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Abstract

The HSP90 molecular chaperone plays a key role in the maturation, stability and activation of its 

clients, including many oncogenic proteins. Kinases are a substantial and important subset of 

clients requiring the key cochaperone CDC37. We sought an improved understanding of protein 

kinase chaperoning by CDC37 in cancer cells. CDC37 overexpression in human colon cancer cells 

increased CDK4 protein levels, which was negated upon CDC37 knockdown. Overexpressing 

CDC37 increased CDK4 protein half-life and enhanced binding of HSP90 to CDK4, consistent 

with CDC37 promoting kinase loading onto chaperone complexes. Against expectation, 

expression of C-terminus truncated CDC37 (ΔC-CDC37) that lacks HSP90 binding capacity did 

not affect kinase client expression or activity; moreover, as with wildtype CDC37 overexpression, 

it augmented CDK4-HSP90 complex formation. However, although truncation blocked binding to 

HSP90 in cells, ΔC-CDC37 also showed diminished client protein binding and was relatively 

unstable. CDC37 mutants with single and double point mutations at residues M164 and L205 

showed greatly reduced binding to HSP90, but retained association with client kinases. 

Surprisingly, these mutants phenocopied wildtype CDC37 overexpression by increasing CDK4-

HSP90 association and CDK4 protein levels in cells. Furthermore, expression of the mutants was 

sufficient to protect kinase clients CDK4, CDK6, CRAF and ERBB2 from depletion induced by 

silencing endogenous CDC37, indicating that CDC37’s client stabilising function cannot be 

inactivated by substantially reducing its direct interaction with HSP90. However, CDC37 could 

not compensate for loss of HSP90 function, showing that CDC37 and HSP90 have their own 

distinct and non-redundant roles in maintaining kinase clients. Our data substantiate the important 

function of CDC37 in chaperoning protein kinases. Furthermore, we demonstrate that CDC37 can 

stabilise kinase clients by a mechanism that is not dependent on a substantial direct interaction 
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between CDC37 and HSP90, but nevertheless requires HSP90 activity. These results have 

significant implications for therapeutic targeting of CDC37.

Keywords

CDC37; HSP90; client; kinase; chaperone

Introduction

Client protein chaperoning by HSP90 requires a specialised cohort of cochaperones (1). 

Through the formation of transient complexes, these cochaperones participate in progression 

of the ATP-dependent chaperone cycle and maturation of client proteins to enable their 

eventual functional activities (2). CDC37 acts predominantly as a kinase-specific 

cochaperone. The yeast CDC37 homologue is essential for viability (3) and is estimated to 

regulate three quarters of the kinome (4). Similarly in mammalian cells, CDC37 interacts 

with a large proportion of kinases (5) and in concert with HSP90 directs the maturation of 

numerous oncogenic clients (6-12). Although the precise mechanisms by which CDC37 

facilitates the actions of HSP90 are not fully understood, it has been proposed that 

association of CDC37 with the N-terminus of HSP90 blocks its ATPase activity and helps 

kinase client loading before progression of the chaperone cycle (2;13;14).

CDC37 may also have the capacity to promote maturation of kinase clients independent 

from HSP90 (15;16). In Saccharomyces cerevisiae, the kinase-binding domain of Cdc37 

alone stabilised v-Src to some degree, indicating that it may function without direct HSP90 

interaction, albeit less efficiently (17). Similar truncated Cdc37 mutants were also sufficient 

to maintain the viability of Schizosaccharomyces pombe (18). The mechanism of this 

seemingly HSP90-independent activity is unknown and it is uncertain whether it is 

conserved in human CDC37. Against this notion is that C-terminally truncated mammalian 

CDC37 mutants deficient in binding to HSP90 were reported to reduce client activity (7;19) 

and decreased the expression of CRAF and CDK4 in normal prostate cells (20).

CDC37’s ability to regulate the chaperoning of several clients that promote cell cycle 

progression and survival suggests that it may be particularly important in cancer cells 

(21;22). In support of this, transgenic mice overexpressing CDC37 show an increased 

incidence of tumours (23;24). Furthermore, CDC37 may contribute towards the initiation of 

prostate cancer (24). We have previously shown that CDC37 knockdown causes depletion of 

kinase client proteins as well as growth inhibition in several cancer cell lines (25). Similarly, 

CDC37 silencing in prostate cancer cells reduced signaling through clients and induced 

growth arrest (26). Therefore, targeting CDC37 could represent a strategy for disrupting 

multiple kinase-dependent oncogenic signaling pathways that sustain malignancy (27;28).

Here we set out to understand further the functional role of CDC37 in human cancer cells. 

Complementing our previous knockdown approach (25), CDC37 overexpression was used 

to explore the extent to which selected protein kinase clients were dependent on CDC37 

levels for their chaperoning. Furthermore, by investigating the effects of CDC37 mutants 

that disrupt the interaction with HSP90, we demonstrate that CDK4 protein stability is 
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particularly dependent on the level of CDC37 but that substantial direct interaction of 

CDC37 with HSP90 is not required for efficient chaperoning of kinase clients. These results 

help to distinguish between the functions of CDC37 and HSP90, and have significant 

mechanistic and therapeutic implications.

Results

CDC37 overexpression increases cellular levels of client CDK4

To complement our previous CDC37 knockdown studies in HCT116 and HT29 colon 

cancer cells (25), we generated isogenic cell lines stably overexpressing CDC37 (Figure 1a). 

