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Abstract  

 

Cancer cells tend to metastasize first to tumor-draining lymph nodes (LN), but the 

mechanisms mediating cancer cell invasion into the lymphatic vasculature remain little 

understood. Here we show that in the human breast tumor microenvironment (TME) the 

presence of increased numbers of RORγt+ group 3 innate lymphoid cells (ILC3) correlates 
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with an increased likelihood of LN metastasis. In a preclinical mouse model of breast cancer, 

CCL21-mediated recruitment of ILC3 to tumors stimulated the production of the CXCL13 by 

TME stromal cells, which in turn promoted ILC3-stromal interactions and production of the 

cancer cell motile factor RANKL. Depleting ILC3 or neutralizing CCL21, CXCL13 or 

RANKL was sufficient to decrease LN metastasis. Our findings establish a role for 

RORγt+ILC3 in promoting lymphatic metastasis by modulating the local chemokine milieu 

of cancer cells in the TME.  

 

Introduction 

Breast cancer is the most common malignant neoplasm with significant morbidity and 

mortality. The ability of cancer cells to invade lymphatics stratifies breast cancers into 

distinct prognostic groups (1). The molecular mechanisms mediating this tumor cell entry 

remain unclear but studies have established important roles for the lymphoid chemokines 

CXCL13, CCL19 and CCL21 (2). 

An important early step in the construction of lymphoid organs is the recruitment of 

lymphoid tissue inducer cells (LTis) by CXCL13 and CCL21, which are recognized via the 

receptors CXCR5 and CCR7, respectively (3-5). LTis are members of the innate lymphoid 

cells (ILCs) family. Recent moves to propose a uniform nomenclature divide these cells into 

three groups (6), and  LTis represent the prototypic cell type of the “group 3” RORγt
+
 family 

of ILCs.   We will refer to these cells henceforth as ILC3. ILC3 play a major role in lymphoid 

tissue development both in the embryo (7) and in adult life (8, 9). Within the secondary 

lymphoid structures, ILC3 produce lymphotoxin (LT)α1β2 which binds LTR on 

mesenchymal stromal cells (MSC), stimulating the production of CXCL13, CCL19 and 

CCL21, as well as the tumor necrosis factor (TNF)-family member, RANKL;  promoting 

lymphocyte recruitment and compartmentalization (10).  
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The presence or role of these cells has not yet been explored in breast cancers. Here we 

demonstrate that CCL21-dependent recruitment of ILC3s into mammary tumors results in a 

CXCL13-dependent positive feedback loop between ILC3 and MSCs. Antibody blocking 

experiments in BALB/c and Rag1
-/- 

mice demonstrated that CCL21, CXCL13, ILC3 and 

RANKL all promote metastasis to the LN. We report the novel identification of 

RORt
+
ILC3s within the human TME, their association with more agressive breast cancer 

subtypes, and lymphatic metastasis.  

 

Methods & Materials 

 

Human tissue: Tissue samples and data from patients were obtained from The King’s Health 

Partners (KHP) Cancer Biobank at Guy’s Hospital, London (REC No: 07/40874/131). 

Mice: Experiments were performed in accordance with the UK Home Office Animals 

Scientific Procedures Act, 1986 and the UKCCCR guidelines. Tumors were established by 

injection of 4T1.2 cells into the mammary fat pad of 6–8-week old BALB/c mice (Charles 

River Laboratories, Wilmington, MA) and Rag1
-/-

 mice (BALB/c background, Jackson 

Laboratories, Bar Harbor, ME). CXCL13 or CCL21 were neutralised by i.v. injection of 

0.5ug goat antibodies (R&D Systems, Minneapolis, USA) starting on the first day after tumor 

establishment and repeated every 3d until the end of the experiment. ILCs were depleted by 

intraperitoneal injection of 0.25mg anti-CD90.2 (clone 30H12, BioXCell, West Lebanon, 

USA) starting on d3 after tumor establishment and repeated every 3d until the end of the 

experiment.  

Gene expression datasets: The KHP Cancer Biobank of the METABRIC dataset was 

profiled using the Illumina HT12 platform. Frozen tissue sections were subjected to 

histopathological review to assess the presence of invasive tumor and only samples with 
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>70% tumoral DNA were included. Samples were quantile normalised, and a ComBat 

BeadChip correction applied (n=234; 176 ER
+
 samples, 58 ER

−
 samples). PAM50 subtype 

was assigned as in (11-13) 

Immunohistochemistry, Immunofluorescence and Image analysis:  60 fresh frozen tumor 

sections were randomly selected from the METABRIC patient cohort for ILC staining as 

described (14).  Confocal tile scan images were obtained using an LSM510 Metamicroscope 

(Carl Zeiss, UK). Image analysis for RORt
+
ILC quantification was carried out using 

MacBiophototonics ImageJ software. Detailed immunohistochemistry protocols are described 

in Supplementary information. 

Cell Lines and culture conditions:  The mouse breast cancer cell line 4T1.2 (derived from a 

mammary carcinoma in a BALB/c mouse) (15) and human bone marrow derived MSC (HS-

5) were cultured in DMEM (Invitrogen, Carlsbad, CA) complete media. Extracellular matrix 

(ECM) invasion assays, based on the Boyden chamber principle, were carried out using 96-

well Cell Invasion Assay Kit (ECM555, Chemicon International, CA, USA) as per the 

manufacturers’ instructions.  To confirm identity, Short Tandem Repeat (STR) profiling was 

performed on all cell lines. 

