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Abstract

Analysis of circulating tumor DNA (ctDNA) to monitor cancer
dynamics and detect minimal residual disease has been an area of
increasing interest. Multiple methods have been proposed but few
studies have compared the performance of different approaches.
Here, we compare detection of ctDNA in serial plasma samples
from patients with breast cancer using different tumor-informed
and tumor-na€ıve assays designed to detect structural variants
(SVs), single nucleotide variants (SNVs), and/or somatic copy-
number aberrations, by multiplex PCR, hybrid capture, and differ-
ent depths of whole-genome sequencing. Our results demonstrate
that the ctDNA dynamics and allele fractions (AFs) were highly
concordant when analyzing the same patient samples using differ-
ent assays. Tumor-informed assays showed the highest sensitivity
for detection of ctDNA at low concentrations. Hybrid capture
sequencing targeting between 1,347 and 7,491 tumor-identified
mutations at high depth was the most sensitive assay, detecting
ctDNA down to an AF of 0.00024% (2.4 parts per million, ppm).
Multiplex PCR targeting 21–47 tumor-identified SVs per patient
detected ctDNA down to 0.00047% AF (4.7 ppm) and has potential
as a clinical assay.
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Introduction

Circulating tumor DNA (ctDNA) has emerged as an effective and

minimally invasive biomarker for molecular profiling and the strati-

fication of patients to targeted therapy, detection of minimal resid-

ual disease (MRD), and monitoring tumor growth and treatment

response (Wan et al, 2017; Corcoran & Chabner, 2018). ctDNA is

comprised of fragments of tumor-derived DNA that can be found in

the plasma of cancer patients and often represents a small fraction

of the total circulating cell-free DNA. ctDNA levels can vary in dif-

ferent cancer types, and higher fractional concentrations of ctDNA

in plasma have been associated with larger tumor volume and more

advanced disease stages (Bettegowda et al, 2014; Newman

et al, 2014; Parkinson et al, 2016). In patients with early-stage can-

cer or with residual disease following treatment, ctDNA fractions

can be very low (< 0.01% variant allele fraction) and its detection

can be challenging, requiring sensitive methods for analysis (Gale

et al, 2022).

In recent years, different methods have been developed to detect

ctDNA and to distinguish it from non-cancerous cell-free DNA
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derived from other cells by analysis of tumor-specific genomic alter-

ations including single nucleotide variants (SNVs), structural vari-

ants (SVs), and somatic copy-number aberrations (SCNAs).

Techniques include digital PCR, targeted next-generation sequencing

(NGS) using multiplex PCR-based amplification or hybrid capture,

and whole-genome sequencing (WGS) (Diehl et al, 2008; Leary

et al, 2010; Forshew et al, 2012; Heitzer et al, 2013; Garcia-Murillas

et al, 2015; Newman et al, 2016). Additional studies have used epi-

genetic analysis to profile differentially methylated regions in cell-

free DNA and identify the tissue of origin (Shen et al, 2019; Liu

et al, 2020; Sadeh et al, 2021). In patients with low-burden disease,

the detection of ctDNA when only a few tumor-derived molecules

may be present in blood can be challenging and is often limited by

stochastic sampling (Wan et al, 2017). In recent years, the use of

next-generation sequencing and advanced error-suppression

methods, including the incorporation of unique molecular identifiers

(UMIs) to tag individual molecules, have enabled assays to become

increasingly more sensitive. Sensitivity can be improved further by

analysis of a higher number of ctDNA molecules either through the

use of larger volumes of blood, minimizing the loss of molecules

during library preparation steps, and/or targeting a higher number

of tumor-specific mutations (Newman et al, 2016; Vollbrecht

et al, 2018; McDonald et al, 2019; Streubel et al, 2019; Wan

et al, 2020, 2021; Zviran et al, 2020; Kurtz et al, 2021; Flach et al,

2022; Gale et al, 2022).

Using a tumor-informed approach, by prior sequencing of tumor

biopsy samples to identify multiple patient-specific mutations, the

development of personalized assays has enabled sensitive detection

of SNVs (Coombes et al, 2019; McDonald et al, 2019; Wan

et al, 2020; Magbanua et al, 2021). Wan et al. reliably detected

ctDNA at an allele fraction (AF) of 0.001% using such an approach,

coupled with analysis involving the INtegration of VAriant Reads

(INVAR), which combines error-suppression and signal-enrichment

methods based on the fragment size of ctDNA to enhance the sensi-

tivity of detection (Wan et al, 2020). In order to increase the number

of loci analyzed, studies have interrogated somatic copy-number

aberrations (SCNAs) using shallow whole-genome sequencing

(sWGS), a tumor-na€ıve approach that does not require prior tumor-

sequencing information (Heitzer et al, 2013; Douville et al, 2020).

Structural variants (SVs) have been less well studied but have the

potential to be highly sensitive and specific biomarkers. SVs present

in tumor DNA consist of rearrangements of genomic sequences that

do not naturally occur in normal cells; therefore, their analysis can

avoid confounding background signal which is observed when ana-

lyzing single-base changes that may result from PCR and/or

sequencing errors. However, identifying SVs remains a challenge

and there are much fewer events in the genome compared to SNVs

(Li et al, 2020). Clinical assays have been developed that target

disease-specific structural rearrangements such as ALK and ROS1

gene fusions, which have enabled non-small-cell lung cancer

(NSCLC) patients harboring these mutations to be effectively treated

with tyrosine kinase inhibitors (Lanman et al, 2015; Plagnol

et al, 2018). Two early studies demonstrated the ability to analyze

ctDNA using patient-specific SVs (Leary et al, 2010; McBride

et al, 2010), however, this approach has not currently been widely

adopted. Once identified by prior tumor sequencing, assays

targeting SVs can be applied for monitoring ctDNA (Olsson

et al, 2015; Harris et al, 2016; Kim et al, 2019).

While a wide range of techniques can be used for ctDNA analysis,

there have been few studies comparing the sensitivity of detection in

the same samples to assess their relative performance (Thress

et al, 2015; Kuderer et al, 2017; Stetson et al, 2019). Here, we have

developed different assays to detect and quantify ctDNA in plasma

samples from patients with early- and late-stage breast cancer,

targeting a range of genomic alterations (SVs, SNVs, and SCNAs) and

using different methods for library preparation. We applied tumor-

informed targeted sequencing approaches to analyze patient-specific

SVs and/or SNVs using multiplex PCR (SV-multiplex PCR) and hybrid

capture (SV-hybrid capture and SNV-hybrid capture). In addition, we

used whole-genome sequencing at different sequencing depths of cov-

erage (sWGS: shallow WGS at 1.2× mean coverage; modWGS: moder-

ately deep WGS at 20× mean coverage; and deepWGS, at 399× mean

coverage) to analyze patient-specific SVs (SV-modWGS and SV-

deepWGS) and SNVs (SNV-modWGS and SNV-deepWGS), as well as

a tumor-na€ıve approach to analyze copy-number aberrations (SCNA-

sWGS, SCNA-modWGS, and SCNA-deepWGS).

Results

Patients and samples

Primary or metastatic tumor tissue (n = 7), matched buffy coat

(n = 7), and serial plasma samples (n = 54) were collected from

seven patients with breast cancer, with either early-stage (n = 4) or

late-stage (n = 3) disease, recruited to the Personalized Breast Can-

cer Programme (PBCP) (Table EV1). As controls, we used 19 plasma

samples from healthy donors (18 samples from individual donors

and one pool from five individuals).

The study design is shown in Fig 1. Whole-genome sequencing

(WGS) was performed on DNA extracted from either primary or

metastatic tumor tissue and on germline DNA from each patient.

Patient-specific SVs and SNVs were identified and used to design

tumor-informed assays to detect ctDNA in plasma samples, either

by targeted sequencing (multiplex PCR and hybrid capture) or by

WGS at different depths of coverage (sWGS, modWGS, and

deepWGS). Tumor-informed approaches included the analysis of

SVs by multiplex PCR followed by sequencing (SV-multiplex PCR),

and the analysis of both SVs and SNVs in whole-genome sequencing

data at different depths (SV-modWGS, SNV-modWGS, SV-

deepWGS, and SNV-deepWGS) and from targeted regions captured

by hybridization (SV-hybrid capture and SNV-hybrid capture). Mul-

tiplex PCR, hybrid capture, and sWGS were used to analyze a total

of 54 plasma samples collected from the seven patients during the

course of treatment. ModWGS was performed on a subset of 21

samples that were downsampled to 600 M reads, which included 12

samples that were also analyzed by deepWGS (mean coverage

depth 399×) prior to downsampling. SCNAs were evaluated using a

tumor-na€ıve approach (SCNA-sWGS, SCNA-modWGS, and SCNA-

deepWGS).

Whole-genome sequencing of tumor and germline buffy coat
DNA to identify patient-specific SVs and SNVs

Whole-genome PCR-free libraries were prepared from tumor and

matched buffy coat DNA from the seven breast cancer patients, and
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sequenced on a HiSeqX (Illumina). The median unique sequencing

coverage depth was 116× for tumor and 39× for buffy coat samples

(Table EV2).

Structural variants were identified by analysis of WGS tumor and

buffy coat data using Manta (Chen et al, 2016). A total of 415 high-

confidence SVs (31–156 per patient) were identified by matching

calls to copy-number steps (breakpoints or transitions). The

predicted SV sequences were then evaluated by the analysis of

sequencing data from tumor tissue and matched buffy coats from all

patients by SV-multiplex PCR and SV-hybrid capture. The precise

breakpoint sequences were confirmed in 99% (409/415) of the SVs.

The remaining six SVs included four with no reads observed in

tumor tissue or any plasma sample using any of the assays (P-IA-

02_R209, P-IV-02_R019, P-IV-03_R253, and P-IV-03_R295), and two

that had non-specific amplification, with high homology to Alu/SINE

repeat regions (P-IIA-02_R048 and P-IV-03_R353); P-IIA-02_R048

was the only SV with sequencing reads observed in buffy-coat DNA.