Two clones were chosen from each cell line, which expressed at least 8-fold (by 

densitometry of western blots; Supplementary Figure S1) more CDC37 compared to 

parental and empty vector-transfected cells (Figure 1a). The exogenous CDC37 was 

phosphorylated at Ser13 (Figure 1a, quantified in Supplementary Figure S2) and therefore 

activated (29). Although our siRNA silencing studies showed that CDC37 is required to 

maintain expression of these kinase clients (25), CDC37 overexpression did not affect 

cellular CRAF, AKT or phosphorylated AKT protein levels (Figure 1b, quantified in Figure 

1c). However, significant elevation of CDK4 protein was observed in all HCT116 and HT29 

clones that overexpressed CDC37 (Figure 1b, quantified in Figure 1c). In CDC37-

overexpressing clone C1, CDK4 levels were reduced to basal levels by silencing CDC37 

(siRNAs O3 and O4, Figure 1d). These data strongly suggested that constitutive CDC37 

levels are rate-limiting for the expression of CDK4, but not the other kinases studied.

Since HSP90 chaperoning aids the formation of active signaling-competent proteins (30), 

we next addressed whether increasing CDC37 levels promoted the signaling output from its 

clients. RAF kinase activity, measured by phosphorylated MEK1/2 and ERK1/2 levels, was 

unaltered in CDC37-overexpressing clones compared to empty vector controls (Figure 2a, 

quantified in Supplementary Figure S3). Despite elevated CDK4 expression, RB 

phosphorylation at S795 and S780 remained unchanged when CDC37 was overexpressed 

and Cyclin D1 expression was unaltered (Figure 2a). Since other factors may limit CDK4 

activity in intact cells, we performed a kinase assay with CDK4 immunoprecipitates to 

determine whether CDC37 overexpression increased intrinsic CDK4 activity. HCT116 and 

HT29 CDC37-overexpressing clones did not show different levels of RB phosphorylation 

activity compared to controls (Figure 2b). Therefore, although basal CDC37 levels were 

rate-limiting for CDK4 protein expression, they did not restrict the kinase activity of its 

clients.

CDC37 overexpression promotes CDK4 stabilisation

As elevated CDK4 levels in CDC37-overexpressing cells may be due to its increased 

stability, we assessed CDK4 protein half-life. CDC37-overexpressing clone C8 (HT29) 

showed a slower rate of CDK4 degradation following treatment with the protein synthesis 

inhibitor cycloheximide compared to the empty vector control (Figure 3a). Since CDK4 

stability is influenced by binding partners such as D Cyclins that have relatively short half-

lives (31), we also performed a pulse chase experiment to avoid potential artefacts resulting 
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from blocking protein synthesis. CDK4 half-lives were 3.3h in the empty vector clone, and 

9.7h in the CDC37-overexpressing clone (Figure 3b), an almost 3-fold increase.

To determine whether the dependence of CDK4 on CDC37 might be conserved with other 

close CDK family members, CDK6 was examined. CDK6 levels were unchanged in 

CDC37-overexpressing clones (Figure 3c). Consistent with this finding, CDK6 protein half-

life was similar in the empty vector control and CDC37-overexpressing clone (4.4h 

compared with 5.6h, respectively; Figure 3d). Therefore, the dependence of CDK4 on 

CDC37 was not shared by CDK6.

CDC37 overexpression promotes CDK4 binding to HSP90

We hypothesised that the increased CDK4 stability in CDC37-overexpressing cells was due 

to enhanced binding to HSP90. By immunoprecipitation we showed that more CDK4 was 

associated with HSP90 in CDC37-overexpressing HCT116 and HT29 cells than in the 

empty vector clones (Figure 4a, quantified in Supplementary Figure S4a). Less HSP90 was 

immunoprecipitated with CDK4 in HT29 cells than HCT116 cells, which is most likely due 

to lower expression of HSP90 and CDC37 in this cell line as shown in Supplementary 

Figure S4b. Although undetectable in HT29 cells, the level of Cyclin D1 associated with 

CDK4 was unaltered in HCT116 cells (Figure 4a).

Further analysis of protein complexes by gel filtration indicated that in control cells, CDK4 

peaked in three main forms: ~44kd, ~440kd and large complexes of >640kd (Figure 4b, 

top). Cyclin D1 segregated into complexes of <440kd, whereas HSP90 and CDC37 were 

most abundant in complexes of ~640kd and ~440kd, respectively. Interestingly, CDC37-

overexpressing cells exhibited a different distribution of CDK4 whereby the kinase was 

mostly present in higher molecular weight complexes containing HSP90 and CDC37, 

whereas the fractions in which HSP90, CDC37 and Cyclin D1 were detected were 

comparable with the vector control (Figure 4b, bottom). These data are consistent with 

CDC37 promoting CDK4 recruitment to large HSP90 chaperone complexes.

ΔC-CDC37 blocks HSP90 binding but enhances CDK4-HSP90 association

Since our findings so far were indicative that CDC37 supports client protein stabilisation by 

promoting binding to chaperone complexes, we next hypothesized that this required 

interaction between CDC37 and HSP90. To test this hypothesis we expressed CDC37 

protein truncated after aa173 (ΔC-CDC37), thereby lacking the HSP90-interacting C-

terminal domain (14) and blocking binding to HSP90 (17). ΔC-CDC37 was detected in 

transfected HCT116 and HT29 clones, although at a lower level than the endogenous 

CDC37, and was phosphorylated at Ser13 (Figure 5a). Against expectation, expression 

levels of client proteins CDK4, CRAF, BRAF and AKT were unchanged in cells that 

expressed ΔC-CDC37 (Figure 5a, quantified in Supplementary Figure S5). Downstream 

signaling output from CDK4 and RAF clients, as determined by phosphorylated ERK and 

RB respectively, revealed no changes, nor was there any alteration in AKT phosphorylation 

(Figure 5b). Since the presence of endogenous CDC37 could mask the ΔC-CDC37 

phenotype, we utilised siRNAs that silenced either the endogenous CDC37 only (O4: Figure 

5c) or both forms (O3: Figure 5c). Knockdown of endogenous CDC37 when ΔC-CDC37 
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was expressed resulted in clients CDK4 and CRAF being partially depleted to the same 

extent as observed by knockdown of both endogenous and ΔC-CDC37 (Figure 5c). 