ILC3 cell isolation and flow cytometry: For NKp46
-
ILC3 sorting experiments, splenocyte 

suspensions were prepared from BALB/c mice and cells stained with CD3, CD11c, B220R, 

CD127, CD90.2 and NKp46 and sorted by using a FACSAria. The NKp46
-
ILC3 were 

identified as CD3
-
CD11c

-
B220

-
CD127

+
CD90.2

+
NKp46

-
 cells.  Purity was confirmed at 

>90%.  To extract intratumoural ILC3, tumors were minced and incubated with 

collagenase/hyaluronidase at 37°C for 60min; and passed through a filter to form a single cell 

suspension.  Cells were stained as per sorting experiments. Flow cytometry reference beads 

(PeakFlow blue; Invitrogen) were added to the samples before analysis for quantification of 

cells in each tumor. The absolute number of cells/mg of tumor was calculated using the 
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formula: Density of x cells = (number of beads added to each sample multiplied by count of x 

cells/count of beads)/tumour weight. For multi-photon experiments, 5–6×10
4
 sorted NKp46

-

ILC3 were injected (i.v) into tumor-bearing mice on the same day. Immune cell populations 

from tumors and DLN from mice after treatment with either neutralising anti-CXCL13, anti-

CCL21 or IgG control (R&D Systems, Minneopolis, USA) were isolated as described above. 

Antibodies used are included in Supplementary Table S1.  

Time-lapse microscopy and image analysis:  Cells were cultured in DMEM complete 

medium supplemented with 25mM HEPES. For NKp46
-
ILC3-MSC co-culture experiments, 

MSC were grown in 9.4×10.7 mm ibidi
TM

 8-well-slide chambers. Image acquisition was 

performed using an Olympus IX71 inverted microscope housed within an environment 

chamber maintained at 37°C. Sequential phase contrast images were captured every 10-

minutes for a total of 10h. NKp46
-
ILC3-MSC clustering was measured as described in 

Supplementary Information. 

ELISA: Tumors were snap frozen and lysed by homogenisation in 100mM Tris pH 7.5, 

150mM NaCl, 1mM EGTA, 1mM EDTA, 1% (v/v) Triton-X-100 and 0.5% (w/v) sodium 

deoxycholate. ELISAs were performed using DuoSet kits (R&D Systems, Minneopolis, 

USA). 

siRNA knockdown:  MSC were cultured overnight in 6-well plates to 30% confluency. Cells 

were transfected with RNAimax in serum free OptiMEM and siRNAs at 20nM. Details of the 

siRNA used are in Supplementary Table S2. 

Surgical window and Multi-photon Imaging:  Mammary Imaging Window (MIW) surgery 

was performed 10d after injection of 1×10
6
 4T1.2 cells into the mammary fat-pad as 

described (16). For multi-photon experiments, 1×10
6
 MSC  (control or knock-down) 

followed 24h later by 5×10
4
 sorted NKp46

-
ILC3 cells were i.v. injected into mice. 24h later 

mice were placed in a microscope-attached imaging box kept at 32°C and imaged for a 
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maximum period of 3h/day for 3 consecutive days. Image processing and image 

reconstructions were done using MacBiophototonics ImageJ software.  

Statistics:  Permutation tests for small samples with multiple ties were performed using the 

“coin” package in R-2.13.0 (17). Predictive value of ILC score for high LN burden was 

determined using Cox’s multivariate proportional hazards model. GraphPad was used for 

other data analysis. P values  <0.05 were considered significant.  

 

Results 

 

CCL21-mediated recruitment of NKp46
-
ILC3 to tumors in a mouse model of triple 

negative breast cancer 

To investigate whether ILC3s are recruited into a TME, we used a mouse model of triple 

negative breast cancer (TNBC) with 4T1.2 cells in BALB/c mice that develop metastatic 

disease via lymphatics (Figure 1A) (18). Upon tumor induction, the number of NKp46
-
ILC3 

(19) were determined at different times in tumors, draining LN (DLN) and non-draining LN 

(NDLN) (Figure 1A,B). FACS and immunoflourescence staining for CCR6, RORt, and CD4 

further confirmed the gated cells to be ILC3 (Supplementary Figure S1).  The number of 

NKp46
-
ILC3 cells in tumors peaked at d14 (d10 vs. d14 P=0.0019, unpaired t-test), while the 

number in DLN peaked later, at d18 (d10 vs. d18, P=0.0041 unpaired t-test) (Figure 1B). 

NKp46
-
ILC3 cell density within the NDLN did not change significantly, acting as an internal 

control.  Confocal imaging of primary tumours and DLNs taken at d14 and d21 respectively, 

for markers discriminatory for RORt
+
ILC3 (defined as RORt

+
CD127

+
CD3

-
) as previously 

published (20) confirmed the presence within our mouse model (Figure 1C and 1D).    In 

contrast to the temporal pattern of NKp46
-
ILC3 infiltration (Figure 1B), absolute numbers of 
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CD3
+
T cells (Figure 1E) and CD19

+
B cells (Figure 1F) decreased in tumors over time, while 

the number of T and B cells in the DLN continued to increase until d24. 

