 
PhiMC. The simulation unit simulates the transport of photons and electrons separately 
whereas the data scheme ensures that each core holds its own set of frequently used 
data as closely as possible to the processing unit and orchestrates their access to their 
shared memory.

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097
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absorbed or have left the phantom. Secondary photons, which are created during this simula-
tion loop are stored temporarily and copied back to the initial input vector after the simulation 
of the primary particles is completed (I). This procedure is repeated until no new photons are 
created during a simulation loop. Second, all electrons generated during this process are added 
to the main electron vector and computed analogously directly thereafter by the electron simu-
lation interface (II). In the third step all secondary photons created during the simulation of the 
electron vector are passed to the photon simulation interface again (III). This process contin-
ues until all particles have been absorbed or have left the target.

The ping–pong approach for the simulation of particles as shown in figure 1 is similar to 
the approach introduced for the GPU-based implementations in Jia et al (2011). The goal is 
the same for both platforms: to process only one type of particle at the same time. However the 
effect is different. On the GPU this leads to a reduction in thread divergence which improves 
parallelism. On the CPU the ping–pong approach leads to an efficient use of cache memory 
which improves the bandwidth of the system.

2.3. The PhiMC framework

In order to ensure that the simulation algorithm scales well on different CPU-types and future 
processor architectures, PhiMC is implemented with no dependency on the employed operat-
ing system and hardware. This is achieved by including pervasive state-of-the-art libraries. 
Due to its modular multi-layer structure, all proprietary parts of PhiMCs’ simulation unit can 
be substituted by other libraries and application programming interfaces (API) without much 
effort. Some of the key modules are described briefly in the following.

2.3.1.  Random number generation.  The backbone of every MC simulation is the optimal 
choice of the underlying Random Number Generator. In the case of PhiMC the RNG not only 
has to pass statistical test for randomness (Kendall and Smith 1938) but also be exceptionally 
fast. Recently released hardware based true random number generators (TRNG)1 are too slow 
to fulfill our requirements. Instead, we included the high-performance Intel MKL2 implemen-
tation of the widely used mersenne twister pseudo random number generator (PRNG) which 
was proposed by Matsumoto and Nishimura (1998). This RNG has a period length equal 
to 219937  −  1 which is significantly better compared to the RNG used in the original DPM  
(≈2 × 1018) and gDPM (2192) on GPUs. In order to fully exploit the potential of the hardware 
accelerated parallel capabilities of this implementation and to minimize the functions over-
head, we generate arrays of random numbers ∈ ( )x 0, 1  instead of only one random number 
at a time. When the simulation module requests a random number, a value is taken from that 
pre-generated array rather then being calculated on the fly. When the last random number is 
used up, the array is re-populated using the hardware accelerated parallel implementation.

2.3.2. TPL and DLP realization.  PhiMC uses open multi-processing (OpenMP), an API that 
provides shared memory multi-processing functionality, to distribute the individual history 
simulations among the available CPU-cores and control their shared memory access. OpenMP 
is supported by almost all compiler and operating systems. In order to leverage the SIMD 
potential of modern CPUs, PhiMC performs vectorized operations where ever possible. On 

1 https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-
guide. 

2 https://software.intel.com/en-us/intel-mkl. 
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that account our algorithm uses the C/C++ extension kit Intel Cilk Plus. Although it also sup-
ports multi-core parallelism, in PhiMC Intel Cilk is only used as a DLP catalyst.

2.3.3.  Source and patient modeling.  A simple source model was implemented in PhiMC to 
test the simulation algorithm. A finite radiation source was modeled according to the method 
provided by Altenstein et al (2012) which is based on Fippel et al (2003). The interpretation 
of the CT-data was taken from the BEAMnrc implementation (Rogers et al 2001): The houn-
sfield units (HU)-range is divided into four major types of tissue (air, lung tissue, soft tissue 
and bone) while the density in each voxel is linearly interpolated within the tissue classes. 
In order to calculate intensity modulated radiotherapy (IMRT) plans, particles are generated 
according to beam fluence maps. We implemented the same Metropolis sampling algorithm 
using Markov chains (Hastings 1970) which was also used in Jia et al (2011) for gDPM 2.0. 
This sampling method is not only well suited for GPUs but also efficient on modern CPUs. 
All of these models have been implemented to be easily exchangeable against more accurate 
implementations in the future. The discussion of more sophisticated source and patient models 
is beyond the scope of this paper.