Therefore, ΔC-CDC37 failed to act as a dominant negative with respect to client 

stabilisation.

Gel filtration separation of protein complexes in HCT116 and HT29 clones indicated that 

ΔC-CDC37 was present in much smaller molecular weight complexes than endogenous 

CDC37 (Figure 6a). HSP90 was not detected in the same fractions as ΔC-CDC37, consistent 

with ΔC-CDC37 being impaired in binding HSP90. In contrast, some CDK4 was found in 

the same fractions as ΔC-CDC37, suggesting that they could coexist in a complex (Figure 

6a). Interestingly, both ΔC-CDC37-expressing clones exhibited a shift of endogenous 

CDC37 and CDK4 to larger complexes, possibly indicating an increase in HSP90-

endogenous CDC37-client complexes (Figure 6a). Supporting this, increased binding of 

CDK4 to HSP90 was confirmed by immunoprecipitation of CDK4 from ΔC-CDC37-

expressing clones (Figure 6b, c, quantified in Supplementary Figure S6). In HCT116 cells 

the increased binding of CDK4 to HSP90 was more apparent in clone T11 than T9, 

consistent with higher expression of ΔC-CDC37 in clone T11 than T9 (Figure 5a, b). 

Therefore, contrary to our original hypothesis that CDC37-HSP90 binding deficiency would 

compromise the chaperoning of clients, the formation of CDK4-HSP90 complexes was 

actually enhanced.

ΔC-CDC37 shows decreased binding to clients and reduced stability

As CDC37 forms functional dimers (13;14;32), we next questioned whether ΔC-CDC37 

heterodimerised with endogenous CDC37 in HCT116 cells, as this could afford an increased 

functionality to ΔC-CDC37. Following dual expression of HA- or FLAG-tagged CDC37 

and ΔC-CDC37, we looked for wildtype and truncated CDC37 in FLAG 

immunoprecipitates (Supplementary Figure S7a). No HA-ΔC-CDC37 was detected in a 

FLAG-CDC37 pulldown, nor was HA-CDC37 observed in a FLAG-ΔC-CDC37 pulldown, 

suggesting that ΔC-CDC37 does not dimerise with wildtype CDC37. Thus 

heterodimerisation is unlikely to be a complicating factor in assessing the ΔC-CDC37 

phenotype.

Next, to determine whether the C-terminal deletion affected client binding, we expressed 

FLAG-tagged CDC37 or ΔC-CDC37 and analysed FLAG immunoprecipitates. Firstly, we 

confirmed that ΔC-CDC37 did not associate with HSP90; however, increased binding to 

HSC70 (HSP70) was seen (Supplementary Figure S7b). Interestingly, much less CDK4 or 

CRAF were bound to FLAG-ΔC-CDC37 compared to FLAG-CDC37 (Supplementary 

Figure S7b). This finding may indicate that in the absence of a direct interaction with 

HSP90, CDC37 has a lower affinity for client proteins or that the C-terminus of CDC37 is 

involved in binding clients, as suggested by others (33).

Since removal of the C-terminus may influence the overall structure and/or stability of 

CDC37, we determined the half-life of ΔC-CDC37 using a post-cycloheximide time course. 

As shown in Supplementary Figure S7c, ΔC-CDC37 degraded rapidly in HCT116 and HT29 

cells and has a much shorter half-life than endogenous CDC37, consistent with lower 

expression levels of the mutant form (Figure 5a). Together with the decreased binding to 
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kinase clients, the instability of the C-terminal deletion mutant likely had detrimental effects 

in addition to the intended loss of HSP90 binding. Thus we subsequently sought additional, 

more specific mutants to model inhibition of CDC37-HSP90 association.

CDC37 point mutations reduce binding to HSP90

Appropriate mutations were chosen based on the structure of CDC37 in complex with 

HSP90. The electron microscopy-derived model of a CDC37-CDK4-HSP90 complex 

(Figure 7a) and CDC37-HSP90 X-ray crystal structure (Figure 7b) indicate how the N-

terminal domains of HSP90 dimers interact with the CDC37 C-terminal domain. Several 

critical residues are involved in a hydrophobic interaction: we chose to modify residues 

M164 and L205, which from a model of the CDC37-HSP90 interface (Figure 7c) were 

predicted to disrupt the protein-protein interaction without compromising the rest of the 

protein. Both residues were substituted with either alanine as a small residue, or arginine to 

introduce a positive charge, and the corresponding single and double mutants generated.

FLAG-tagged wildtype or mutant CDC37 constructs were transfected into HCT116 and 

HT29 colon cancer cells, giving higher expression than the endogenous CDC37 (HCT116 

shown in Figure 7d and 12-fold overexpression estimated for mutant M164A in 

Supplementary Figure S8). To determine how the mutations affected chaperone complexes, 

FLAG immunoprecipitates were analysed. As predicted, in both HCT116 and HT29 cells, 

less HSP90 associated with all the mutants compared to wildtype CDC37 (Figure 7e). Of 

note, quantitation indicated that M164R/L205R was partially effective at blocking HSP90 

association whilst mutants M164A and L205A disrupted the interaction by 94% and 90%, 

respectively (Figure 7f). As further confirmation, ITC measurements with purified 

recombinant proteins gave Kd values of 2.26μM and 7.19μM for the binding to HSP90β of 

FLAG-tagged wildtype and M164A, respectively, and the FLAG-CDC37 M164R/L205R 

double mutant showed no detectable binding. The differences in the binding observed for 

purified recombinant protein and intact cell settings could be due to effects of additional 

proteins in cellular chaperone complexes. However, the key point is that the CDC37 mutants 

were shown to exhibit reduced HSP90 binding in cells, which was substantial and almost 

complete in some cases.