CXCL13 has an essential role in ILC3 function (5) and lymphoid structures resembling the 

LN paracortex develop in tumors expressing high levels of CCL21 (21). Therefore, we 

investigated whether either of these chemokines could play a role in the recruitment of 

NKp46
-
ILC3 cells to tumors in our model. We confirmed that tumor NKp46

-
ILC3 express 

both CCR7 and CXCR5, and are thus capable of responding to CCL21 and CXCL13, 

respectively (Figure 1G). We then analysed the levels of CCL21 and CXCL13 present in 

primary tumors and serum at various times after tumor establishment. CCL21 levels peaked 

in both the tumor and serum at d12, before declining rapidly (Figure 1H). CXCL13 in the 

tumor also peaked early (d10-12),  but levels in serum lagged behind, peaking at d14. In 

contrast to CCL21, CXCL13 oscillated, with tumor CXCL13 beginning to rise again at d20, 

and serum CXCL13 concentration increasing at d24 (Figure 1I). 

To examine the effect of CCL21 or CXCL13 blockade on NKp46
-
ILC3s recruitment to 

tumors in vivo, tumor-bearing mice were treated with control or neutralizing anti-CXCL13 

and anti-CCL21 antibodies, starting one day after tumor cell implantation and repeated every 

3 days. Tumors were analysed for NKp46
-
ILC3 at d14, a time-point at which maximum 

number of these cells had previously been shown to be present in the tumors (Figure 1B). 

When compared with isotype controls, anti-CCL21, but not anti-CXCL13 neutralizing 

antibodies, significantly reduced NKp46
-
ILC3s recruitment to the primary tumor (Figure 1J).  

CXCL13 is required for clustering of NKp46
-
ILC3 and MSC 

During embryogenesis clustering of NKp46
-
ILC3s and production of CXCL13 and CCL21 

by activated lymphoid tissue organizer cells (LTo, closely linked to stromal cells of 

mesenchymal origin (22)) are responsible for initiating a feedback loop with further NKp46
-
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ILC3 recruitment and subsequent amplification of LT-receptor  signaling (23).  Given the 

lineage relationship between MSCs, which exhibit a marked tropism for tumors (24), and 

LTo cells that are known to interact with ILC3s, we hypothesized that ILC3 interaction with 

CXCL13-producing stromal cells may modulate the chemokine profile of the TME. Within 

our in-vitro model, MSCs secrete high concentrations of CCL21 and CXCL13 chemokines 

(Supplementary Figure S2).  

Time-lapse microscopy demonstrated NKp46
-
ILC3-MSC clustering (Figure 2A, upper panel 

and Video S1), with cells remaining closely associated for as long as 7h (Figure 2A, red 

arrow in lower panel and Video S2).  There was no effect on proliferation of ILC3 on contact 

or co-culture with MSCs (Supplementary Figure S3A).  We quantified cell clustering of 

NKp46
-
ILC3-MSC (Figure 2B) and  investigated how knockdown of CXCL13 and CCL21 in 

MSC (Supplementary Figure S3B and C) affected this clustering rate. Transient siRNA-

knockdown of CXCL13, but not of CCL21, resulted in a decrease of NKp46
-
ILC3-MSC 

clustering around (P<0.0001, unpaired t-test) (Figure 2C). CXCL13-mediated clustering may 

be synergistic with the initial CCL21-mediated recruitment of NKp46
-
ILC3 into the primary 

tumor, since the CCL21-recruited NKp46
-
ILC3 are required to promote significant CXCL13 

production by interaction with MSC. 

Next, we used an intravital mammary window (MIW) with multi-photon imaging to assess 

NKp46
-
ILC3-MSC interaction in vivo  (16). These visualisation experiments were conducted 

to demonstrate how the fluorescent MSC (which are allogenic and therefore could have a 

finite half-life once injected in vivo) may interact with ILC in the relatively short term and 

whether this interaction is CXCL13 dependent. 4T1.2 cells were injected into the mammary 

fat pad and a MIW placed over the tumor 10d after inoculation (Figure 2Di). Tumor-bearing 

mice were treated with either neutralizing anti-CXCL13 or isotype antibody (as described for 

Figure 1H). Fluorescently-labeled MSCs and NKp46
-
ILC3 were i.v. injected 48 or 24h prior 
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to imaging, respectively (Figure 2Dii). In control antibody-treated mice, NKp46
-
ILC3 were 

clustered and in close proximity to MSC. However, in mice injected with neutralizing anti-

CXCL13 antibody, NKp46
-
ILC3 and MSC were not close with each other (P<0.0001, 

unpaired t-test, Figure 2E, F). These in vivo imaging results support the in vitro observation 

that NKp46
-
ILC3-MSC clustering is CXCL13-dependent.  

 

CCL21, CXCL13 and NKp46
-
ILC3 cells promote metastasis of tumor cells to DLN 

To test the hypothesis that CCL21 and CXCL13 might play a role in promoting metastasis of 

tumor cells to  LN, we treated 4T1.2 tumor-bearing mice with neutralising antibodies against 

CCL21 or CXCL13, or with an antibody to deplete NKp46
-
ILC3 and examined the DLN for 

evidence of metastasis. 