2.4. Test cases and performance metric

The dose value D of each voxel computed in a full MC simulation with a sufficiently large 
number of simulated particles is a statistical quantity, which, according to the central limit the-
orem (CLT), is distributed normally with the standard deviation σ. To ensure that the require-
ments of the CLT are met, in the following, we only analyze voxels whose dose value exceeds 
50% of the maximum dose value of the whole phantom. The uncertainty of the dose distribu-
tion is expressed using the mean relative error σ D/ max  defined as:

σ =
∑ [ − ]

( )
D

d d

D N N
/

/
N i i i

max

1 2 2

max 0
2

50

0� (1)

with N0 being the total number of histories simulated, N50 the number of dose entries which 
exceed 50% of the maximum dose Dmax and di  is the dose value in voxel i. Please note that 
the relative uncertainties are defined using the maximum dose of the plan instead of the actual 
dose of the voxel in question. This definition underestimates the mean uncertainties of the 
dose distribution but it allows for a direct performance comparison to other publications (e.g. 
Jia et al (2011)).

In order to prove that the results calculated by PhiMC are equivalent to those computed by 
the reference algorithm DPM, we apply the two one-sided test (TOST) procedure as proposed 
by Schuirmann (1987). A standard two tailed t-test is incapable of ascertaining statistical 
similarity, since not neglecting the null hypothesis of indifference does in general not imply 
statistically secured similarity. The TOST solves this issue by replacing the null hypothesis 
H0 of indifference with an interval hypothesis of non-equivalence within the boundaries θ θ,u l:

θ θ: − ⩽ − ⩾H D D D Dort r l t r u0� (2)

θ θ: < − <H D D ,l t r u1� (3)

where Dt and Dr denote the dose of the considered voxel as calculated by PhiMC and DPM, 
respectively. Therefore, neglecting the interval hypotheses is a direct proof that the results of 
both algorithms lie within the equivalence interval θ θ[ ],l u .
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In this test, we ran n   =   m   =   40 simulations with both algorithms, our PhiMC and the 
original DPM implementation in Fortran ‘as–is’. In each run we simulated a sufficient 
amount of incident particles, so that the mean relative error σ D/ max  of all voxels with a dose 
higher than 20% of the max dose Dmax lies well below 1% in each simulation for all tested 
phantoms. We then calculated the mean dose values Dt  and Dr  of each voxel as well as 

= ∑ ( − )s D Dt r t r
i

t r, , ,
2 in order to calculate the corresponding tl,u-values:

θ=
+

+ −
+

( − − )t
nm

n m

n m

s s
D D

2
l u

t r
t r l u, ,� (4)

As stated by Schuirmann (1987) the doses of a single voxel as calculated by both algorithms 
are equivalent with a confidence of 90% if both one-handed parts of the interval hypotheses can 
be neglected with a significance level of α = 0.05, i.e. if > α− + −t tl n m1 , 2 and < − α− + −t tu n m1 , 2. In 
order to accumulate the results of this quantitative analyses for all considered voxels, the pass-
ing rates P, i.e. the number of voxels for which the hypotheses were neglected divided by the 
total number of considered voxels, is calculated for all discussed phantoms and source types.

Runtime and accuracy of PhiMC was tested against a selection of phantoms and two clini-
cal cases. The phantoms have been chosen to match commonly investigated geometries in 
other high ranked Monte Carlo studies. All phantoms consist of × ×61 61 150 voxel with 
a voxel size of × ×0.5 0.5 0.2 cm3. We used a water phantom, a bone phantom and a lung 
phantom. The bone- and lung phantom consist of a water box with a layer of the respective 
material ranging from z   =   5 cm to z   =   10 cm. The material is isotropic in x- and y-direction 
for all phantoms. The resolution and size of the clinical cases is given in table 2. Both patients 
have been planned based on a pencil-beam pre-calculated dose data set.