As expected and in contrast to ΔC-CDC37 (Supplementary S7b), client proteins CDK4 and 

CDK6 associated with all of the CDC37 point mutants to the same extent as wildtype 

CDC37 in cells (Figure 7e). Interestingly, CDC37 M164A/L205A and all the arginine-

substituted mutants showed greater binding to CRAF, particularly in HT29 cells (Figure 7e) 

but consistent with basal CDC37 activity not being rate limiting for CRAF in these cells 

lines (Figure 1b, c) this did not affect CRAF expression levels.

CDC37 point mutants retain the ability to promote chaperoning of CDK4

To determine whether the HSP90 binding-impaired CDC37 mutants compromised client 

protein stability, we analysed the expression level of several clients. Firstly, we confirmed 

that all CDC37 mutants were phosphorylated (Figure 8a). Next, we found no change in 

ERBB2, CRAF or AKT expression following overexpression of the CDC37 mutants, as also 
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observed with wildtype overexpression (Figure 8a, CRAF quantified in Supplementary 

Figure S9).

For subsequent studies we primarily focussed on CDC37 point mutants M164A, L205A and 

M164R/L205R that most effectively blocked binding to HSP90 (in cells by 

immunoprecipitation or with recombinant proteins by ITC). These CDC37 mutants did not 

affect the signalling output of kinase clients, as determined by phosphorylation of AKT and 

ERK1/2 in HCT116 (Figure 8b).

In agreement with our earlier findings (Figure 1a), CDK4 expression was elevated in cells 

overexpressing FLAG-tagged wildtype CDC37 (Figure 8a, quantified in Supplementary 

Figure S9). Surprisingly, instead of compromising the chaperoning of this client as 

predicted, CDK4 levels were elevated similarly to wildtype when any of the mutants were 

expressed (Figure 8a, quantified in Supplementary Figure S9). Furthermore, CDK4 

immunoprecipitates from all mutant CDC37-expressing cells showed increased CDK4-

HSP90 association similar to that seen with wildtype FLAG-CDC37 overexpression (Figure 

8c, quantified in Supplementary Figure S10). Thus expressing HSP90 binding-impaired 

CDC37 point mutants unexpectedly phenocopied wildtype CDC37 overexpression.

A possible explanation for the ability of the CDC37 point mutants to promote the 

chaperoning of CDK4, despite substantially compromised interaction with HSP90, could be 

the formation of mutant-wildtype CDC37 dimers that may account for the small amount of 

HSP90 detected in immunoprecipitates of the selected CDC37 mutants (Figure 7e). 

However, specific silencing of endogenous CDC37 expression using 3′ UTR-targeted 

siRNA before immunoprecipitation of CDC37 M164A or L205A failed to reduce HSP90 

binding further when compared with FLAG-CDC37 (Figure 8d). Furthermore, CDK4 

association with the CDC37 mutants was also unaffected by endogenous CDC37 

knockdown. Thus the unexpected retention of chaperoning activity by the CDC37 point 

mutants cannot be attributed to heterodimerisation with endogenous CDC37.

CDC37 point mutants can replace the chaperoning role of endogenous CDC37 but not 
HSP90

Our findings so far indicated that the CDC37 point mutants that block HSP90 interaction act 

similarly to wildtype CDC37 in promoting the chaperoning of CDK4. We rationalised that 

the mutants could potentially replace the chaperone function of endogenous CDC37. To test 

this, we silenced endogenous CDC37 and examined the effect on kinase client proteins. As 

shown in Figure 9a, CDC37 knockdown in parental HCT116 cells caused the expected 

depletion of CDK4, CDK6, CRAF and ERBB2 (25). High-level expression of FLAG-

CDC37 rescued depletion of kinase proteins following exposure to siRNA that silenced 

wildtype CDC37 (Figure 9a, quantified in Supplementary Figure S11). Importantly, 

expression of CDC37 M164A or L205A mutants was also sufficient to protect HSP90/

CDC37 clients CDK4, CDK6, CRAF and ERBB2 from depletion by CDC37 knockdown 

(Figure 9a, quantified in Supplementary Figure S11). These results suggested that despite a 

severely restricted capacity to bind HSP90, the CDC37 point mutants were nevertheless still 

functional in maintaining client protein stability in cells.
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Assaying kinase activity following knockdown of endogenous CDC37 demonstrated that 

CDK4 function was not affected by expression of the point mutants, as also seen with 

wildtype CDC37 overexpression (Figure 9b). This is consistent with CDC37 primarily 

affecting the stability rather than the activity of CDK4.

The hypothesis that CDC37 may chaperone clients independently of HSP90 led us next to 

determine if the CDC37 mutants could compensate for loss of HSP90 activity. We found 

that partial knockdown of HSP90α and HSP90β resulted in a reduction of client proteins 

such as CDK4 and ERBB2 (Figure 9c). However, overexpression of wildtype CDC37 or 

mutants M164A or L205A did not lessen the extent of client protein depletion upon HSP90 

silencing. In addition, we found that CDC37 overexpression rescues the sensitisation to 

pharmacological HSP90 inhibitors that we previously observed (25) upon silencing of 

CDC37, and that overexpression of CDC37 mutants M164A, L205A or M164R/L205R has 

the same protective effect (Table 1). Moreover, overexpression of wildtype or mutant 

CDC37 did not result in cellular resistance to the HSP90 inhibitor 17-AAG compared to the 

parental cells. Together, these results demonstrate that CDC37 cannot substitute for HSP90 

in chaperoning kinase clients and both must play an important role, even though significant 

direct binding between the two is not required.

Discussion

To complement our previous siRNA silencing studies showing that several HSP90 clients 

were dependent on CDC37 in cancer cells (25), here we used an overexpression and 

mutation approach to further investigate the role of CDC37 in client stabilisation, as well as 

specifically exploring the importance of CDC37’s direct interaction with HSP90. We found 

that overexpressing wildtype CDC37 in human colon cancer cell lines HCT116 and HT29 

had no effect on the expression and signalling output of all but one of the representative 

CDC37 clients studied, the only exception being a clear increase in CDK4 protein levels. 