In vivo, neither anti-CXCL13 nor anti-CCL21 treatments affected tumour growth (Figure 

3A). The weight of the DLNs were signficantly reduced in both cohorts (anti-CXCL13 

P=0.0156; and anti-CCL21 P=0.0017 one-way ANOVA) compared to the control cohort 

(Figure 3B).  Immunohistochemical analysis of DLN for tumor load with anti-pancytokeratin  

revealed fewer tumor foci within the DLN of  mice treated with anti-CXCL13 or anti-CCL21 

compared with control antibody-treated mice (Figure 3C). Measurements of the total surface 

area of of tumor foci (μm
2
) demonstrated a significant decrease in the tumor load in the DLN 

of mice treated with anti-CXCL13 or anti-CCL21 (P<0.05 one-way ANOVA; Figure 3C and 

3D). 

Given the involvement of CXCL13 and CCL21 in B- and T-cell homeostasis (2), we assessed 

the effect of anti-CXCL13 and anti-CCL21 blockade on LN metastasis in Rag1
-/-

 mice which 

lack B and T cells. Rag1
-/-

 mice have much smaller lymph nodes, these lymph nodes samples 

were therefore formalin fixed to help preserve the morphology better.  We report a decrease 
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in the number of pan-cytokeratin positive tumour cells in DLN of tumor-bearing Rag1
-/-

 mice 

treated with blocking anti-CCL21 or anti-CXCL13 (anti-CXCL13 P=0.004; anti-CCL21 

P=0.005) (Figure 3E & 3F).  These results suggest that T and B cells are not involved in the 

CXCL13 and CCL21 dependent tumor cell migration into LNs. 

To strengthen the link between ILC and chemokines in LN metastasis we depleted ILCs  with 

anti-CD90.2, as previously described (25) (Figure 3G). It is noteworthy that anti-CD90.2 

does not specifically depletes ILC3 and is also able to deplete T cells. Therefore these 

experiments were also carried out  in Rag1
-/-

 mice. We found a significant decrease in the 

tumor burden in the DLN of mice treated with anti-CD90.2 (P=0.04 Mann Whitney test 

Figure 3H). Therefore, CCL21, CXCL13 and ILCs themselves, and no B or T cells, all 

promote metastasis of breast cancer cells to the DLN. 

 

CXCL13 induces RANK/RANKL signalling to promote tumour cell invasion  

As our in vivo results suggested an inhibitory effect of CXCL13 or CCL21 blockade on 4T1.2 

cell invasion into the DLN, we used extracellular matrix (ECM) invasion assay, to directly 

investigate the effects of increasing concentrations of CXCL13 and CCL21 on tumour cell 

invasion. EGF stimulation of 4T1.2 and NIH3T3 served as positive and negative controls 

respectively. Recombinant CXCL13 or CCL21 did not significantly increase the invasion of 

4T1.2 cells at concentrations between 10-100ng/ml (Figure 4A). 

During LN development, the interaction of NKp46
-
ILC3-MSC stimulates RANKL 

production by MSC, and RANKL signals back to the NKp46
-
ILC3 establishing a positive 

feedback (26). CXCL13 has recently been shown to promote RANKL expression in stromal 

cells in oral squamous cell carcinoma (27); and RANK signaling in several breast cancer cell 

lines induces epithelial-mesenchymal transition, promoting cell migration and invasion (28). 
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To test the relationship between CXCL13 and RANK signaling in vitro; we first confirmed, 

as shown previously (27), that whilst 4T.12 cells expressed RANK receptor in vitro (Figure 

4B), but were not themselves the source of RANKL (Figure 4C).  Levels of over 200pg/ml of 

RANKL were observed in MSC conditioned media, supporting the hypothesis that the source 

of RANKL within the tumour is likely to be stromal (Figure 4C). Stimulation with CXCL13, 

but not CCL21, increased the expression of RANKL in MSC (paired t-test 50ng/ml vs 

control: P<0.01; Figure 4D & 4E).  We also confirmed that MSCs expressed CXCR5 as 

suggested by the above experiment (Supplementary Figure S4).  We next investigated if 

increasing concentrations of RANKL would increase 4T1.2 cells invasion. Addition of 

RANKL to 4T1.2 (between 10-100ng/ml) was observed to significantly increase the ability of 

the tumour cells to invade through the matrix (Figure 4F).   

To investigate the relationship between CXCL13 and RANKL expression in vivo, we 

analysed the changes in the levels of RANKL in the sera of 4T1.2 tumor-bearing mice at a 

number of timepoints after tumor establishment.  RANKL levels peaked at d18 (P<0.0001, 

unpaired t-test; Figure 4G), approximately 4d after the first serum peak in CXCL13 (Figure 

1H). In mice treated with anti-CXCL13, levels of RANKL at d14 were significantly reduced 

(P<0.001 unpaired t-test; Figure 4H), in support of the idea that CXCL13 drives RANKL 

production in vivo. A significant reduction in RANKL was also observed in anti-CCL21 

treated mice (P<0.001 unpaired t-test; Figure 4H).  