These six SVs were excluded from further analyses in any assay

(Tables EV2 and EV3). The Circos plots (Gu et al, 2014) shown in

Fig EV1 detail the patient-specific SVs identified in each of the seven

patients and indicate which were targeted by the different ctDNA

assays.

The WGS tumor data were analyzed in comparison to the

matched buffy coat using Mutect2 (Broad Institute, 2022) and

Strelka (Saunders et al, 2012) variant callers. Low-complexity SNVs

were excluded as well as variants present within the gnomAD germ-

line resource (Karczewski et al, 2020) or in a pool of buffy coat sam-

ples from 200 breast cancer patients. After applying the selected

filters (see Methods), between 4,153 and 16,015 SNVs were identi-

fied per patient (Tables EV2 and EV4).

Figure 1. Overview of the study design.

Longitudinal plasma samples (n = 54) from seven breast cancer patients, with either early-stage (n = 4) or late-stage (n = 3) disease, were analyzed using different
ctDNA assays. As controls, plasma samples (n = 19) from healthy donors were analyzed. Whole-genome sequencing (WGS) of tumor and matched buffy coat DNA was
first performed to identify patient-specific structural variants (SVs) and single nucleotide variants (SNVs). These were used to define tumor-informed ctDNA assays includ-
ing targeted sequencing and whole-genome sequencing (WGS) to different depths of sequencing. Targeted sequencing to evaluate SVs and SNVs (SV-multiplex PCR, SV-
hybrid capture, and SNV-hybrid capture) was performed in all 54 patient plasma samples. WGS at various depths was performed in a subset of 21 samples that were
then downsampled to 600 M reads (modWGS, mean coverage depth 20×) prior to further analyses; these included 12 samples with deep sequencing (deepWGS, mean
coverage depth 399×) analyzed before and after downsampling. As a tumor-informed approach, SVs and SNVs were analyzed in the modWGS (SV-modWGS and SNV-
modWGS) and the deepWGS assays (SV-deepWGS and SNV-deepWGS). Somatic copy-number aberrations (SCNAs) were evaluated using WGS as a tumor-na€ıve approach
(not requiring prior knowledge of the tumor) by shallow WGS (SCNA-sWGS, mean coverage depth 1.2×, 54 samples), modWGS (SCNA-modWGS, 21 samples), and
deepWGS (SCNA-deepWGS, 12 samples).
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Tumor-informed assays: ctDNA assays targeting SVs and SNVs

SV-multiplex PCR assays
SV-multiplex PCR: Assay optimization and performance testing using a

tumor dilution series

Patient-specific SV-multiplex PCR assays were developed for each

patient using primers designed to flank the SV breakpoint sequences

and were tested on tumor and buffy coat. One primer pair (P-IIA-

02_R048) was removed following testing in single plex due to ampli-

fication observed when using buffy coat DNA as template. As a

result of testing in multiplex, 53 primer pairs were removed due to

either no SV reads generated in amplification of tumor DNA from

the appropriate patient or due to off-target reads observed. The opti-

mized patient-specific primer pairs were included in the final

SV-multiplex assay pools, each targeting between 21 and 47 patient-

specific SVs (Fig EV1, Tables EV2 and EV5) and RPP30_97bp

(amplifying a 97 bp region from the RPP30 housekeeper gene) as an

internal positive control.

To assess the performance of the seven patient-specific SV-

multiplex PCR assays, a tumor DNA dilution series experiment was

performed for each patient-specific assay, testing a range of tumor

DNA dilutions between 10% AF and 0.0004% AF and using

matched buffy coat and no template control (NTC; water) as nega-

tive controls. Then, patient-specific SV-multiplex PCR assays were

performed on the 54 patient plasma samples, using plasma from

healthy donors (a pool of five individuals) and NTC as negative con-

trols. The number of samples assayed and paired reads generated

per library are shown in Table EV6.

Data generated by analysis of the tumor dilution series are

shown in Table EV7, including the observed and expected AFs for

each dilution and number of SVs detected in each well in which

every dilution was divided. ctDNA was not detected in buffy coats

or NTCs. The correlation between the observed and expected AFs of

each sample using the different patient-specific assays is shown in

Fig 2. Linear regression analysis indicated that all the patient-

specific SV-multiplex PCR assays are quantitative and linearly

related (Fig 2). The theoretical limit of detection for each of the

patient-specific SV-multiplex PCR assays is linearly related to the

number of patient-specific SVs targeted and the number of input

cell-free DNA amplifiable copies and was calculated as [1/(4,500

input cell-free DNA copies × number of patient-specific SVs

targeted)]. The theoretical limit of detection ranges from 0.00047%

AF (P-IV-03, 47 SVs targeted) to 0.0011% AF (P-IA-02, 21 SVs

targeted), and is represented with the horizontal and vertical dotted

lines in Fig 2. In all patients, ctDNA was detected in tumor dilutions

with an expected AF down to 0.003%. Below this allele fraction, the

number of patient-specific SVs expected to be detected ranged

between 0 and 2, therefore, the detection of tumor DNA and the AF

Figure 2. Relationship between observed and expected allele fractions (AFs) in tumor dilution series with SV-multiplex PCR.

Numbers in brackets indicate the number of SVs (structural variants) targeted by SV-multiplex PCR in each patient. Tumor dilutions ranged from 0.0004% to 10% AF.
The vertical and horizontal dashed lines represent the theoretical limit of detection of each assay based on the number of analyzed SVs and input cell-free DNA copies.
The diagonal dotted line represents the unit line. The solid black line shows the linear regression fit. The P-values of the slope parameter Wald t-tests as well as the lin-
ear model-fit R-squared estimates are also indicated.
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quantification in these dilutions are subject to sampling error. In

tumor dilutions at an expected AF of 0.001%, ctDNA was detected

in four of seven patients (observed AF of 0.0008% in P-IA-01,

0.001% in P-IA-02, 0.004% in P-IIA-01, and 0.002% in P-IV-02). In

tumor dilutions at an expected AF of 0.0004%, ctDNA was detected

in three of seven patients (observed AF of 0.001% in P-IA-02,

0.0005% in P-IV-01, and 0.002% in P-IV-02).

Analysis of serial plasma samples using the SV-multiplex PCR assays

As each of the patient-specific SV-multiplex PCR assays was shown

to be linear and quantitative, experiments were performed to ana-

lyze cell-free DNA extracted from 54 serial plasma samples collected

from the seven breast cancer patients. Each patient-specific assay

was also performed in buffy coat from the same patient, plasma

from a pool of five healthy donors, and water as a no-template con-

trol (NTC). The number of reads in plasma samples from patients

and controls before applying the filtering for detection are shown in

Table EV8. The number of input copies was deliberately limited to

induce a digital nature to the assay, therefore the majority of SV tar-

gets (defined as a given SV in a given replicate) had no reads. The

overall median in all cases was therefore 0, so the value reported in

Table EV8 is the median number of reads for all SV targets with any

reads. Details on how data were analyzed, including filtering and

the detection criteria used, can be found in Materials and Methods.

Overall, ctDNA was detected in 34/54 (63%) longitudinal plasma

samples using the patient-specific SV-multiplex PCR assays, and

was not detected in any of the controls. A median of 72 positive

reads (range 1–20,887 reads) was generated from the plasma cell-

free DNA samples. In patients with late-stage (IV) disease, ctDNA

was detected in 100% (30/30) of the plasma samples analyzed

(Fig 3A, Tables EV9 and EV10). In patients with early-stage (I–II)

disease, ctDNA was detected in 4/24 (16%) of the samples, includ-

ing 3 of the 4 baseline samples (all except P-IA-01) and the plasma

samples collected on the same day before and after surgery from

patient P-IA-02. The lowest AF observed was 0.00047% (4.7 parts

per million, ppm) in P-IV-03 plasma timepoints 2, 5, and 7. This AF

is at the theoretical limit of detection in this patient, with 1 SV

detected in plasma out of a possible estimated 211,500 targets (47

SVs targeted × input of 4,500 copies). ctDNA detection for these

samples is based on the detection of a single-input mutant molecule

and, therefore, the AF quantification is subject to stochastic nature

of sampling and has a large range of uncertainty. Indeed, ctDNA

was initially not detected in plasma timepoint 3 from this same

patient when 4,500 amplifiable copies were assayed but detected

when the same sample was re-assayed using 27,000 copies, with an

observed AF of 0.00079% (7.9 ppm, 10 SVs detected). For five other

plasma samples, analysis was performed using an input of >4,500

amplifiable copies (9,000–36,000 copies), but ctDNA was not

detected using these higher-input amounts (Table EV10). In all

plasma samples from healthy controls and buffy coats, 4,500 ampli-

fiable copies were assayed.

SV-hybrid capture and SNV-hybrid capture assays
Sequencing libraries were prepared using SureSelectXT HS (Agilent)

from fragmented tumor DNA from the 7 breast cancer patients,

matched fragmented buffy coat DNA, and plasma cell-free DNA

from 54 patient samples and 18 individual healthy donors. Hybrid

capture was performed using the appropriate bait set for each

patient. Hybrid capture libraries from plasma samples were

sequenced to a mean unique depth of 471× (range 62× – 1,063×).

Sequencing information showing the median paired reads generated

from patients and control samples is shown in Table EV6.

SV-hybrid capture analysis of serial plasma samples

Structural variants were analyzed in plasma from 54 patient samples

and 18 healthy donors using SV-hybrid capture (Table EV2),

targeting between 30 and 153 per patient (409 in total). A median of

18 patient-specific reads per SV (range 1–1,115 reads) were

observed for the appropriate patients. The number of reads

observed per SV in patient plasma samples and healthy controls

before applying any filtering for detection can be found in

Table EV11. Details on how data were analyzed and the detection

criteria used can be found in Materials and Methods. With the SV-

hybrid capture assay, ctDNA was detected in 20/30 (67%) of the

samples from patients with late-stage disease, including plasma

timepoint 1 from all three patients (Fig 3B, Tables EV9 and EV10).

In samples from patients with early-stage disease, ctDNA was

detected only in timepoint 1 from P-IIA-01 and P-IIA-02. ctDNA was

not detected in any of the healthy plasma controls. The lowest allele

fraction obtained with this assay was at 0.016% AF for P-IV-03

plasma timepoint 5. This is the patient with the highest number of

SVs targeted (n = 153) and, therefore, had the lowest theoretical

limit of detection.