Our results are in contrast to those in normal prostate epithelia in which CDC37 

overexpression promoted the activity of clients (20). These differences may be rationalised 

by the elevation in CDC37 levels seen in several cancers (24;34;35), which could account 

for high CDC37 activity in the cancer cell lines we studied, so that increased expression had 

no further effect. Since the chaperoning of kinase clients is mediated by a multi-protein 

complex including HSP70, HSP90, HSP40, CDC37 and CK2 (36), other components could 

also become limiting when CDC37 is overexpressed.

We demonstrate that CDC37 has an important role in maintaining CDK4 stability in colon 

cancer cells and furthermore that binding of CDK4 to HSP90 is increased by CDC37 

overexpression, consistent with a model in which CDC37 promotes client association with 

the chaperone (6;13). It is uncertain why the basal expression levels of CDC37 were rate-

limiting for this client but not others; differences in the degree of dependence on CDC37 by 

particular client proteins were also shown in our CDC37 siRNA knockdown studies (25). 

The strong dependence of CDK4 on CDC37 is consistent with the close correlation between 

CDC37 and Cyclin D1 expression in highly proliferative tissues (6). We did not observe a 

concomitant increase in stability of a closely related CDK, CDK6, in CDC37-

overexpressing cells; this could be due in part to the stronger association of CDC37 with 
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CDK4 compared to CDK6 (6). Despite elevated CDK4 levels, neither its kinase activity nor 

active CDK4/Cyclin D complexes were increased in CDC37-overexpressing cells. CDC37 

and Cyclin D1 overexpression collaborate in tumourigenesis (23;34), which could suggest 

that in our models Cyclin D1 levels may become limiting for CDK4 kinase activity when 

overexpressing CDC37.

In addition to its cochaperone role, yeast Cdc37 was suggested to have its own chaperoning 

capacity separate from HSP90 (15). Evidence for such independent activity with human 

CDC37 was previously lacking. In yeast, Cdc37 exists predominantly free from HSP90 

complexes (18;37); thus the likelihood of Hsp90-independent functionality may be greater 

than for human CDC37 which binds HSP90 more tightly (13). Indeed, expression of an 

HSP90 binding-impaired C-terminally truncated CDC37 in non-immortalised human 

prostate cells blocked CDC37 activity leading to loss of kinase client proteins, growth arrest 

and apoptosis (20). The same CDC37 mutant also exhibited dominant negative effects on 

the client CRAF in insect cells (7), suggesting that direct interaction with HSP90 was 

essential for CDC37 function. To further investigate CDC37’s potential HSP90-independent 

activity in human tumour cells we expressed a similar C-terminal truncation mutant (17) in 

the HCT116 and HT29 colon cancer lines in which we had previously characterised the 

phenotypes of CDC37 knockdown (25) and overexpression (herein). Surprisingly, although 

we confirmed that truncation prevented HSP90 binding, ΔC-CDC37 expression did not alter 

the levels or activity of clients defined by RNAi to be CDC37-dependent (25) and therefore 

did not act as a dominant negative. On the contrary, an unexpected increase in CDK4-

HSP90 complexes and shift towards higher molecular weight HSP90 chaperone complexes 

suggested that ΔC-CDC37 could promote the recruitment of clients to HSP90. However, 

clients CDK4 and CRAF associated less with ΔC-CDC37 compared to wildtype CDC37, an 

observation also made for the interaction of a similar truncated CDC37 mutant with a 

mutant HCK client (38). Furthermore, in contrast to wildtype CDC37 overexpression, ΔC-

CDC37 did not cause an elevation in CDK4 levels, perhaps due to low expression of the 

mutant. We concluded that using a C-terminal deletion approach to block CDC37’s 

interaction with HSP90 is limited owing to the reduced interaction with kinase clients and 

instability of the mutant protein.

We reasoned that examining the importance of CDC37-HSP90 association required more 

subtle mutation analysis and so generated a series of CDC37 point mutants substituted at 

residues M164/L205 that are involved in HSP90 binding (14;39). Mutation of these two 

sites was previously found to be efficient at blocking the interaction between CDC37 and 

HSP90 in living cells (40). These studies and our own binding data provided validation for 

the use of the selected point mutants to inhibit CDC37-HSP90 association in our cancer cell 

models.

Surprisingly, instead of having a dominant negative effect on the chaperoning of CDC37 

clients, we found that M164 and L205 mutants, that showed substantially reduced binding to 

HSP90, were able to phenocopy wildtype CDC37 overexpression. In agreement with our 

findings, another CDC37 mutant deficient in HSP90 binding failed to perturb the activity of 

a mutant HCK client in human cells, and in fact modestly increased its kinase activity and 

augmented binding of the client to HSP90 (38). In our own studies, an increase in CDK4 
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expression and CDK4-HSP90 association, comparable to wildtype, was apparent when the 

CDC37 point mutants were expressed. Furthermore, the HSP90 binding-impaired mutants 

were able to substitute for endogenous CDC37 in maintaining the stabilisation of client 

proteins CDK4, CDK6, CRAF and ERBB2, again similar to overexpressed wildtype 

CDC37. These findings were indicative of substantial direct CDC37-HSP90 binding 

mediated by the C-terminus of CDC37 with N-terminus of HSP90 not being essential for 

CDC37 to chaperone kinase clients in cells.

Although CDC37 may possess activity when free from HSP90 complexes (15), we found 

evidence that CDC37 and HSP90 do not have completely redundant roles, since CDC37 

overexpression could not compensate for the effects of HSP90 knockdown or treatment with 

an HSP90 inhibitor. One possibility is that the two proteins have separate but sequential 

roles in kinase client maturation.