These findings led us to hypothesise that RANKL, like CCL21 and CXCL13, might promote 

metastasis of tumor cells to DLN. Treatment with anti-RANKL neutralizing antibody did not 

affect the growth of the primary tumor (Figure 4I). Immunohistochemical analysis of  DLN 

for tumor load revealed no metastasis in majority of antibody-treated mice (n = 5/7) and the 

mean area of tumor metastasis was lower in the antibody-treated mice than the controls 

(P<0.01, unpaired t-test; Figure 4J). RANKL blockade using a neutralising antibody did not 
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significantly affect the recruitment of NKp46
-
ILC3 into the primary tumors but the numbers 

in DLN were significantly lower, compared to the controls (P<0.05, one-way ANOVA; 

Figure 4K). 

 

RORt
+
ILC and their associated chemokines are present in the human breast cancer 

TME 

We further analysed the gene expression of RORt
+
ILC3-associated/lymphoid chemokines 

CXCL13, CCL19, and CCL21 and their receptors, CXCR5 and CCR7, in a subset of 234 

samples of breast cancer from the Molecular Taxonomy of Breast Cancer International 

Consortium (METABRIC) (29) (see Supplementary Table S3 for patient characteristics). 

Unsupervised hierarchical cluster analysis of the transcriptional profile in these samples 

revealed that this cohort could be categorized based on their expression of RORt
+
ILC3-

associated/lymphoid chemokines and their receptors (Figure 5A). “Basal-like” breast cancers 

(PAM50 intrinsic subtype assignments (30)) presented high expression of these genes (31/53 

basal-like tumors lie in the top-branch cluster, n=89; P=0.0007, two-tailed Fisher's exact test) 

(Figure 5A). Further cross validation of these results was seen in 4-independent breast cancer 

datasets (Supplementary Figure S5). RORt
+
ILC3-associated/lymphoid chemokine and their 

receptor genes were highly specific (no association with other lymphoid chemokine genes, 

such as the ligand-receptor pair CCL20-CCR6, which attract immature DC, effector/memory 

T-cells and B-cells) and showed significant internal pair-wise correlation (P<10
4
, Figure 5B).  

We next stained frozen primary tumor sections for markers for RORt
+
ILC3 (defined as 

RORt
+
CD127

+
CD3

-
), as we previously published (20).  RORt

+
ILC3 were present in 

approximately half of the sections examined (Figure 5C, 5D). These cells were in proximity 
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to CD3
+
T cells (Figure 5C) and found within TLS, as previously defined (31) 

(Supplementary Figure S6). We hypothesized that tumors with higher levels of RORt
+
ILC3-

associated chemokines would have a higher number of RORt
+
ILC3.  To test this, we 

performed a blinded study in primary breast cancer sections (total patients n=59). The 

number of RORt
+
CD127

+
CD3

-
 cells/mm

2
 (of total area/section) varied considerably from 

case to case (range 0–56/mm
2
) (Figure 5D) but patients with high tumor ILC3 counts were 

also likely to have a high gene expression score for the ILC3-associated chemokines (Figure 

5D; P<0.001, Spearman correlation permutation test). 

We next assessed the correlation of CXCL13 and CCL21 protein and gene expression levels 

with ILC3 scores. Fifty-nine cases with known ILC3 scores were stained for CXCL13 or 

CCL21 expression. For CXCL13 only stromal cells stained for this chemokine (Figure 5Ei).  

In contrast, CCL21 staining was positive for both tumoral and stromal cells.  We quantified 

the relationship between ILC3 and stromal CXCL13/CCL21 staining. ILC3 presence 

correlated positively with CXCL13 staining but not with stromal CCL21 (Figure 5Eii). These 

additional data strenghten our pre-clinical data (Figure 2), with CXCL13 up-regulation in 

stromal cells as a secondary event to the recruitment of ILC3 to the primary tumour. 

 

Tumoral RORt
+
ILC3 cell density correlates with lymphatic tumor cell invasion and 

DLN metastasis within basal-like and HER2-enriched breast cancer 

We next stained tumor sections for the lymphatic endothelial cell marker, podoplanin, and 

evaluated  sections for evidence of tumor cell invasion into lymphatics (Figure 6Ai). We 

considered lymphatic invasion to have occurred if at least one tumor cell cluster was clearly 

visible in the lymphatic vascular space (red arrow in Figure 6Ai).  RORt
+
ILC3 were present 

in 82% (14/17) of tumor samples with lymphatic tumor cell invasion but only in 27% (8/30)  
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of samples without lymphatic tumor cell invasion. Similarly, 73% (22/30) of samples without 

lymphatic tumor cell invasion had no RORt
+
ILC3 present in the tumor, whereas only 17% 

(3/17) of samples without RORt
+
ILC3 cells displayed lymphatic invasion (Figure 6ii; 

P<0.003, Fisher's exact test). We did not find an association between lymphatic invasion and 

CD3
+
T cells or with CD3

+
CD127

+
RORt

+ 
(most likely representing TH17 cells), 

strengthening the specificity of the correlation between RORt
+
ILC3 cells and lymphatic 

invasion (Table 2).   We next investigated if the association between RORt
+
ILC3 counts and 

lymphatic invasion translated into a high LN tumour burden (i.e. four or more metastatic LNs 

at surgical resection) within our dataset.  In basal-like breast cancer raised RORt
+
ILC3 

counts were found to also correlate with a higher burden of LN metastases (P=0.02, 

permutation-based Mann–Whitney; Figure 6B).  Given our in vitro and in vivo findings, we 

investigated whether LN burden was related to gene expression of CCL21 and CXCL13 in 

the primary tumor. We found that in basal-like breast cancers a high LN tumor burden was 

associated with significantly increased levels of CCL21 (P=0.0043; LN positive, 4+ vs. 0; 

two-tailed Mann–Whitney; Figure 6C). Although CXCL13 levels were also increased in 

patients suffering from a high LN burden, this association was not significant (P=0.15; Figure 