In order to investigate the performance and scalability of our PhiMC implementation the 
performance has been tested on several commonly available CPU-based systems: Two single 
node workstation systems XeonV13 and XeonV34 and one low-cost desktop system which 
will be denoted as i75.

3.  Results

3.1.  PMC accuracy

Table 1 shows the results of the TOST comparison between our newly developed PhiMC and 
the original reference algorithm DPM. Tests have been carried out for electrons and photons. 
The number of simulated primary particles is chosen high to eliminate statistical variation as 
far as possible. The TOST passing rate for using electrons is found to be 100% for all three 
phantom studies while the mean relative statistical uncertainty is below 0.5%. Using photons 
the ratio of equivalent voxel pairs passing the test exceeds 99.5% for all phantom geometries. 
According to the TOST procedure PhiMC is in excellent agreement with DPM. Comparative 
iso-dose plots and integrated depth dose curves shown in figure 3 support this finding.

3.2.  Simulation speed and runtime scaling

PhiMC was explicitly designed to deliver high performance on modern CPU-based systems. 
Thus extensive runtime and scaling studies have been conducted to demonstrate the perfor-
mance of our algorithm.

3 2 × Intel Xeon E5-2650 8 Core—2.00 GHz. 
4 2 × Intel Xeon E5-2699 v3 18 Core—2.3 GHz (C1 Pre-Production Processors). 
5 Intel i7-4770 4 Core—3.4 GHz. 

P Ziegenhein et alPhys. Med. Biol. 60 (2015) 6097
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Figure 2 summarizes the runtimes of calculating dose in water on different CPU-based 
systems depending on the number of photon histories. The graph reveals two important find-
ings: First, the simulation time scales linearly with the number of particles on all systems. 
Although it is not shown explicitly, the same holds true for the simulation of electron histories. 
Second, the runtime scales very well with the number of available cores of a CPU system and 
with advancing processor technology. For example simulating 100 million photon histories 
on the XeonV1 system takes about 174.7 s using a single CPU core. Using all available cores 
results in a runtime of 12.9 s which is about 13.4× faster. The PhiMC implementation also per-
forms well on common desktop CPUs: The low-cost desktop i7 system is approximately 5.8× 
faster than a single core simulation on a professional XeonV1 server. The fastest execution 
times have been measured on the XeonV3 system. It provides runtimes which are up to 33.3× 
faster compared to the XeonV1 system. Simulating 250 million photon histories in the water 
phantom can be completed within 13.1 s. The respective simulation runtimes for 250 million 
histories using the bone and lung phantoms can be extrapolated from the runtimes shown in 
table 1 due to the linear scaling behavior of the simulation. Figure 2 also shows the simulation 
runtime of the original DPM code executed on the XeonV1 system. Naturally DPM is only 
tested on a single core since it is not capable of exploiting a multi-core CPU architecture.

Table 2 shows the performance of PhiMC on an IMRT prostate case and on an IMRT 
head and neck case. The runtimes include the generation of the 250 million particle histories 
according to the method described in section 2.3.3. The voxel resolution is of clinical qual-
ity while the number of histories has been chosen to keep the average relative uncertainty 
well below 1%. Figure 4 shows the resulting dose distribution of both clinical cases. Dose is 
reported as dose to water.

4.  Discussion and outlook

In this work we demonstrate that high-quality Monte Carlo simulations for advanced, clini-
cal RT can be performed on CPU-based systems in less than a minute. Our newly developed 
framework PhiMC implements the physical models originally used in DPM which have been 
proven to be accurate (Chetty et al 2002, 2003). Using the statistical Two One-Sided Test 
procedure we validated that dose distributions calculated by PhiMC and DPM are in excellent 
agreement.

The performance of PhiMC was investigated on several phantom cases and two typical clin-
ical patient cases. The number of histories was chosen to be comparable to other high-ranked 

Table 1.  Comparison of PhiMC and DPM.