SNV-hybrid capture analysis of serial plasma samples

SNV-hybrid capture was performed in tumor and buffy coat from

the seven patients, in plasma from 54 patient samples, and in

plasma from 18 healthy donors. Analyses were performed using

INVAR (Wan et al, 2020). A subset of 1,347–7,491 SNVs (unique to

a single patient) were targeted per patient in plasma, matched

tumor, and matched buffy coat (Tables EV2 and EV4), and all SNVs

were tested in the 18 healthy controls. Sequencing data from poten-

tially duplicated reads were collapsed using minimal family sizes of

2, 3, and 5 for comparison purposes (Table EV12). Family sizes indi-

cate the minimum number of sequencing reads required to generate

a consensus sequence. A consensus sequence represents a family of

paired reads with the same fragment end position and same UMI

and allows the reconstruction of original biological molecules by

identifying and removing PCR and sequencing errors (University of

Michigan, 2016). Specificity was measured on all unrelated samples

(healthy samples and samples from patients where the particular

mutations were not expected to be present). A specificity of >95%

was used to classify the patient-specific samples and limit the false-

positive rate. The specificity increased when increasing the family

size, although as expected the total number of molecules retained

for analysis decreased. With family size 2, ctDNA was detected in

34/54 (63%) samples at INVAR specificity > 95%. With family sizes

3 and 5, ctDNA was detected in 36/54 (67%) of samples at INVAR

specificity > 95% as two samples with specificities of 92% and 91%

in family size 2 had specificities exceeding 95% in family sizes 3

and 5 (Table EV12). The data we present in method comparisons

are from read collapsing using family size 3, as this resulted in high

retention of molecules for analysis and high specificity. At the

patient-specific loci, in the seven tumors, the median allele fractions

and interquartile ranges were P-IA-01: 30.0% (18.9–38.0%); P-IA-

02: 14.3% (9.1–18.9%); P-IIA-01: 20.0% (11.5–26.2%); P-IIA-02:
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Figure 3. ctDNA detection and fractions using the different ctDNA assays.

ctDNA fractions are plotted as an allele fraction for SV/SNV assays and as tumor fraction for SCNA assays.
(A–C) Targeted assays and (H) shallow WGS (sWGS, mean depth 1.2×) were performed in all plasma samples (n = 54), (D, F, I) moderately deep WGS (modWGS, mean
depth 20×) in a subset of 21 plasma samples, and (E, G, J) deep WGS (deepWGS, mean depth 399×) in a subset of 12 samples (included also in modWGS). Plots (A–J) show
the ctDNA fraction from each individual assay. (A) SV-multiplex PCR assay: all detected plasma samples were assayed using up to 4,500 cell-free DNA amplifiable copies
except patient P-IV-03 plasma timepoint 3, which was detected after increasing the input amount to 27,000 cell-free DNA copies; (B) SV-hybrid capture assay; (C) SNV-
hybrid capture assay: patient P-IA-02 plasma timepoint 3 and timepoint 4 were detected only after applying INVAR size-weighting feature; (D) SV-modWGS assay; (E) SV-
deepWGS; (F) SNV-modWGS: patient P-IA-02 plasma timepoint 4 was detected only after applying INVAR size-weighting feature; (G) SNV-deepWGS; (H) SCNA-sWGS
assay: patient P-IV-01 plasma timepoint 1 was detected only after in silico 90–150 bp size selection; (I) SCNA-modWGS assay: patient P-IV-02 plasma timepoint 1 was
detected only after in silico 90-150 bp size selection; and (J) SCNA-deepWGS.
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31.9% (16.5–39.1%); P-IV-01: 16.8% (11.7–25.3%); P-IV-02: 36.8%

(16.1–44.6%) and P-IV-03: 23.8% (15.7–36.9%). In each buffy coat,

the median observed allele fraction was zero (the upper bound of

the interquartile ranges in all cases was less than 0.5%).

Of the 4,500 amplifiable copies of cell-free DNA (measured by

dPCR using the RPP30_97bp amplicon) used as input for patient

samples and controls, the number of unique copies sequenced per

locus was between 103 and 757. Given that the dPCR assay quan-

tifies single strands of DNA, this indicates that a mean of 15%

starting amplifiable DNA molecules produced useable sequencing

results after library preparation, capture, and sequencing

(Table EV13). Across all the targeted loci, this equated to a mean of

1.3 million molecules analyzed. INVAR analysis includes a patient-

specific outlier suppression filter (which removes signal from one

locus if not consistent with the distribution of the remaining

loci) designed for low AF samples. To avoid underestimation of the

AF in stage IV patients where the AF was expected to be high (P-IV-

01, P-IV-02, and P-IV-03), the calculation of the AF excluded this

filter when the number of loci detected before its application was

> 25%. This included the 14 samples with the highest AF

(Table EV13).

At a specificity > 95%, ctDNA was detected in all samples from

patients with late-stage disease and 6/24 (25%) of samples from

patients with early-stage disease, including the baseline samples

from 3/4 patients (all except P-IA-01) and samples collected before

and after surgery from patient P-IA-02 (Fig 3C, Tables EV9 and

EV10). Table EV14 shows the number of mutant reads initially

observed (when the bam file is summarized by pileup) prior to

INVAR analysis, in comparison to the number observed after INVAR

filtering. INVAR uses custom error suppression and is designed to

enrich tumor-specific reads and remove noisy loci where mutant

reads are less likely to originate from the tumor. After INVAR filter-

ing, healthy or unrelated samples had low signal (median of 0

mutant reads, range 0–10), whereas detected samples had a median

of 808 mutant reads (range 8–118,739) across the samples analyzed.

ctDNA was detected in P-IA-02 plasma timepoints 3 and 4 after

applying the INVAR size-weighting feature, which gives greater

weight to molecules with a size range similar to the size distribution

of ctDNA and, therefore, boosts the signal in samples with low

levels of ctDNA. Overall ctDNA was detected in 36/54 (67%) sam-

ples using the SNV-hybrid capture assay and INVAR. The sample

detected with the lowest AF was P-IA-02 plasma timepoint 3 at

0.00024% AF (2.4 ppm).

Tumor-informed assays: targeted analysis of known SVs and
SNVs using whole-genome sequencing

Given the cost of sequencing, WGS at various depths of sequencing

(range 15× – 505×) was performed on a subset of 21 plasma samples

from patients and 4 individual healthy donors. To reduce variation

due to sequencing depth differences, data were randomly down-

sampled to 600 M reads (mean sequencing depth 20×) for the

modWGS assay, including 21 plasma samples from patients and 4

from individual healthy donors. Of these, 12 patient plasma samples

were originally sequenced to a mean unique depth of 399× (range

267× – 505×), prior to downsampling, for the deepWGS assay. The

number of samples assayed and paired reads generated with each

assay can be found in Table EV6.

SV analysis of serial plasma samples using SV-modWGS and SV-
deepWGS
A total of 409 structural variants (between 30 and 153 per patient)

were analyzed with SV-modWGS and SV-deepWGS (Table EV2). In

the SV-modWGS assay, 21 plasma samples from patients and 4 from

individual healthy donors were analyzed. Given that the analyzed

SVs are patient-specific mutations but genome-wide sequencing was

performed on all samples, we were able to additionally leverage the

use of other patients’ samples as controls. The number of reads

observed per SV in plasma samples and healthy controls before

applying any filtering for detection can be found in Table EV11.

Details on how data were analyzed and the detection criteria used

can be found in Materials and Methods. No reads were observed in

any healthy donor plasma sample but one non-specific read from a

different patient was observed when analyzing SVs from Patients P-

IV-01 and P-IV-02, which may be due to index hopping of sample

barcodes within the same sequencing lane. For the AF calculations,

all patient-specific reads were considered. ctDNA was only detected

in samples from patients with late-stage disease, with an overall

detection rate of 48% (10/21) (Fig 3D, Tables EV9 and EV10).

ctDNA was not detected in early-stage samples or healthy controls.

The lowest allele fraction detected was at 0.02% AF in P-IV-03

plasma timepoint 6. This patient had the highest number of SVs

targeted (n = 153) and, therefore, the lowest theoretical limit of

detection.

In the SV-deepWGS assay, 12 plasma samples from patients were

run in different sequencing lanes and no non-specific reads were

observed in any sample (Table EV11). Here, we were also able to

leverage the use of other patient samples as controls. Patient-

specific SVs were observed in 75% (9/12) of the samples, including

3/4 samples from patients with early-stage disease and 6/8 samples

from patients with late-stage disease (Fig 3E, Tables EV9 and EV10).

The lowest AF detected with this assay was 0.0013% in P-IV-03

plasma timepoint 2, corresponding to the patient with the highest

number of SVs targeted (n = 153).

SNV analysis of serial plasma samples using SNV-modWGS and
SNV-deepWGS
All patient-specific SNVs identified in WGS of the tumor and buffy

coat and passing the filters of Mutect2 or Strelka were analyzed in

SNV-modWGS and SNV-deepWGS data using the INVAR pipeline

(Wan et al, 2020), analyzing between 4,153 and 16,015 SNVs per

patient (Tables EV2 and EV4). In the SNV-modWGS assay, 21

plasma samples from early- and late-stage patients and 4 from indi-

vidual healthy donors were analyzed. In addition to using the data

from healthy donors, other patients’ samples could be used as

controls at loci where they were known to not be mutated. At a

specificity > 95%, ctDNA was detected in all samples analyzed from

early-stage patients (5/5) with an overall detection rate of 81%

(17/21), (Fig 3F, Tables EV9 and EV10). Using the likelihood ratio

scores, thresholds were selected (as described in Statistical Consid-

erations in Materials and Methods). Patient P-IA-02 plasma sample

timepoint 4 was detected at the required specificity only after size

selection (specificity of 94.3% before size selection and 97.2% after

size selection) and is the sample with the lowest AF detected at

0.0098% AF. In modWGS for all the cases, there are more mutant

reads in detected samples than undetected, unrelated, and healthy

samples prior to INVAR analysis (Table EV14). After INVAR
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filtering, the number of mutant reads in healthy and unrelated sam-

ples was low (median 0 and range 0–28 reads), whereas detected

samples had a median of 366 (range 12–21,546) mutant reads across

the samples analyzed.