A current model for CDC37’s cochaperone role involves its interaction with the N-terminus 

of HSP90 transiently inhibiting the HSP90 ATPase cycle, thereby permitting the loading of 

client proteins (14, Figure 10; Model A). Our results indicate that, at least under conditions 

where direct CDC37-HSP90 binding is severely restricted, CDC37 can efficiently maintain 

the maturation of clients by promoting the association of kinase clients with HSP90 through 

an alternative mechanism (Figure 10; Model B). Since kinase clients may interact with 

HSP90 in a specific orientation, as suggested for CDK4 in which the two lobes of the kinase 

bind to separate domains of HSP90 allowing conformational changes to be relayed during 

the chaperone cycle (41), one speculative role for CDC37 could be to present clients in a 

conformation that is more amenable to HSP90 association. It is unclear whether CDC37 

possesses intrinsic chaperoning activity or acts more as a scaffold that protects clients from 

degradation prior to chaperoning by HSP90, which due to their inherent instability may be 

particularly important for immature protein kinases (42). Elucidation of the precise 

mechanism by which CDC37 and HSP90 are able to chaperone kinase clients is of 

considerable interest. This will best be addressed by extensive proteomic and structural 

biology studies.

The largely kinase-specific clientele of CDC37 presents an opportunity to target selectively 

an important oncogenic subset of HSP90 clients (21;28). So far, specific inhibitors of 

CDC37 have not been reported. Natural product inhibitors celastrol and withaferin A disrupt 

the interaction between HSP90 and CDC37 and show anticancer activity (43;44), although 

this has not been linked directly to CDC37 blockade, particularly in the case of celastrol, 

which elicits its growth inhibitory effect via multiple mechanisms (45). While our data 

support CDC37 as a potential cancer drug target, importantly, our results with M164/L205 

mutants indicate that substantially disrupting the CDC37-HSP90 protein interaction 

mediated by this C-terminal region of CDC37 is not sufficient to prevent the cochaperone 

from promoting HSP90-client association. This suggests that therapeutic alternatives to 

blocking CDC37-HSP90 association are needed. Possible strategies could involve targeting 

other CDC37 interactions, for example homodimerisation or client binding (46). CDC37’s 

N-terminal region is implicated in binding to kinases (47); however, other regions may also 

influence the interaction (33). Phosphorylation/dephosphorylation of CDC37 is another 

important regulatory process that could be targeted (48;49). Further research into these other 
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aspects of CDC37 regulation will be required to define druggable means for inhibiting 

CDC37, as well as to more completely understand the chaperone role of CDC37 in cancer 

and normal cells.

Materials and methods

Cell culture

HCT116 and HT29 human colon cancer cell lines were obtained from ATCC and cultured in 

DMEM (Sigma-Aldrich, Gillingham, UK) supplemented with 10% FCS (PAA Laboratories, 

UK), 2mM L-glutamine and non-essential amino acids (Invitrogen, Paisley, UK). Cells were 

maintained at 37°C, 5% CO2 in a humidified incubator.

Plasmid cloning and transfection

See supplementary information for primer and oligo sequences. CDC37 open reading frame 

was amplified by RT-PCR from human MCF-7 cDNA using primers P1/P2. The C-terminal 

truncation mutant was generated with primers P1/P3 which introduced a stop codon after 

aa173. Products were blunt cloned into pPCR-Script Amp (Stratagene, Agilent 

Technologies, Stockport, UK) or pCR4Blunt TOPO (Invitrogen) and fully sequenced. For 

point mutations the QuikChange Multi Site-directed mutagenesis kit (Stratagene) was used 

with primers P4-P7. CDC37 constructs were transferred to bicistronic eukaryotic expression 

vectors pEFIRES-P or pEFIRES-N (50) , N-terminal tags being added subsequently. 

Transfection of supercoiled plasmid DNA was performed with Lipofectamine 2000 

(Invitrogen). Stable transfectants were selected with 3μg/ml puromycin (Sigma-Aldrich) and 

1mg/ml G418 (Invitrogen; dual construct transfections only).

siRNA transfection

Transfection of 20nM CDC37 or control siRNAs was performed using Oligofectamine 

(Invitrogen) according to the manufacturer’s protocol. Hiperfect (Qiagen) reverse 

transfection protocol was used for 100nM HSP90α and HSP90β or corresponding inactive 

siRNAs. Sequences are detailed in supplementary information.

Western blotting and immunoprecipitation

As described previously (25). Blots shown are representative of at least 2 independent 

experiments. Antibodies and densitometry are detailed in supplementary information.

Gel filtration

Cell pellets were resuspended in filtered lysis buffer (50mM Tris pH 7.6, 150mM NaCl, 

0.5% NP40, 1mM DTT) with complete protease inhibitor cocktail (Roche, Switzerland) and 

incubated on ice for 30 min. Samples were centrifuged at 17,000 × g for 30 min at 4°C, 

soluble lysates removed and centrifuged at 17,000xg until completely clear. 3mg protein 

was run through a 25ml Superose12 gel filtration column using an AKTA Chromatography 

system (GE Pharmacia, Amersham, UK), collecting 0.5ml fractions.
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Pulse chase

As described previously (25).

Isothermal titration calorimetry and Kd determinations

Detailed in supplementary information.

Growth inhibition assay

Sulphorhodamine B assay was performed as previously (25).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Kinase client levels following CDC37 overexpression
(a) Western blot showing total CDC37 and phospho-S13-CDC37 expression in wildtype 

(WT), empty vector-transfected (V) or CDC37-overexpressing HCT116 (clones C1 and 

C10) and HT29 (clones C8 and C12) colon cancer cells. The level of total CDC37 

overexpression is quantified in Supplementary Figure S1 and phospho-S13-CDC37 is 

quantified in Supplementary Figure S2. (b) Expression of CDC37, CRAF, CDK4, total AKT 

and S473-phosphorylated AKT in wildtype (WT), empty vector-transfected (V) or CDC37-

overexpressing HCT116 (C1, C10) and HT29 (C8, C12) cells. (c) Client protein expression 

in wildtype (WT), empty vector-transfected (Vec) or CDC37-overexpressing HCT116 (C1, 

C10) and HT29 (C8, C12) cells quantified by densitomety from western blots. Represented 

as mean±SE ratios relative to the wildtype cells from at least 3 independent experiments. 