Source
No. of 
histories Phantom

σ D/ max  
DPM [%]

σ D/ max  
PhiMC [%] P [%]

T PhiMC 
[ ]s

20 MeV e ⋅9 106 H O2 0.49 0.48 100.0 7.2

MeV e ⋅9 106 H O2 -Bone-H O2 0.32 0.31 100.0 8.4

MeV e ⋅9 106 H O2 -Lung-H O2 0.50 0.49 100.0 8.4

MV γ ⋅9 108 H O2 0.47 0.47 99.7 47.3

MV γ ⋅9 108 H O2 -Bone-H O2 0.41 0.41 99.7 58.8

MV γ ⋅9 108 H O2 -Lung-H O2 0.46 0.45 99.6 44.7

Note: The dose of three phantom cases has been compared for electrons and photons using the 
two one-sided test (TOST). Relative mean uncertainty and runtimes on the XeonV3 system are 
also shown.
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publications. The dose of the optimized prostate case could be simulated in 26.7 s while the 
simulation of the H&N case took only 18.8 s due to the smaller anatomical volume. Compared 
to the GPU-based implementation of gDPM 2.0 presented by Jia et al (2011) we could achieve 
a speed-up of up to 1.95× for a comparable IMRT H&N case. This speed-up was measured on 
a dose grid which comprises four times more voxels compared to the patient case tested on the 
GPU. On CPUs a larger amount of memory is available. PhiMC exploits this fact and is able 
to calculate dose on a full clinical resolution voxel grid (see table 2) while the resolution of 
the GPU test cases in Jia et al (2011) is reduced by a factor of 2 in x- and y-direction, respec-
tively. Assuming a linear runtime scaling with the number of particle histories simulated, the 

Figure 2.  Absolute simulation times with respect to the number of incident photons in 
water on different machines. The number of cores used is stated behind the machine 
specifier (e.g. 16C means that 16 cores have been used for the calculation). The relative 
speed-up of the simulation is summarized in the bar chart at the top right corner of the 
graph.
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Table 2.  PhiMC runtimes and uncertainties acquired on realistic clinical cases using 
the XeonV3 system.

Case No. of histories Size [ ]voxel3 Resolution [ ]mm3
σ D/ max  

[%]
TPMC 
[ ]s

IMRT prostate ⋅2.5 108 256 × 256 × 234 1.95 × 1.95 × 2.0 0.68 26.7

⋅1.0 108 256 × 256 × 234 1.95 × 1.95 × 2.0 1.06 10.8

IMRT HN ⋅2.5 108 × ×256 256 116 × ×1.56 1.56 3.0 0.55 18.8

⋅1.0 108 × ×256 256 116 × ×1.56 1.56 3.0 0.89 8.2
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speed-up of PhiMC is 1.26× and 1.31× for the lung phantom and bone phantom, respectively. 
The average relative uncertainties produced by gDPM and PhiMC are comparable.

The performance evaluation across different platforms (figure 2) shows that PhiMC is able 
to achieve competitive runtimes on both server CPUs and low-cost desktop CPUs. The per-
formance scales well with the number of cores. This was expected since on CPU core-level 
Monte Carlo simulations can be formulated as embarrassingly parallel problems. Please note 
that on modern server CPUs one cannot expect an ideal linear scaling with the number of 
cores, since the clock frequency of the processor is reduced due to a power management 
scheme when multiple cores are in use. Thus for example a performance scaling of 13.4× on 

Figure 3.  Comparison of the simulation results of PhiMC and DPM using the bone 
phantom (a), (c), (e) and the lung phantom (b), (d), (f), 900 million photons have been 
calculated for figures  (a)–(d) while 9 million electrons have been calculated for the 
comparison in (e), (f). An open field of ×10 10 cm was used in all cases. (a) 6 MV 
photons bone phantom. (b) 6 MV photons lung phantom. (c) Depth dose 6 MV photons 
bone phantom. (d) Depth dose 6 MV photons lung phantom. (e) Depth dose 20 MeV 
electrons bone phantom. (f) Depth dose 20 MeV electrons lung phantom.
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16 cores compared to single core execution (see figure 2) is an excellent result. PhiMC runs 
efficiently on a variety of CPU architectures. The processor used in the test platform XeonV1 
was introduced at the beginning of 2012 while the XeonV3 version will be released in the 
near future. Compatibility over this almost three year span in technology is handled through 
the use of OpenMP and Intel Cilk which abstract the actual hardware. With the parallel model 
introduced in this paper we are confident that PhiMC can also exploit future CPU technolo-
gies efficiently.