In the SNV-deepWGS assay, 12 plasma samples from early- and

late-stage patients were analyzed. In these assays, ctDNA was

detected in all samples analyzed from early-stage patients (4/4) with

an overall detection of 92% (11/12) (Fig 3G, Tables EV9 and EV10).

The sample with the lowest AF detected was P-IV-01 plasma time-

point 2 with ctDNA detected at AF of 0.0011%. The number of

mutant reads before and after INVAR filtering is shown in

Table EV14. The majority of noisy loci were removed by INVAR fil-

ters such that after INVAR, unrelated samples had low signal

(median of 0 mutant reads and range 0–63), whereas detected sam-

ples had a median of 1,002 mutant reads (range 26–103,000) across

the samples analyzed.

Tumor-na€ıve assays: whole-genome sequencing assays
evaluating SCNAs

In the sWGS assays, whole-genome libraries prepared from the

seven tumor and buffy coat samples, 54 patient plasma samples,

and 18 healthy donor samples were sequenced to a mean 1.2× cov-

erage (range 0.6× to 1.8×; Table EV6). In all of the SCNA assays,

ichorCNA (Adalsteinsson et al, 2017) was used to evaluate the pres-

ence of copy-number aberrations and estimate the tumor fraction in

plasma (from patients and healthy donors), tumor tissue and buffy

coat samples, using the recommended detection threshold of 3%

(Fig 3H–J). To enrich the signal from tumor-derived ctDNA, in silico

size selection of 90-150 bp fragments was also performed in plasma

samples, as previously described (Mouliere et al, 2018). As size

selection increases the ichorCNA value for all samples, size-selected

samples were classified as detected if SCNAs were observed and

were concordant with those in sWGS of tumor tissue of the appro-

priate patient, while reporting the tumor fraction calculated prior to

size selection (Table EV10). No SCNAs were detected in healthy

control samples before size selection and all had lower ichorCNA

values than in the patient samples detected after size selection. The

median and range of observed ichorCNA values are shown for

patient and healthy plasma samples in Table EV15.

SCNA-sWGS of tumor, buffy coat, and serial plasma samples before
and after in silico size selection
SCNA-sWGS assays were performed on tumor and buffy coat from

the seven patients as well as in plasma from 54 samples from

patients and 18 healthy donors.

Before in silico size-selection, ctDNA was detected with SCNA-

sWGS in 12/54 plasma samples, and the lowest estimated tumor

fraction observed in a plasma sample with ctDNA detected was

3.5% (P-IV-02 plasma timepoint 1) (Fig 3H). ctDNA was not

detected in any of the healthy plasma controls. Specific SCNAs

could be observed in all samples with ctDNA detected and the pro-

files were concordant between different plasma samples and the tis-

sue from the same patient (Fig EV2). SCNA aberrations could be

observed in all seven tumor samples, with a tumor fraction between

36% and 87%. All buffy coats showed flat profiles and were classi-

fied as undetected by ichorCNA (all with tumor fraction = 0). Due

to its GC richness, false positives are expected in chromosome 19

and can be observed on the buffy coat of P-IV-02 (Straver

et al, 2014).

After in silico size selection, SCNAs were observed in one addi-

tional plasma sample (patient P-IV-01 plasma timepoint 1, Fig 4A–

D) that had a non-size-selected tumor fraction below the threshold

of detection for ichorCNA. The SCNAs observed in this plasma sam-

ple following in silico size-selection-matched copy-number profiles

observed in tumor tissue of the same patient (Fig EV2). Overall,

ctDNA was detected with SCNA-sWGS in 13/54 plasma samples, all

from patients with late-stage disease (Fig 3H, Tables EV9 and

EV10). All detected samples had higher ichorCNA values than non-

detected samples and healthy controls. The median and range of

values are shown in Table EV15.

SCNA-modWGS analysis of serial plasma samples before and after
in silico size selection
SCNA-modWGS was performed in 21 plasma samples from patients

and 4 from individual healthy donors. Before in silico size selection,

ctDNA was detected using SCNA-modWGS in 6/21 samples, and the

lowest estimated tumor fraction observed was at 4.3% in P-IV-01

plasma timepoint 1. ctDNA was not detected in any of the healthy

plasma controls. The SCNAs observed were concordant between dif-

ferent plasma samples and tumor tissue from the same patient in

the different SCNA assays (Fig EV2). After in silico size selection,

SCNAs were observed in one additional plasma sample (P-IV-02

plasma timepoint 1) (Figs 3I and 4E–H). Overall, ctDNA was

detected with SCNA-modWGS in 7/21 samples (Fig 3I, Tables EV9

and EV10). All detected samples had higher ichorCNA values than

non-detected samples and healthy controls, and the median and

range of values are shown in Table EV15.

SCNA-deepWGS analysis of serial plasma samples before and after
in silico size selection
In the SCNA-deepWGS, 12 plasma samples from patients were ana-

lyzed. ctDNA was detected in 3/12 samples prior to in silico size

selection, with the lowest tumor fraction observed at 7.5% in P-IV-

01 plasma timepoint 11 (Fig 3J, Tables EV9 and EV10). SCNAs were

observed in all these samples and were concordant between differ-

ent plasma samples and tumor tissue from the same patient in the

different SCNA assays (Fig EV2). After in silico size-selection SCNAs

were not observed in any additional sample. The median and range

of values are shown in Table EV15.

Comparison of the different ctDNA assays

Figure EV3 and Table EV9 summarize and compare the performance

of the assays described above. In samples where ctDNA was

detected, similar ctDNA dynamics were observed using the different

assays (Fig EV3A–D). The subset of most sensitive assays is also

shown in Fig EV4, and demonstrates the relationship between

ctDNA dynamics and clinical treatment over time. To further com-

pare the assays, linear regression was performed using Pearson cor-

relation, with SNV-hybrid capture used as the reference assay as

this had the highest number of samples detected. Results shown in

Fig 5 highlight the strong correlation between the AFs and tumor

fractions estimated using the different assays. SCNA-modWGS

(R = 0.90, P = 0.053) and SCNA-deepWGS (R = 0.98, P = 0.12)

showed a similar trend but did not reach significance level of 0.05,
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likely due to the low number of samples detected (7/21 and 3/12,

respectively).

Comparison of the targeted sequencing assays
In our comparison, SNV-hybrid capture (Fig 3C) was the most sensi-

tive assay, detecting ctDNA in 67% (36/54) of the samples, down to

an AF of 0.00024% (2.4 ppm). The second most sensitive assay was

SV-multiplex PCR (Fig 3A), detecting ctDNA in 63% (34/54) of the

samples down to an AF of 0.00047% (4.7 ppm). SNV-hybrid capture

and SV-multiplex PCR detected ctDNA in the same plasma samples,

with the additional two samples with ctDNA detected by hybrid cap-

ture when applying INVAR size-weighting features. The least-

sensitive targeted sequencing assay was SV-hybrid capture (Fig 3B),

detecting ctDNA in 41% (22/54) of the samples down to an AF of

0.016% (a detection threshold two orders of magnitude less sensi-

tive than with SV-multiplex PCR and SNV-hybrid capture). In our

cohort, in all the samples in which ctDNA was detected by targeting

SVs with any assay, ctDNA was also detected by SNV-hybrid cap-

ture (Fig EV3A, Table EV9).

Comparison of all assays targeting SVs
We next compared the detection of SVs using WGS assays (i.e., SV-

modWGS, Fig 3D; and SV-deepWGS, Fig 3E) to using targeted

sequencing assays (SV-multiplex PCR and SV-hybrid capture,

Fig EV3C). Using SV-hybrid capture, ctDNA was detected in three

more samples than with SV-modWGS (Table EV16). Both SV-hybrid

capture and SV-modWGS targeted the same number of SVs (30–

153), while the mean sequencing coverage depth in SV-modWGS

was on average ~ 30 times lower (mean 20× compared to 584× in

this subset of 21 samples). Using SV-multiplex PCR, ctDNA was

detected in 10 additional samples compared to SV-modWGS

(Table EV16).

Using SV-deepWGS, ctDNA was detected in 9/12 samples

(Table EV16). Of these, ctDNA was detected in eight by SV-hybrid

capture. For both assays, the same number of SVs were targeted

(30–153) and the sequencing depth was on average ~ 1.5 times

lower in the SV-deepWGS assay (399× compared to 591× for this

subset of 12 samples). The detection of ctDNA in the additional

sample (P-IV-03 plasma timepoint 2) using SV-deepWGS resulted

Figure 4. SCNA signal enrichment after in silico 90–150 bp size selection in patients P-IV-01 and P-IV-02.

(A–D) Patient P-IV-01: When analyzed with SCNA-sWGS, (A) P-IV-01 plasma timepoint 1 shows a flat profile before in silico size selection and a tumor fraction of 2.3%,
that is below the ichorCNA recommended cut-off of 3%, while (B) after 90–150 bp size selection, copy-number changes can be observed. These copy numbers match
those observed (C) in tumor and are not present in (D) matched buffy coat.
(E–H) P-IV-02: (E) When analyzed with SCNA-modWGS, P-IV-02 plasma timepoint 1 has a tumor fraction below the ichorCNA recommended cut-off of 3% (tumor fraction
of 2.6%) and is, therefore, classified as undetected even though small copy-number changes can be observed. (F) Following in silico size selection, those changes become
more apparent. The copy-number aberrations match those observed (G) in tumor and are not present in (H) matched buffy coat.
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from the identification of only two SVs and therefore potentially

subject to stochastic effects. Using the SV-multiplex PCR, ctDNA

was detected in two additional samples compared to SV-deepWGS

(P-IV-01 plasma timepoint 2 and P-IV-02 plasma timepoint 6).