6D). These correlations were not statistically significant in other breast cancer subtypes 

(HER2+ve or Luminal A/B), suggesting that the proposed mechanisms may only operate in 

specific breast cancer subtypes. In a multivariate (Cox’s) proportional hazards model and 

taking basal-like and HER2-enriched tumors together, the RORt
+
ILC3 score achieved 84% 

prediction accuracy for high LN burden: higher than traditional clinicopathological 

parameters (e.g. grade, tumor size, receptor status; Figure 6E). 
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Discussion 

Recent years have seen a growing appreciation of the pleiotropic nature of the TME (32).  

The importance of ILC3s in normal lymphoid organogenesis has been accepted for long time 

but their role in the TME has only recently begun to be investigated. Work by Shields et al 

described, in a murine model of melanoma, a mechanism by which CCL21-expressing 

tumors recruit ILC3 cells, which transform the TME contributing to a tolerant milieu that 

promotes immune evasion (21). Study by Eisenring et al showed that RORγt
+
ILCs, are 

required for IL-12 to exert its anti-tumor activity (33). Similarly, a protective function of 

NKp46
+
ILC3 (distinct from the NKp46

-
ILC3) has been reported in lung cancers (34).  These 

findings are not necessarily at odds, since whether ILC3s promote or prevent cancer 

progression is likely to depend on the type of cancer and whether they recruit immune cells 

into a tolerogenic (21) or inflammatory (33) microenvironment. We report the presence of 

RORt
+
ILC3 in human breast cancers and that they have a previously unrecognized function 

in facilitating tumor invasion into the lymphatic system through modulation of the local 

lymphoid chemokine milieu. We show that ILC3 recruitment into a TNBC tumor model is 

CCL21-dependent, whilst CXCL13 regulates their clustering with stromal cells (see Figure 

7).  

The CCL21/CCR7 axis plays a role in the progression of different malignancies (35, 36). 

These studies focus on the direct effects of CCL21 on CCR7-expressing tumor cells, rather 

than on how CCL21 may modify the TME. We show that CCL21 is expressed both in 

primary human breast cancers and in a mouse model of TNBC. In the mouse model, the peak 

of CCL21 expression in tumors was closely followed by ILC3 recruitment, an association we 

show to be causal through its prevention by CCL21 blockade, consistent with the melanoma 

xenograft study correlating tumor expression of CCL21 and ILC3 cells recruitment (21). 
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CXCL13 was not required for ILC3 recruitment to tumors but was important for the 

induction of ILC3-MSC clustering and RANKL upregulation by MSC. MSC are recruited to 

tumors early in development via mechanisms reminiscent of those that operate in chronic 

wound healing (37, 38). Once activated, they secrete CXCL13, CCL21 and CCL19 and 

secrete lymphangiogenic factors such a VEGF-C (39). This interaction, in the TME, may 

promote neo-lymphangiogenesis, increasing the number of lymphatic vessels into which 

tumor cells are able to migrate and thus increasing opportunities for lymphatic metastases.  

In addition to its role in promoting clustering, CXCL13 stimulates increased RANKL 

production by MSC. This is likely to facilitate DLN metastasis by promoting epithelial-

mesenchymal transition in breast cancer cells, enhancing their ability to migrate and 

metastasize (28, 40). This explains the reduction in serum levels of RANKL observed in anti-

CXCL13 treated mice. ILC3 interaction with CXCL13-producing stromal cells may 

constitute a positive feedback, with CXCL13 reinforcing the ILC3-MSC interaction as shown 

in vitro and by intravital imaging.  These are likely to explain our observations that patients 

with tumor cell invasion into the lymphatics were more likely to have a higher RORt
+
ILC3 

score compared to patients without lymphatic vessel invasion, as well as the significant 

association between RORt
+
ILC3 counts and greater risk of an increased number of LN 

metastasis in basal-like breast cancer patients. 

CXCL13 is highly expressed in clinical samples from some breast cancer patients (41) but 

there is conflicting evidence on how it affects disease progression. While high CXCL13-

CXCR5 expression positively correlate with classical determinants of poor prognosis (41, 

42), it serves as a good prognostic marker within this high-risk subgroup of breast cancer 

patients (42-44). Within the TME, the role of immune cells and/or chemokines is particularly 

complex (45, 46).  Here, we report that, downstream of CCL21-mediated recruitment of 
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intra-tumoral ILC3, CXCL13 promotes lymphatic invasion of tumor cells via the RANK-

RANKL signalling pathway. However, CXCL13 is also a powerful chemoattractant for 

lymphocytes (47). This is in line with our finding that basal-like breast cancers, which 

frequently bear a prominent lymphocytic infiltrate, presented a high score for the lymphoid 

chemokine/chemokine receptor gene signature, and our data demonstrating a decreased 

number of tumor-infiltrating lymphocytes (TILS) in anti-CCL21 or anti-CXCL13-treated 

mice. Additionally, the presence of TILS and TLS are described as key prognostic and 

predictive markers for specific breast cancer subtypes (47-50). Therefore, the well-

established role of CXCL13 as a chemoattractant could explain why, in a subset of cases, it 

seems to play a protective role.  In our cohort of patients, CCL21 expression and 

RORt
+
ILC3 presence in the primary tumor were associated with increased DLN metastasis 

in basal-like breast cancer, but not in HER2+ve or luminalA/B subtypes. It is noteworthy that 

these data may not translate into worse prognosis for patients and additional studies are 

required to fully understand the clinical significance of these findings. 