Statistical analysis was performed using one-way ANOVA by comparison with empty 

vector-transfected controls. ns p>0.05; * p<0.05; ** p<0.01. (d) Expression of CDK4 

following 5 days siRNA-mediated knockdown of CDC37 (O3 and O4) in empty vector (V) 

or CDC37-overexpressing (C1) HCT116 cells. Controls are non-transfected (NT), mock 

transfected (Mk) and inactive siRNA (IC3 and IC4).
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Figure 2. Kinase client signalling activity following CDC37 overexpression
(a) Western blot showing phosphorylated ERK1/2, ERK2, phosphorylated MEK1/2, 

MEK1/2, phosphorylated RB (S795 and 780) and CYCLIN D1 expression in wildtype 

(WT), empty vector-transfected (V) or CDC37-overexpressing HCT116 (C1, C10) and 

HT29 (C8, C12) cells. ERK1/2 phosphorylation is quantified by densitometry in 

Supplementary Figure S3. (b) CDK4 kinase assay in wildtype (WT), empty vector-

transfected (V) or CDC37-overexpressing HCT116 (C1, C10) and HT29 (C8, C12) cells. 

Following CDK4 immunoprecipitation, and incubation with recombinant RB, S795-

phosphorylated RB and hypophosphorylated RB were measured by western blotting.
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Figure 3. Kinase client protein stability in CDC37-overexpressing cells
(a) Time course of CDK4 expression in empty vector-transfected or CDC37-overexpressing 

(C8) HT29 colon cancer cells following exposure to 20μg/ml cycloheximide (CHX). Left: 

Western blot, right: Mean densitometry of percentage CDK4 (relative to 0h) normalised to 

GAPDH ±SE from 3 independent repeats. (b) Pulse chase with 2h exposure to 150μCi/

ml 35S labelled methionine/cysteine and CDK4 immunoprecipitation. CDC37-

overexpressing clone C8 was compared with HT29 empty vector-transfected cells. Total 

CDK4 levels in each immunoprecipitate were determined by western blotting (WB). Below: 

Mean densitometry of percentage labelled CDK4 remaining ±SE from 3 independent 

repeats. (c) Expression of CDK6 in wildtype (WT), empty vector-transfected (V) or CDC37-

overexpressing (C8 and C12) HT29 cells. (d) Pulse chase with 2h exposure to 150μCi/ml 

35S labelled methionine/cysteine and CDK6 immunoprecipitation. CDC37-overexpressing 

clone C8 was compared with HT29 empty vector-transfected cells. Total CDK6 levels in 

each immunoprecipitate were determined by western blotting (WB). Below: Mean 

densitometry of percentage labelled CDK6 remaining ±SE from 3 independent repeats.
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Figure 4. CDK4 protein complexes in CDC37-overexpressing cells
(a) Western blot for HSP90, CDC37, CYCLIN D1 and CDK4 in whole cell lysates or CDK4 

immunoprecipitates from empty vector-transfected (V) or CDC37-overexpressing HCT116 

(C1, C10) and HT29 (C8, C12) colon cancer cells. The levels of HSP90 

coimmunoprecipitated with CDK4 in HCT116 cells are quantified by densitometry in 

Supplementary Figure S4a. (b) Western blot analysis of whole cell lysates (L) and fractions 

following Superose12 gel filtration separation of complexes. Approximate molecular 

weights are shown. CDC37-overexpressing clone C8 (HT29) is compared with HT29 empty 

vector-transfected clone.
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Figure 5. Kinase client expression and signalling activity in cells expressing ΔC-CDC37
(a) Western blot showing kinase clients and phospho-S13-CDC37 expression in wildtype 

(WT), empty vector-transfected (V) or ΔC-CDC37-expressing HCT116 (T9, T11) and HT29 

(T12, T32) colon cancer cells. Client protein expression is quantified by densitometry in 

Supplementary Figure S5. (b) Kinase client signalling output as measured by western blot 

analysis of phosphorylated RB (S780 and S795), phosphorylated ERK1/2 and S473-

phosphorylated AKT in wildtype (WT), empty vector-transfected (V) or ΔC-CDC37-

expressing HCT116 (T9, T11) and HT29 (T12, T32) colon cancer cells. (c) Client protein 

expression following 5 days knockdown of endogenous CDC37 (O3 and O4) in ΔC-CDC37-

expressing HT29 clone T32. Controls are no transfection (NT), mock transfection (Mk) and 

inactive siRNA (IC3 and IC4).
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Figure 6. Kinase client chaperone complexes in cells expressing ΔC-CDC37
(a) Western blot analysis of whole cell lysates and fractions following gel filtration 

separation of complexes using a Superose12 column. Parental HCT116 and HT29 cells are 

compared with ΔC-CDC37-expressing clones T11 and T12, respectively. (b) & (c) 

Immunoprecipitates of CDK4 and CDC37 from empty vector-transfected (V) or ΔC-

CDC37-expressing clones (b) HCT116 (T9, T11), and (c) HT29 (T12, T32). The levels of 

HSP90 co-immunoprecipitated with CDK4 in all HCT116 and HT29 clones are quantified 

by densitometry in Supplementary Figure S6.
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Figure 7. CDC37 point mutations reduce binding to HSP90
Cartoons showing interactions between HSP90 and CDC37: (a) The EM structure of the 

HSP90-CDC37-CDK4 complex. CDC37 (gold) interacts with the HSP90 N-terminal 

domains (blue). CDK4 (magenta) interacts with and the middle-domain (green) and C-

terminal domain (red) of HSP90. (b) The N-terminal domain of yeast HSP90 bound to the 