Comparison of assays targeting SNVs
Table EV17 shows a comparison of the SNVs identified by SNV-

hybrid capture (Fig 3C), SNV-modWGS (Fig 3F), and SNV-deepWGS

(Fig 3G). Due to restrictions in the size of the bait-set design, the

SNV-hybrid capture assay targeted a lower number of loci than both

WGS assays (1,347–7,491 vs. 4,153–16,015, respectively). The depth

of sequencing was higher for SNV-hybrid capture (mean 584× in the

subset of 21 samples analyzed by SNV-modWGS) than for SNV-

modWGS (mean 20×) and SNV-deepWGS (mean 399×), and the

number of informative sequencing reads analyzed by SNV-hybrid

capture (mean 1.4 M reads) was on average 8.6 times higher than

with SNV-modWGS (mean 162 K reads) and almost half that with

SNV-deepWGS (mean 2.4 M reads). In all 21 samples analyzed by

modWGS, ctDNA was detected by SNV-hybrid capture, while ctDNA

was detected by SNV-modWGS in 17/21 and by SNV-deepWGS in

11/12. In both SNV-hybrid capture and SNV-modWGS, P-IA-02

plasma timepoint 4 was only detected at the required specificity

after applying INVAR’s size-weighting feature (Fig EV3C).

Comparison of assays evaluating SCNAs
The assays targeting SCNAs (SCNA-sWGS, Fig 3G; SCNA-modWGS,

Fig 3H; and SCNA-deepWGS, Fig 3J) had the lowest detection rates

(Table EV9). ctDNA was not detected in any sample from early-

stage patients using any of these assays. As previously indicated, in

silico size selection enabled detection of ctDNA in additional plasma

samples (Fig 4). All samples in which ctDNA was detected by either

SCNA-modWGS or SCNA-deepWGS also had ctDNA detected with

SCNA-sWGS and showed similar tumor fractions (Table EV10,

Fig EV3D). All SCNA detected in plasma were concordant with those

observed in sWGS of tumor tissue of the appropriate patient.

Discussion

Here, we present the development and comparative performance of

different tumor-informed and tumor-na€ıve assays for the quantifica-

tion of ctDNA in serial plasma samples collected from patients with

stage IA–IV breast cancer before and during treatment. Tumor-

informed assays (SV-multiplex PCR, SV-hybrid capture, SNV-hybrid

capture, SV-modWGS, SV-deepWGS, SNV-modWGS, and SNV-

deepWGS) leveraged patient-specific mutations identified by whole

genome-sequencing of tumor and germline DNA to analyze SVs and

SNVs in cell-free DNA extracted from plasma samples. In the tumor-

na€ıve assays, which did not require prior knowledge of the tumor-

specific mutations, we analyzed somatic copy-number aberrations

at different sequencing depths of WGS data (SCNA-sWGS, SCNA-

modWGS, and SCNA-deepWGS). To our knowledge, this is the first

study comparing the performance of multiple different tumor-

informed and tumor-na€ıve assays for ctDNA detection and

Figure 5. Correlation of the ctDNA fractions calculated with all assays performed.

Allele fractions plotted for SV/SNV assays, and tumor fractions for SCNA assays. The SNV-hybrid capture assay was used as reference (x axis), with the other assays plotted
on a common y axis. Colored lines correspond to the linear regression fits per assay. The Pearson’s correlation coefficient estimates and P-values of the corresponding
tests of associations are also indicated. Spearman rank correlations led to the same conclusions (range R = 0.98 to R = 1.00).
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quantification of SVs, SNVs, and SCNAs in the same serial plasma

samples from breast cancer patients. Results demonstrate that simi-

lar ctDNA dynamics were observed in samples where ctDNA was

detected using the different assays, with the AFs being strongly cor-

related. No ctDNA was detected using any assay in analysis of

plasma samples from patient P-IA-01, a patient with stage IA disease

at diagnosis. This patient subsequently showed no evidence of dis-

ease relapse within 3 years after collection of the last plasma

timepoint.

Assay sensitivity is governed by different factors, including the

number of DNA molecules analyzed (which can be increased by

analyzing larger volumes of blood plasma), the efficiency of the

assay, sequencing depth, and the number of mutations targeted.

Recent studies have shown that it is possible to increase the sensitiv-

ity of ctDNA detection by analyzing a greater number of mutations,

compared to the analysis of single-mutant loci (Newman et al, 2016;

Abbosh et al, 2017; McDonald et al, 2019; Wan et al, 2020). In this

study, we used whole-genome sequencing of tumor and germline

DNA to identify mutations which were used to design personalized

assays for ctDNA analysis. This study has the advantage of using

whole-genome rather than whole-exome sequencing, enabling iden-

tification of a greater number of somatic mutations for ctDNA analy-

sis (4,153–16,015 SNVs and 31–156 SVs per patient).

We have shown that tumor-informed SNV-hybrid capture assays

targeting thousands of patient-specific mutations have the highest

sensitivity for detecting low levels of ctDNA, with detection down to

0.00024% AF (2.4 ppm). This is approximately 1.5 orders of magni-

tude lower than that observed using the Signatera assay which has a

limit of detection of 0.01% AF when targeting 16 patient-specific

clonal SNVs and indels (Coombes et al, 2019). SNV-hybrid capture

leverages INVAR analysis features for boosting ctDNA signal in low

AF samples; two samples were only detected after applying the

INVAR size-weighting feature. With the exception of these two sam-

ples, SV-multiplex PCR and SNV-hybrid capture detected ctDNA in

exactly the same plasma samples, demonstrating that both assays

have high sensitivity and could detect ctDNA showing similar

dynamics. The two samples where ctDNA was not detected using

SV-multiplex PCR can be explained by the very low AFs measured

only by size-weighted INVAR analysis (patient P-IA-02 plasma time-

point 3 at 0.00024% AF; plasma timepoint 4 at 0.00038% AF). The

SV-multiplex PCR assay for this patient targeted 21 SVs (the lowest

number of mutations targeted in all the assays developed) and,

given the 4,500 amplifiable copies used as cell-free DNA input, the

theoretical limit of detection is 0.0011% AF. Detecting ctDNA in

these samples using the multiplex PCR assay would in theory

require an input of 20,000 and 12,600 amplifiable copies, respec-

tively, which was not available for analysis. Alternatively, if the

cell-free DNA input was fixed at 4,500 amplifiable copies, 93 and 59

patient-specific SVs would theoretically be required to detect ctDNA

in these samples using SV-multiplex PCR.

As structural variants have been relatively under-studied in

ctDNA research, we wanted to assess the performance of using SV-

multiplex PCR and SV-hybrid capture to determine their relative

sensitivity for analysis of ctDNA. Chromosomal rearrangements are

often clonal, formed in early tumor development and “passenger”

mutations, not subject to positive or negative selection pressures

(Wang et al, 2014). Furthermore, analysis of gross genomic rearran-

gements in plasma cell-free DNA has the potential advantage of

reduced background signal, compared to single-nucleotide sequence

changes which may also arise from PCR and sequencing errors.

Here, we have been able to demonstrate that, despite targeting

fewer structural variants, the SV-multiplex PCR approach used was

more sensitive than the SV-hybrid capture assay, detecting ctDNA in

63% compared to 41% of patient plasma samples. The lowest AF

detected using SV-multiplex PCR was 1.5 orders of magnitude lower

than that detected by SV-hybrid capture (0.00047% AF vs. 0.016%

AF). The lower detection rate using SV-hybrid capture is likely to be

due to a greater loss of DNA molecules during the library prepara-

tion stages (66% to 95% loss in this study; Table EV13) as a result

of inefficient adaptor ligation, compared to multiplex PCR amplifica-

tion using primers to more efficiently incorporate adaptor

sequences. That said, hybrid capture has the advantage that it can

assay more SVs or mutations than multiplex PCR, which is limited

in the number of targets that can be multiplexed together due to

unpredictable interactions between amplicons, particularly for struc-

tural rearrangements which may contain highly repetitive

sequences. Furthermore, compared to hybrid capture, SV-multiplex

PCR has potentially higher upfront costs to fully optimize and vali-

date the assays.

Identification of de novo patient-specific SVs is still challenging

and needs more research. However, we have been able to demon-

strate the ability to target selected large-span SVs associated with

copy-number aberrations and detect ctDNA with high sensitivity.

Given that SNV-based multiplex PCR ctDNA assays are already

starting to prove effective in the detection of MRD in a clinical set-

ting (Abbosh et al, 2017; Coombes et al, 2019; Gale et al, 2022), the

incorporation of patient-specific SV assays may have added advan-

tages and should be further investigated as a clinical tool for detec-

tion and monitoring of ctDNA.

While the costs of whole-genome sequencing currently limit its

routine clinical use, recent advances in sequencing technology indi-

cate that the promise of a $100 genome may become a reality, mak-

ing WGS more readily affordable in the future (Almogy et al, 2022;

Illumina Press Release, 2022; Rusinek et al, 2022; Ultima Genomics

Press Release, 2022). As a proof of principle to assess the perfor-

mance of analysis of plasma cell-free DNA to identify both SVs and

SNVs using different depths of whole-genome sequencing, we

performed modWGS and deepWGS on a subset of 21 and 12 sam-

ples, respectively. However, given the current costs of deep

sequencing, only samples with ctDNA previously detected with

targeted sequencing were selected for analysis, resulting in overall

inflation of the fraction of samples detected compared to other

methods. In the analysis of SVs, due to the lower depth of coverage

of modWGS, detection of some samples relied on the identification

of only one to two patient-specific SVs so their AF quantification

may potentially be less precise. Still, these results suggest that

patient-specific SVs can be identified using WGS to ~ 20× coverage.

SV-deepWGS detected one additional sample compared to SV-

hybrid capture, although both methods had a similar average

sequencing depth. This sample was detected based on one single

read in two different SVs and may have been missed using capture

due to the stochastic effects of sampling bias.

In the analysis of SNVs, modWGS and deepWGS targeted a

higher number of SNVs than SNV-hybrid capture due to restrictions

in the size of the bait-set design used for hybrid capture. Despite

this, SNV-hybrid capture was the most sensitive method, detecting
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ctDNA in four more samples than SNV-modWGS. With SNV-

deepWGS, ctDNA was detected in P-IA-02 plasma timepoint 4, while

with SNV-hybrid capture and SNV-modWGS, ctDNA was only

detected after applying INVAR’s size-weighting feature. This further

supports the use of fragment size to enhance the sensitivity of

assays for ctDNA detection, such as INVAR, by enabling detection

of ctDNA that may have otherwise been considered background

noise (Mouliere et al, 2018; Wan et al, 2020).