One important consideration for any future development of chemokine-based therapeutic 

interventions is the interplay between the CCL19-CCL21/CCR7 and CXCL13/CXCR5 axes 

within tumors. Both have been implicated as important drivers of leukocyte trafficking and 

lymphoid organogenesis in physiological situations (51). However, it is important to make a 

distinction between the two chemokines in the pathological context of the TME since 

CXCL13, but not CCL21, is required for ILC3-MSCs clustering, which we proposed here to 

be an important regulatory mechanism in tumor cell migration through RANKL production 

by MSC.  

In summary, we propose that, in our tumor model, ILC3 are recruited to the tumor by CCL21, 

have a pivotal role in facilitating lymphatic vessel invasion by tumor cells and they do this 
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via two CXCL13-mediated positive feedback loops. Further investigation into how ILC3, 

MSC, CCL21, CXCL13 and RANKL are co-ordinated to establish a network of interactions 

between the tumor cells and their microenvironment is required. 
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Figure Legends 

Figure 1:  CCL21 recruits NKp46
-
ILC3 to tumors in a model of TNBC 
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A: Mice were inoculated subcutaneously with 10
6
 4T1.2 cells on d0. Control and tumor-bearing mice 

were culled on d10,12,14,18,20,24.  FACS analysis for NKp46
-
ILC3, CD3

+
T and CD19

+
B cells in 

tumors, DLN and NDLN (n=3/day). B:  Absolute number of NKp46
-
ILC3 in DLN and NDLN and 

cell counts/mg of tumor. Confocal micrographs of (C) primary tumor and (D) DLN in BALB/c mice.  

Yellow arrows point to ILC3.  Scale bars=15m. Absolute number of CD3
+
T cells (E) and CD19

+
B 

cells (F) in DLN and NDLN and cell counts/milligram of tumor.  G: CCR7 and CXCR5 expression 

by intratumoural ILC3, CD3
+
 and CD19

+
 cells. Levels of CCL21 (H) and CXCL13 (I) in tumors and 

serum at indicated time points. (n≥3/time point). J: NKp46
-
ILC3/mg of tumor at d14 after tumor cell 

implantation, treated with anti-CCL21, anti-CXCL13 or isotype control antibody (n≥3). Significance 

determined by one-way ANOVA and data represent means±SEM 

 

Figure 2: CXCL13 is required for clustering of NKp46
-
ILC3 and MSC in vitro and in vivo 
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A: Time-lapse microscopy of sorted splenic ILC3 co-cultured with MSC. Scale bars: upper panel= 

50μm; lower panel=20μm. B:  Representative phase contrast (upper panels) and binary images (lower 

panel) used for the quantification of cell clustering. The graph summarises the change in mean area of 

the field occupied by cells. C: NKp46
-
ILC3 co-cultured with MSC transfected with siRNA targeting 

CCL21, CXCL13 or control vector. D: i) MIW was surgically implanted on top of the developing 

tumor. ii) Schematic representation of the experimental plan for multi-photon imaging of MSC-

NKp46
-
ILC3 cell interaction. E:  Representative images (n=15 fields analyzed).  Scale bar=10μm. F: 
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Mean distances between the centre of imaged MSCs and NKp46
-
ILC3 are shown. Significance was 

determined using unpaired t-tests. 
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Figure 3: CCL21, CXCL13 and ILCs promote metastasis of tumor cells to DLN 

 

Tumour-bearing mice were treated with either anti-CCL21, anti-CXCL13 or isotype control 

antibodies. n=6 mice per treatment group. A: Tumour growth over time. B: Weight of inguinal DLN 

from mice at d21. C:  Immunohistochemistry (IHC) of DLN from tumour-bearing BALB/c mice at 

d21 using anti-pancytokeratin (brown). D: Quantification of the total area of metastasis per mm
2
 of 
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sectional area within LN at d21. E: IHC of DLN from tumour-bearing Rag1
-/- 

mice at d21 using anti-

pan-cytokeratin (brown).  Orange arrows highlight the pan-cytokeratin
+
 tumour cells.  F: 

Quantification of the total number of pan-cytokeratin
+
 tumour cells/mm

2
 of sectional area within LN 

at d21 (n≥3 per group).   G: FACS analysis for ILC in the DLN of isotype control and anti-CD90.2-

treated Rag1
-/-

 mice at d14. Gating as in Figure 1A. H: Pan-cytokeratin IHC (brown) of DLN of 

tumour-bearing Rag1
-/-

 mice to assess tumour load in ILC-depleted (anti-CD90.2-treated) and non-

depleted (isotype control-treated) mice at d21 (bilateral tumors in 3 mice per treatment group (n=6 per 

treatment group). The bar graphs show the total area of metastasis per mm
2
 of sectional area within 

LN. Scale Bar=100μm. Data represent means±SEM. 