C-terminal domain of CDC37. (c) CDC37 (yellow) residues, M164 and L205 (shown in 

cyan), packing against the yeast HSP90 N-terminal domain (green). While mutation of 

M164 to alanine can be accommodated the mutation of L205 to the bulkier arginine cannot 

be easily accommodated. (d) Overexpression of FLAG-CDC37 (F) or 6 different FLAG-

CDC37 point mutants in HCT116 cells in comparison with the parental cells (P). The level 

of expression of CDC37 mutant 1 (M164A) is estimated by densitometry in Supplementary 

Figure S8. (e) Inputs and FLAG immunoprecipitates from HCT116 and HT29 cells 

overexpressing FLAG-CDC37 (F) or 6 different FLAG-CDC37 point mutants in 

comparison with parental cells (P). (f) Quantitation by densitometry of FLAG-CDC37 

mutants binding to HSP90 relative to FLAG-CDC37. CDC37 mutants are numbered as 

follows 1-M164A; 2-L205A; 3-M164A/L205A; 4-M164R; 5-L205R; 6-M164R/L205R.
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Figure 8. Kinase client expression, signaling activity and protein complexes following expression 
of CDC37 mutants
(a) Kinase client and S13-phosphorylated-CDC37 expression in HCT116 and HT29 cells. 

Overexpression of FLAG-CDC37 (F) or 6 different FLAG-CDC37 point mutants is 

compared with parental cells (P). Expression of clients CRAF and CDK4 in all cell lines is 

quantified by densitometry in Supplementary Figure S9. (b) S473-phosphorylated AKT and 

phosphorylated ERK1/2 expression in parental (P), FLAG-CDC37-overexpressing (F) or 3 

different FLAG-CDC37 point mutant-overexpressing HCT116 cell clones. (c) Inputs and 

CDK4 immunoprecipitates from parental (P), FLAG-CDC37-overexpressing (F) or 6 

different FLAG-CDC37 point mutant-overexpressing HCT116 cells. The levels of HSP90 

coimmunoprecipitated with CDK4 are quantified by densitometry in Supplementary Figure 

S10. (d) Inputs and FLAG immunoprecipitates from parental (P), FLAG-CDC37-

overexpressing (F) or 2 different FLAG-CDC37 point mutant-overexpressing HCT116 cell 

lines after 5 days transfection of Allstars negative control or CDC37 siRNA. CDC37 

mutants are numbered as follows 1-M164A; 2-L205A; 3-M164A/L205A; 4-M164R; 5-

L205R; 6-M164R/L205R.

Smith et al. Page 23

Oncogene. Author manuscript; available in PMC 2015 July 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 9. Rescue of wildtype CDC37 but not HSP90 function with CDC37 mutants
(a) Expression of kinase clients after knockdown with CDC37 siRNA or Allstars negative 

control siRNA for 4 or 5 days, comparing parental (P), FLAG-CDC37-overexpressing (F) 

and 2 different FLAG-CDC37 point mutant-overexpressing HCT116 cell lines. The rescue 

of CDK4, ERBB2 and CRAF client expression is quantified by densitometry in 

Supplementary Figure S11. (b) CDK4 kinase assay following 5 days transfection with 

Allstars negative control siRNA or CDC37 siRNA in parental (P), FLAG-CDC37-

overexpressing (F) or 3 different FLAG-CDC37 point mutant-overexpressing HCT116 cell 

lines. Following CDK4 immunoprecipitation, and incubation with recombinant RB, S795-

phosphorylated RB and hypophosphorylated RB were measured by western blotting. A 

control * without CDK4 IP is included. (c) Kinase client expression after transfection of 

HSP90α and HSP90β or inactive siRNA in parental (P), FLAG-CDC37-overexpressing (F) 

or 2 different FLAG-CDC37 mutant-overexpressing HCT116 cell lines. CDC37 mutants are 

numbered as follows 1-M164A; 2-L205A; 6-M164R/L205R.
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Figure 10. Models for the mechanism of action of CDC37 in the chaperoning of kinase clients
Two proposed models for the role of CDC37 in the chaperoning of kinase client proteins. 

Model A involves CDC37 directly binding to HSP90 thereby bringing kinase clients to the 

chaperone complex whereas Model B involves CDC37 altering kinases to promote their 

interaction with the chaperone complex as detailed in the numbered steps below. (1) CDC37 

is activated by phosphorylation on Ser13 by CK2 and interacts with unstable protein kinase 

clients. According to Model A, (2a) CDC37 directly brings kinase clients to HSP90 

chaperone complexes. (3a) CDC37 interacts with the N-terminus of HSP90 allowing the two 

lobes of the kinase client to interact in the correct conformation with HSP90 and (4) 

progression of the ATPase-dependent HSP90 chaperone cycle resulting in the formation of 

stable kinases competent for activity. In the alternative mechanism (Model B), (2b) the 

conformation of kinase clients bound to CDC37 is altered in such a way that may allow the 

two lobes of the kinase to be more amenable for interaction with HSP90. This could involve 

other components of the HSP90 chaperone system. (3b) The re-orientation of the kinase 

structure may allow the kinase to be released from CDC37 and bind to HSP90. This may or 

may not involve support from other proteins.
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Table 1
17-AAG GI50 (nM) in HCT116 cell lines with knockdown of endogenous CDC37 or 

control siRNA

Cell line Allstars siRNA CDC37 siRNA

Parental 49.7 ±2 * 21.7 ±5

CDC37 46.3 ±2 39.0 ±12

CDC37 M164A 47.7 ±3 36.0 ±3

CDC37 L205A 54.0 ±8 49.7 ±20

CDC37 M164R/L205R 51.7 ±4 45.3 ±8

*
p<0.05 comparing GI50 with CDC37 to Allstars siRNA

Mean ±SE from 3 independent experiments
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