Our findings show that, as expected, the least sensitive assays

were those analyzing copy-number aberrations using either sWGS,

modWGS or deepWGS. We showed that SCNA signal could be

enhanced using in silico size selection to boost tumor-specific signal

(Fig 4) as previously shown by our group (Mouliere et al, 2018), but

increasing the depth of sequencing did not appear to increase sensi-

tivity. SCNAs were not detected in any samples from early-stage

patients using any of the WGS assays. In plasma from patients with

advanced cancer, similar tumor fractions were observed using

whole-genome sequencing at the three different depths of coverage

(Table EV10). Close to the ichorCNA lower limit of detection, detec-

tion of ctDNA appeared to be stochastic.

In this study, when using a tumor-na€ıve approach, we only ana-

lyzed somatic copy-number aberrations. Additional approaches that

could be used include the analysis of genome-wide methylation sig-

natures (Liu et al, 2020) or different biological features, such as frag-

ment length, the nucleotide context at the ends of fragments,

relative coverage at nucleosome positions, and open chromatin

regions. These biological features could potentially be incorporated

into machine learning algorithms to improve the sensitivity of diag-

nostic assays (Chandrananda et al, 2015; Lo et al, 2021; Mathios

et al, 2021). Zviran et al. developed MRDetect and demonstrated the

use of 35× WGS and genome-wide mutational integration to detect

tumor fractions to < 0.001%, with increased detection close to

0.0001% AF using 120× WGS data of tumor:normal synthetic

admixtures (Zviran et al, 2020). Additional sensitive approaches

have recently been developed including PhasED-Seq (Kurtz

et al, 2021) and SaferSeqS (Cohen et al, 2021). PhasED-Seq uses

tumor WGS to first identify “phased variants” with two or more

SNVs localized on the same DNA molecule, followed by plasma

hybrid capture analysis to detect down to less than 1 part per mil-

lion (0.000094% AF). SaferSeqS uses efficient tagging of both Wat-

son and Crick strands followed by duplex sequencing to reduce the

error rate by >100-fold compared to alternative molecular barcoding

approaches, enabling detection down to < 0.001% AF.

The main limitation of this proof-of-concept study is the low

number of samples and patients analyzed. We were able to assay 54

longitudinal plasma samples from seven stage IA–IV patients under-

going treatment and 19 samples from healthy donors using up to 10

different assays. This enabled us to assess relative assay perfor-

mance across a comprehensive range of ctDNA levels that would be

expected in a large cohort, detecting ctDNA down to parts per mil-

lion. This study should ideally be expanded to fully test the perfor-

mance of different assays targeting the same number of SVs, SNVs,

and SCNAs in ctDNA in a larger cohort of patients within specific

clinical settings to assess their utility. Furthermore, the assays used

were not developed for clinical diagnostic use, and need to undergo

full analytical validation prior to clinical application to assess the

relative sensitivity and specificity of each assay type for detection of

different mutation classes.

Multiple studies are currently exploring the potential of using

patient-specific assays to identify patients at high risk of relapse,

who may benefit from adjuvant therapy, or to de-escalate treatment

in patients with no residual ctDNA detected post-treatment, thereby

avoiding unnecessary side-effects (Abbosh et al, 2017; Gale

et al, 2022; Tie et al, 2022). Currently, the development of tumor-

informed assays is challenging in the clinical setting given the high

cost, the mandatory requirement for tumor and germline samples,

and the time required for patient-specific assay development. In the

future, it is expected that tumor sequencing will become more

affordable and routine in the clinic, enabling tumor-informed assays

to be more readily developed. A tumor-na€ıve assay would be ideally

used in the clinical setting given they avoid some of the operational

challenges associated with accessing tumor and developing assays

within a clinically-relevant timeframe. However, tumor-na€ıve assays

are currently not sufficiently sensitive for detection of low-burden

disease. Further research is required to improve the sensitivity of

tumor-na€ıve assays to the required levels of sensitivity, through

incorporation of additional features or biomarkers (Cohen

et al, 2018), as this would have obvious benefits to optimize treat-

ment regimes in patients with earlier-stage disease.

Understanding the relative performance of different ctDNA

assays to detect levels of tumor burden in blood enables the most

appropriate assay to be selected for each specific intended use. To

our knowledge, this study provides the most comprehensive analy-

sis to date comparing the performance of different tumor-informed

and tumor-na€ıve ctDNA assays targeting different genomic alter-

ations using multiple cutting-edge methods in the same patient

cohort. sWGS has significant advantages as it can be performed

within a relatively short turnaround time, has relatively low costs

as it only requires low-coverage sequencing, and does not need

prior analysis of the tumor, thereby making it attractive as a clini-

cal diagnostic assay. However, due to its relatively low sensitivity,

the assay may currently only be used to identify copy-number

changes in late-stage patients who have relatively high levels of

tumor burden. Incorporating fragment size features into the analy-

sis may potentially improve the sensitivity of detection. On the

other hand, SNV-hybrid capture, targeting thousands of mutations,

and SV-multiplex PCR, targeting tens of structural rearrangements,

appear to have high sensitivity down to a few parts per million,

and may be most applicable for use in patients with early-stage

and low-burden disease where assay sensitivity is of critical

importance.

Materials and Methods

Aims, design, and settings of the study

The aim of this study was to develop and compare different assays

for the sensitive detection and quantification of ctDNA in plasma

samples from patients with early- and late-stage breast cancer

targeting different genomic alterations (SNVs, SVs, and SCNAs).

Using matched sequencing data from deep WGS of the tumor tissue

and buffy coat of every patient, tumor-informed assays were devel-

oped to target patient-specific SVs and SNVs. Tumor-na€ıve assays

(i.e., without prior knowledge of the tumor tissue) were also devel-

oped to evaluate SCNAs.
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The tumor-informed assays included the evaluation of SVs and

SNVs by targeted sequencing (SV-multiplex PCR, SV-hybrid capture,

and SNV-hybrid capture), and by WGS at various sequencing depths

(SV-modWGS, SV-deepWGS, SNV-modWGS, and SNV-deepWGS).

The tumor-na€ıve assays relied on the evaluation of SCNAs by WGS

at various sequencing depths (SCNA-sWGS, SCNA-modWGS, and

SCNA-deepWGS). The same plasma samples were analyzed by the

different assays (n = 54 samples), although due to the costs of

sequencing, modWGS and deepWGS were performed in a subset of

these (n = 21 and n = 12 samples, respectively). modWGS includes

a set of patients sequenced at various depths and then down-

sampled to 600 M reads; this set includes the 12 samples analyzed

by deepWGS (prior to downsampling).

Following the optimization of each assay, we compared (a) their

performance in the detection of ctDNA, (b) the quantification of the

ctDNA fraction in each sample (AF for assays detecting mutant

alleles or tumor fraction for assays measuring SCNAs), and (c) the

correlation of the ctDNA fractions calculated using the different

assays.

Patients and samples

Stage I-IV breast cancer patients were recruited to the Personalized

Breast Cancer Programme (PBCP), and tumor biopsies and matched

normal (buffy coat) samples were collected for whole-genome

sequencing (WGS). Serial plasma samples (n = 54) were collected

prior to and during treatment from seven patients: two with stage IA

disease, two with stage IIA, and three with stage IV. Plasma from

healthy donors was purchased from BioIVT (19 plasma samples, 18

from individual healthy donors plus 1 pool from 5 individuals).

Ethics approval and consent to participate

This work was approved by the East of England (Cambridge Cen-

tral) Health Research Authority [REC IDs: 16/EE/0100; 15/NW/

0926; 15/NW/0994; 07/Q0106/63]. The PBCP study is registered in

the NIHR Clinical Research Network database (Registration number

39296). Informed written consent was obtained from all partici-

pants. The experiments conformed to the principles set out in the

WMA Declaration of Helsinki and the Department of Health and

Human Services Belmont Report.

Statistical considerations

In this comparative analysis, no sample size estimations or random-

ization were performed. Patient samples were de-identified to

researchers performing experiments. Experiments were not

performed blind, as researchers were developing patient-specific

assays, so needed to know which sample came from each patient.

No analyzed samples were omitted from report. Samples were omit-

ted from analysis where insufficient material was available. Given

the limited amount of patient material, it was not possible to per-

form independent replicate experiments. Linear regressions (with

the response and predictor on the log10 scale) were used to analyze

the relationship between observed and expected allele fractions. R-

squared estimates were used to quantify the level of association,

and test of significance of the regression slope parameter was

performed by means of Wald t-tests within the R linear model. The

correlation between the AFs calculated using the different assays

was assessed using Pearson’s coefficient as well as the more robust

Spearman rank correlation estimator.

For INVAR analysis, a likelihood ratio was generated for each

sample through aggregation of signal across all patient-specific loci

in that sample using the generalized likelihood ratio test, as previ-

ously described (Wan et al, 2020). The patient-specific loci were

identified by prior tumor and buffy coat sequencing (as described in

the section on Identification of Patient-Specific SVs and SNVs,

below). Loci adjacent (+/� 10 bp) to each locus of interest were

used to determine the trinucleotide background error rate. Samples

were classified as “ctDNA detected” or “ctDNA not detected” based

on comparison of likelihood ratios between patient-matched plasma

samples and plasma samples from other patients, where these loci

are not expected to have a mutation signal (as the mutations were

selected as private to a given patient based on tumor WGS). For the

SNV-hybrid capture dataset, such unrelated samples could only be

used when their sequencing libraries were captured using the same

bait set. For SNV-modWGS and SNV-deepWGS, any unrelated sam-

ple could be leveraged. To act as a control, the unrelated samples

were required to have AF < 1%. The threshold for the likelihood

ratio was determined by 10-fold iterative resampling with replace-

ment. Data from healthy individuals separately underwent the same

steps to establish the specificity value for each dataset.