Figure 4: CXCL13 induces RANK-RANK-L signaling  
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A: Cell invasion assay with 4T1.2 cells (white bars) and NIH3T3 cells (black bars, non-invasive 

control).  B: Confocal micrograph showing cytoplasmic and membranous staining of RANK (red) in 

4T1.2 cells. DAPI-stained nuclei are shown in blue.  C: Supernatants from co-culture experiments of 
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4T1.2 cells and MSCs were analysed after 48h to determine RANKL level by ELISA.  D:  RANKL 

expression in MSCs following stimulation by rCXCL13. Scale bar=50μm. E: RANKL concentration 

in MSC culture supernatants after stimulation with the indicated concentrations of rCXCL13 or 

rCCL21. Data represent means±SEM, paired t-test.  F: Cell invasion assay, as described in A, with 

4T1.2 stimulated with EGF and RANKL. Note: data on Fig 4A and 4F is the data from the same 

experiment.  G: RANKL serum concentrations were determined at the indicated time points after 

tumour inoculation. (n=3 mice/timepoint). H:  RANKL serum concentration at d14 in mice treated 

with neutralizing antibodies as indicated.  Data represent means±SEM, unpaired t-test. I:  Tumour-

bearing mice treated with either anti-RANKL or isotype control antibodies. The change in tumor 

volume with time after inoculation of 4T1.2 cells into the mammary fat pad is shown. J: 

Quantification of the total area of metastasis/mm
2
 of sectional area in DLN of tumour-bearing mice 

treated with anti-RANKL or isotype control.  Inset: representative IHC using anti-pancytokeratin 

(brown) to assess tumor burden in the anti-RANKL-treated cohort. K:  Absolute cell counts of 

NKp46
-
ILC3/milligram of tumour and within DLN from tumour-bearing mice treated with anti-

RANKL or isotype control antibody until d21. n≥3 mice/treatment group. (One-way ANOVA. Data 

represent means±SEM, unpaired t-test).   

Figure 5. RORt
+
ILC3 and their associated chemokines in the human breast cancer TME. 
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A: Hierarchical clustering of the expression of genes encoding lymphoid-associated chemokines and 

receptors in the Guy’s METABRIC data set (n=234). Columns represent patient samples, with 

dendrogram coloured according to the top-level cut-off point (black/red). PAM50 intrinsic subtype 

assignments are displayed below and association was determined using a two-tailed Fisher’s exact 

test.  B: Significance of pair-wise gene expression correlations for genes encoding lymphoid-

associated chemokines and receptors. C: H&E staining and confocal micrographs of fresh frozen 

section of a primary human breast cancer. RORt
+
ILC3 are defined as CD3

-
CD127

+
RORγt

+
. Scale 

bar=15μm. D:  Comparison of gene expression profiles and presence of RORt
+
ILC3. The heatmap 

illustrates relative expression of genes encoding RORt
+
ILC3-associated chemokines and receptors. 

Columns (samples, n=59) are ordered by increasing expression score and rows by hierarchical 

clustering. The ranks of ILC3 counts (cells/mm
2
) are depicted below, ordered from lowest to highest. 

E: i) IHC analysis for CXCL13 and CCL21 in human breast tumour samples.  ii) Associations 

between stromal staining for CXCL13 or CCL21 and the presence/absence of RORt
+
ILC3. The 

association of these two cytokines and ILC3 was determined using Fisher’s exact test.  

Figure 6:  Association of RORt
+
ILC3 and lymphatic invasion within the TME 
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A: i) IHC staining with lymphatic marker, podoplanin (brown) in primary human breast cancer tissue, 

cell nuclei are stained blue. Sections were examined for presence or absence of tumor cell invasion 

into lymphatics (red arrow) Scale bar=100μm. ii) Lymphatic invasion is associated with the presence 

of RORt
+
ILC3. The association between numbers of RORt

+
ILC3, CD3

+
T cells or 

CD3
+
CD127

+
RORt

+ 
cells with lymphatic invasion was determined using Fisher’s exact test. CD3 

low was defined as <100cells/mm
2
, CD3 high as >100cells/mm

2
.   B: Correlation between ILC3 count 



35 
 

and the presence of lymphatic metastasis.  (Mann Whitney-U-Test, is shown above the boxplots).  

Correlation between CCL21 (C) and CXCL13 (D) gene expression and lymphatic metastasis in the 

METABRIC dataset. Median-centred gene expression values are shown (arbitrary units). E: 

Prediction accuracy for LN burden amongst Basal/HER2-enriched tumours. Average validation 

accuracy is shown (red diamonds). Baseline accuracy using assignment of all values to the largest 

class is shown for comparison (grey). RORt
+
ILC3/mm

2
 achieves prediction accuracy of 84% using 

median threshold of 11.6/mm
2
. 

Figure 7: In a model of triple negative breast cancer, we report on the CCL21-mediated recruitment 

of ILC3 to tumors where they stimulate stromal cells to produce CXCL13. CXCL13 feeds back to 

promote further interactions between ILC3 and stromal cells leading to production of RANKL, which 

enhances tumor cell motility resulting in lymph node metastases.  

 

 

 