Figure 2 also shows the performance of the original DPM implementation as it is openly 
provided by the author (Sempau et al 2000)6. PhiMC shows a slightly better single-core 

Figure 4.  MC simulation results for a nine beam IMRT prostate plan (a1)–(a3) and a 
nine beam head&neck plan (b1)–(b3) using the PhiMC package. The PTV contours are 
outlined on the transversal views. The colormap consists of 64 colors which are equally 
distributed between 25% and 100% of the maximal dose.

6 http://inte.upc.edu/downloads.
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performance which is probably due to the use of Intels MKL random number generator and 
explicitly exploiting wide SIMD register via Intel Cilk. A larger performance gap was not 
expected since DPM was compiled with the lates Intel Fortran compiler which automatically 
generates optimized serial code for the XeonV1 server system. However the compiler can-
not automatically generate parallel code which exploits multiple CPU cores. That is why the 
development of PhiMC was necessary in the first place.

The performance scaling of PhiMC on multiple CPU cores is limited by the dose data trans-
portation process. While the particle simulation itself runs independently on each arithmetic 
unit in parallel, the deposited energy values have to be scored into a shared dose cube in main 
memory sequentially. The available memory bandwidth is efficiently used in PhiMC through 
the buffered write-back memory scheme we introduced in section 2.2.1. However with a ris-
ing number of CPU cores involved in the simulation the pressure on the memory bandwidth 
increases. Although we do not observe a problem on current technologies (XeonV3) a potential 
bottleneck could form for future technologies since commonly arithmetic performance increases 
faster than memory bandwidth. To prevent this issue we are currently investigating the use of a 
buffered hash table technique to reduce the number of energy deposition write back operations.

While the embarrassingly parallel character of the MC simulation leads to an excellent scal-
ing on the core level, the exploitation of the instruction level parallelism on SIMD registers 
is quite poor. Here the CPU has the same problems as the GPU which uses the similar SIMT 
technique. Due to the fact that MC simulations are of statistical nature and particles never fol-
low the same execution path, the SIMD respectively SIMT concept cannot be used efficiently 
with the DPM physics model. This issue has also been reported for other GPU-based Monte 
Carlo implementation (Hissoiny et al 2011, Jia et al 2011). Since the width of SIMT on GPUs 
is larger than for SIMD on CPUs, the divergence problem is expected to be more severe on 
GPUs. Unfortunately, the execution path divergence in Monte Carlo will become more signifi-
cant. Due to technical issues and power limitations it is expected that performance on future 
(GPU and CPU) processors will increase by employing an even higher degree of data level par-
allelism. Therefore we think it is worthwhile to invest future research effort concerning Monte 
Carlo into the field of variance reduction techniques in view of modern processor hardware.

5.  Conclusion

In this work we demonstrate that an optimized CPU-based MC-algorithm achieves a higher 
performance compared to a well-known GPU-based implementations. Simulating the dose 
distribution on clinical cases in full resolution can be done in less than a minute with an 
accuracy of under 1%. Thus it is not mandatory to invest in a specialized Tesla GPU device to 
enable fast, high quality MC dose calculations. Conventional single node workstations can be 
utilized as well as they are already present in most clinics and research facilities. Furthermore, 
it is not necessary to write program code in a hardware specific language (like CUDA). PhiMC 
is written in C++   which can be maintained by most scientist and software developer. Another 
advantage is that modern CPUs can employ up to several hundreds of GB of RAM while 
GPUs are limited to only a few GB. This allows the CPU-based implementation to simulate 
dose for very large clinical therapy plans and for smaller voxel sizes.
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