Genomic and cell-free DNA extraction and quantification

Tumor needle core biopsies (14-18G) were collected at diagnosis

(stage IIA patients), surgery (stage IA patients), or from metastatic

sites (stage IV patients) and snap-frozen in liquid nitrogen within

1 h of collection. Cellularity and tumor content were assessed by

hematoxylin and eosin (H&E) staining of one to two (6–8 lm) fro-

zen sections. Genomic DNA (gDNA) was extracted from one to two

core biopsies using the AllPrep DNA/RNA Mini Kit (Qiagen). After

dissolving the OCT (optimal cutting temperature compound) with

1 ml of distilled water, the tissue was transferred to a new tube with

5 mm stainless steel beads and 600 ll of RLT Plus buffer and

homogenized twice in 1-min rounds at 25 Hz with a TissueLyser II

(Qiagen).

Peripheral whole blood from patients was collected into K3EDTA

tubes and processed within 1 h of venipuncture by double centrifu-

gation: 1,600 g for 10 min for separation of plasma and buffy coat

followed by centrifugation of plasma supernatant at 16,000 g for

10 min. Plasma and buffy coat from patients were stored at �80°C

until DNA extraction. Germline gDNA from buffy coat of patients

and cell-free DNA from plasma of patients and controls were

extracted using a QIASymphony SP automated workstation

(Qiagen). gDNA was extracted from 200 ll of buffy coat using the

DSP DNA mini kit (Qiagen). Cell-free DNA from patients and

healthy donors was purified from 2 to 4.1 ml of plasma using the

QIAsymphony DSP Circulating DNA kit (Qiagen). A non-human

spike-in control was added to the lysis buffer during cell-free DNA

extraction to assess extraction efficiency, as previously described

(Tsui et al, 2018). gDNA and cell-free DNA were stored at �80°C

until use.

Buffy coat and tumor gDNA were quantified using the Qubit

dsDNA HS or BR Assay Kits (Thermo Fisher Scientific) and the

Spectramax� Gemini XPS (Molecular Devices). The number of

� 2023 The Authors EMBO Molecular Medicine 15: e16505 | 2023 13 of 20

Angela Santonja et al EMBO Molecular Medicine



amplifiable copies of plasma cell-free DNA was determined using

digital PCR on a Biomark HD (Fluidigm), using a 65 bp assay

targeting the RPP30 locus as previously described (Tsui et al, 2018).

The number of amplifiable copies is defined as the number of

single-stranded fragments of DNA amplified by the assay primers

(Parkinson et al, 2016).

Identification of patient-specific SVs and SNVs

Whole-genome sequencing (WGS) was performed by Illumina

(Granta Park, Great Abington, Cambridge) on tumor (median 116×

coverage) and matched germline gDNA (median 39× coverage) from

buffy coat to identify tumor-specific structural variants (SVs) and

single nucleotide variants (SNVs). Libraries were prepared using an

input of 600 ng DNA with the TruSeq� DNA PCR-Free Library Prep-

aration kit (Illumina) and sequenced using 150 bp paired-end

sequencing on a HiSeqX (Illumina). Buffy coat libraries were

sequenced in one lane and tumor libraries in three lanes distributed

across different flow cells.

High-confidence, patient-specific SVs were selected by filtering

and matching calls to copy-number steps. Tumor and matched buffy

coat reads were aligned using Isaac Genome Alignment Software v.

03.16.02.19 (Raczy et al, 2013) to the reference genome GRCh38 with

decoy sequences and SVs were called by Illumina using Manta (Chen

et al, 2016). The following were discarded: SVs mapped to unas-

sembled or mitochondrial chromosomes; calls with Manta’s Somatic-

Score < 31; and possible mismapping or polymorphism artifacts.

These include breaks adjacent to gaps or overlapping simple repeats

of > 100 bp; and recurrent breakpoints. Recurrent breakpoints were

found by pooling SVs from 150 (these and additional) cases and iden-

tifying clusters of rearrangement breakpoints, either SVs spanning

> 100 kb with breakpoints in different tumors separated by < 2 kb

or all SVs with breakpoints separated by < 200 bp. High-confidence

SVs were identified as inter-chromosomal and large (> 100 kb span)

intra-chromosomal SVs whose breakpoints were within 10 kb of

copy-number steps identified by Canvas (Roller et al, 2016).

Patient-specific SNVs were called using two different pipelines:

an Illumina pipeline using Strelka (Saunders et al, 2012) and an in-

house pipeline using Mutect2 (Broad Institute, 2022). For the Illu-

mina pipeline, SNVs were called from the aligned sequences

described above; for the in-house pipeline, tumor and matched

buffy coat reads were aligned with BWA-MEM to the same reference

genome followed by sorting with SAMtools (Li, 2003; Li et al, 2009)

and marking duplicate reads using Picard tools (Broad Insti-

tute, 2019). SNVs within low-sequencing complexity regions

(including satellite repeats, simple repeats, homopolymers, and tan-

dem duplications) were excluded. Variants present within the

gnomAD germline resource (Karczewski et al, 2020) or in a pooled

panel of normals (compiled by calling germline variants from WGS

data derived from buffy coat of a cohort of 200 breast cancer

patients) were removed. The following hard filters were applied to

retain high-quality variants: mapping quality >50, and tumor and

germline sequencing coverage > 25. Strelka-specific filters were

used including SNV QSS score > 50. Mutect2 calls flagged as having

a high OxoG artifact probability were also removed. Mutation co-

ordinates were lifted over from the GRCh38 assembly to hg19 using

the LiftOver tool to facilitate panel design with SureDesign (Agilent)

for the custom hybrid capture assay.

Design of the different ctDNA assays, library preparation, and
sequencing

Design of SV-multiplex PCR assay, preparation of amplicon librar-
ies, and sequencing
For the SV-multiplex PCR assay, primers were designed surrounding

the predicted breakpoints using Primer3Plus (Untergasser

et al, 2007) for fragments of predicted genome between 82 and

144 bp to enable amplification of fragmented cell-free DNA. Primers

were preferentially selected in non-repetitive regions with unique

BLAT hits (https://genome.ucsc.edu) (Kent, 2002). The selected

primer pairs were tested on tumor and matched germline DNA or

whole-genome libraries, in single-plex and in a multiplex pool,

followed by sequencing on a MiSeq (Illumina) using the PCR condi-

tions detailed below. Primer pairs were discarded (a) if, after single-

plex PCR, reads from the targeted SV sequence were observed in

germline DNA, (b) if reads were not observed in patient tumor DNA

samples, or (c) if when running in multiplex, a high number of

reads with a forward or reverse primer from a different primer pair

were observed. To improve the assay efficiency, the concentration

of some primers (either individually or as a pair) was doubled if a

low number of reads was observed after sequencing when com-

pared to the other primer pairs in the same pool. All patient-specific

primer pools included primers to amplify a 97 bp amplicon of

RPP30 (RPP30_97bp) as an internal positive control.

To perform the SV-multiplex PCR, each DNA sample was divided

and analyzed in several wells. Each patient-specific assay was opti-

mized and tested on serial dilutions of fragmented tumor DNA prior

to the analysis of relevant patient plasma samples. Tumor and buffy

coat gDNA were fragmented to ~150 bp using an S220 focused ultra-

sonicator (Covaris), followed by quantification by digital PCR on a

Biomark HD (Fluidigm) and assessment of their size profile on a

D1000 ScreenTape (Agilent). A first round of tumor dilution series

was performed to assess the optimal PCR conditions and to estimate

the tumor allele fraction (AF). Then, tumor DNA from all patients

was diluted to an approximate AF of 10% and the dilution series

repeated. Tumor dilutions were performed by diluting tumor DNA

in buffy-coat DNA from the same patient. Using the Poisson approx-

imation, we estimated the input amplifiable copies needed per dilu-

tion based on the expected AF. The input DNA ranged from 30 to

4,500 amplifiable copies (0.1–15 ng). No template control (NTC;

water) and neat fragmented buffy coat (4,500 input copies) were

used as negative controls. Tumor dilutions were prepared at the fol-

lowing AFs: 10% (sample divided into three wells, total of 30 copies

tested), 1% (3 wells, 90 copies), 0.1% (3 wells, 900 copies), 0.01%,

0.003%, 0.001%, and 0.0004% (5 wells per dilution, total of 4,500

copies in each dilution).

SV-multiplex PCR assays included two rounds of amplification.

In the first round of PCR, target sequences were amplified using a

pool of patient-specific primers with a common adapter. Ten micro-

liters PCR reactions were performed containing 50 nM (or 100 nM

for those with doubled concentration) of each forward and reverse

target-specific primer from a patient-specific pool and the required

input DNA amplifiable copies. The master mix contained 1 ×

FastStart High Fidelity Enzyme Buffer, 4.5 mM MgCl2, 0.5% DMSO,

0.05 U/ll of FastStart High Fidelity Enzyme Blend (FastStartTM High

Fidelity PCR System, Roche), and 0.2 mM dNTPs (Deoxynucleotide

(dNTP) Solution Mix, New England BioLabs). Reactions were
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subjected to amplification (95°C for 10 min; 35 cycles of 95°C for

15 s, 60°C for 30 s, and 72°C for 1 min; 72°C for 1 min). Five micro-

liters of amplified product was transferred to a new plate with 2 ll
of ExoSAP-ITTM PCR Product Cleanup Reagent (Thermo Fisher Scien-

tific) and incubated at 37°C for 15 min to remove excess primers

and nucleotides, inactivated at 80°C for 15 min, then diluted 1/70 in

nuclease-free water. In a second round of PCR, Illumina sequencing

adaptors and single-index 10 bp barcodes were added in a 10 ll
reaction containing 1 ll of diluted product from the first-round PCR.

Ten cycles of PCR were performed, using identical cycling condi-

tions as the first-round PCR, except that the barcoding primers were

at a final concentration of 400 nM. A subset of samples was run on

a D1000 ScreenTape (Agilent) to assess PCR performance. PCR

products were pooled at equal volumes and run on a Pippin HT

(Sage Science) to remove the adapter dimers, selecting DNA sized

between 185 and 280 bp on a 2% agarose gel cassette.

After assessing the performance of the SV-multiplex PCR assay

on the tumor dilution series, 54 longitudinal plasma samples from

patients were analyzed with their correspondent patient-specific

primer pool. All primer pools were also tested in replicate NTC and

replicate plasma from healthy donors (a pool of five individuals) to

control for PCR contamination and off-target amplification, respec-

tively. The number of replicates of the negative controls (NTC and

healthy controls) was at least twice the number of replicates tested

for each plasma sample. Amplicon libraries were initially generated

using a DNA input ranging from 51 to 4,500 amplifiable copies. To

increase the sensitivity of detection, five plasma samples where

ctDNA was not detected using 4,500 input copies were assayed a

second time using a higher input (up to 36,000 copies). Pools of 48–

116 plasma libraries were sequenced using 150 bp paired-end

sequencing on a MiSeq V3 flow cell (Illumina) incorporating 15%

spiked-in PhiX Control v3 (Illumina) to increase library diversity.

Whole-genome library preparation for sWGS, modWGS, and
deepWGS assays
Whole-genome libraries were generated from tumor and buffy coat

from each of the seven patients, 54 longitudinal plasma samples

from patients, and 18 individual healthy donors’ plasma samples

(10 of them prepared in triplicate generating 38 healthy donor librar-

ies). Fifteen nanograms of tumor and buffy coat gDNA were frag-

mented prior to library preparation with the SureSelect Enzymatic

Fragmentation Kit (Agilent). Libraries were prepared from the frag-

mented tumor or buffy coat gDNA (15 ng) or 4,500 amplifiable cop-

ies (~15 ng) of cell-free DNA except for P-IV-01 plasma timepoints 8

and 9 in which 3,744 and 4,200 amplifiable copies were used,

respectively. Libraries were prepared with the SureSelectXT HS

Reagent Kit (Agilent) using 11–15 amplification cycles. This kit

includes unique-molecular identifiers (UMI) and single indexing. All

libraries were sequenced using 150 bp paired-end sequencing to

retain fragment-size information. For the shallow WGS (sWGS)

assays, libraries from all plasma samples from patients and healthy

donors were sequenced by pooling 19–24 libraries per lane on a

HiSeq 4000 (Illumina). Tumor and buffy coat libraries were pooled

and sequenced in a NovaSeq 6000 S1 flowcell (Illumina) and

resulting data were downsampled to 9 million reads. For the moder-

ately deep WGS (modWGS) assays, two subsets of samples were

included: (a) 9 libraries (including 5 plasma samples from patients

and 4 from healthy donors) sequenced across two lanes of a

NovaSeq 6000 S4 flowcell (Illumina) and (b) 12 plasma samples

from patients that were sequenced on a NovaSeq 6000, running

each sample in three lanes of different S4 flow cells, a strategy

designed to prevent any risk of index hopping. Both subsets were

downsampled using Picard tool PositionBasedDownsampleSam to

the lowest number of reads of any sample, that is, to 600 M reads.

Prior to downsampling, the 12 patient plasma samples (set b) were

analyzed for the deep WGS assay (deepWGS).

Design of SV- and SNV-hybrid capture assays, capture, and
sequencing
Three custom hybrid-capture bait sets were designed using SureDe-

sign (Agilent), incorporating tumor-specific mutations from the two

stage IA patients (bait set IA), two stage IIA patients (bait set IIA),

and three stage IV patients (bait set IV). Patient-specific SVs, SNVs,

indels, and a set of commonly mutated genes in breast cancer

(hotspots from AKT1 and exonic sequences from TP53, MAP3K1,

PTEN, ESR1, PIK3CA, and GATA3) were included in the bait-sets’

design, but only SVs and SNVs were analyzed in this study. For

SVs, 6× tiling was used (incorporating 10 probes per SV, with six

baits spanning each breakpoint) with maximum performance

boosting. Baits for SVs were designed against the GRCh38 reference

coordinates (Table EV3). For SNVs, baits were designed for a subset

of the SNVs identified by tumor WGS, and 2× tiling was used with

balanced boosting. Bait set IA (27,493 baits, 2.345 Mbp) and bait set

IIA (25,910 baits, 2.164 Mbp) incorporated all SNVs identified by

tumor WGS and called by Mutect2, and were designed using least

stringent masking. Due to a limitation in panel size, bait set IV

(30,610 baits, 2.810 Mbp) incorporated the intersect of SNVs identi-

fied by both Mutect2 and Strelka, and baits were designed using

moderately stringent masking.

Hybrid capture was performed in libraries from tumor and buffy

coat of the 7 patients, 54 patient’s plasma samples, and plasma from

18 individual healthy donors. Libraries were captured with the Sure-

SelectXT HS Target Enrichment System (Agilent) using 500 ng to

1,000 ng as input and 14 cycles of amplification. Libraries from

plasma cell-free DNA were captured in single plex. Libraries from

tumor and buffy coat were pooled and captured in two-plex (stage

IA/IIA patients) or three-plex (stage IV patients). The captured

libraries were sequenced using 150 bp paired-end sequencing on a

NovaSeq 6,000 (Illumina). Tumor and buffy coat libraries were

sequenced on an SP flow cell (14 libraries per lane) and plasma

libraries on an S1 flow cell (20–24 libraries samples per lane). One

pool of 21 plasma-captured libraries was additionally sequenced in

two lanes of a NovaSeq SP (Illumina).

Detection and quantification of ctDNA using the different ctDNA
assays

Evaluation of SVs in the SV-multiplex PCR assay
To detect patient-specific SVs in the SV-multiplex PCR assay, a pipe-

line was developed that employs fuzzy matching functions to iden-

tify each primer pair and to compare the observed PCR amplicon

sequences with the expected sequences spanning the breakpoint.

This method iterates over each pair of fastq files and performs the

following steps: (i) locating matching forward and reverse primer

pairs in read 1 and read 2 separately, (ii) verifying the size of the

target sequence and discarding any reads with short products
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(< 25 bp), (iii) extracting the amplicon sequence flanked by and

including the primer sequences, (iv) comparing the observed and

expected amplicon sequence, and (v) counting read pairs where

both reads match to the same amplicon within a given edit distance.

Each mismatch increases the edit distance by 1, as does an insertion

or deletion of one base. An edit distance of up to 2 was allowed for

each primer sequence match and a distance of up to 5 for the

amplicon sequence. The use of fuzzy (as opposed to exact)

matching enables recovery of reads with PCR errors that would not

affect the specificity of SV detection. This approach requires that the

amplicon matches across its entire length (considering the allowed

edit distance) and that both reads in a pair match the same

amplicon.

In the SV-multiplex PCR assay, each patient-specific SV was clas-

sified either as detected or as undetected, and the allele fraction

(AF) for every sample was estimated based on the number of SVs

detected across the wells in which that sample was divided. For an

SV to be called as detected, we set a threshold for filtering out reads

if they had less than two times the highest numbers of non-specific

reads observed in any negative control or an unrelated patient sam-

ple (i.e., ≤10 reads) because we reasoned that patient-specific

somatic SVs are only expected to be amplified using tumor DNA

from the relevant patient. Low read counts (≤ 5) were unexpectedly

observed in some of the negative controls and in unrelated patient

samples, which may be due to low-level index hopping, particularly

in high AF samples. To test this, plasma samples were re-pooled

and re-sequenced to a comparable depth but did not include any

high AF samples. Ninety-nine percent (71/72) of the samples did

not have non-specific reads, confirming that this was the likely

cause and could in future be mitigated by a unique dual-indexing

strategy. For plasma samples, the AF was estimated as number of

SVs detected across the wells / (sum of DNA input copies across the

wells × number of patient-specific SVs targeted). For samples with

high AF, the probability of having more than one molecule with the

same targeted SV on a particular well is higher, leading to an under-

estimation of the AF. Therefore, for the tumor dilution series, the

Poisson approximation was used to estimate the AF as: [�(1/ num-

ber of DNA input copies in each well) * LN {1-(number of SVs

detected across the wells/(number of wells * number of patient-

specific SVs targeted))}].

Processing of sequencing reads from SureSelectXT HS libraries
Illumina adapter sequences were removed with SurecallTrimmer

(v.4.0.1) from the Agilent Genomics NextGen Toolkit (AGeNT),

using a quality threshold of 5 for trimming and a minimum read

length of 10% of the original read length after trimming. The 10 bp

UMI was read as the second index and stored in a separate fastq file.

The UMI was concatenated with read 1 and read 2 using Seqkit

v.0.10.1 (Shen et al, 2016).

Sequencing reads were aligned to hg19 with BWA-MEM v.0.7.17

for all assays except for the SV-hybrid capture assay, in which the

alignment was performed to a bespoke reference genome comprised

from synthetic chromosomes (one per targeted SV, including 150 bp

either side of the predicted breakpoint) and hs37d5 (GRCh37 with

decoy sequences) to sequester non-mutant reads (Li, 2003). Aligned

reads were collapsed with Connor v.0.6.1 (University of Michi-

gan, 2016), using a consensus alignment of 90% and various family

sizes. Consensus sequences are then associated with the number of

initial molecules harboring a specific alteration (SVs, SNVs, or

SCNAs). The collapsed BAM files were sorted and indexed with

SAMtools v.1.9 (Li et al, 2009). To remove the duplicates, data were

collapsed to family size 1 except for the SV-modWGS and SV-

deepWGS analyses, in which mutant reads were instead manually

inspected to check for duplicates and for SNV-hybrid capture, in

which data were collapsed to family sizes 2, 3, and 5 for comparison

purposes, selecting family size 3 for the data presented in the main

text.

Evaluation of SVs in SV-hybrid capture, SV-modWGS, and SV-
deepWGS assays
In the SV-hybrid capture assay, the number of reads per patient-

specific SV was assessed using bedtools coverage (Quinlan &

Hall, 2010) as the number of reads spanning the breakpoint with a

100% match in the region covering 20 bp on either side of the cen-

ter of the synthetic chromosome. Low-level signal (≤ 4 reads per

SV) was observed in negative controls or unrelated patients, so to

circumvent issues with potential index hopping, AFs were calcu-

lated including all positive reads, and samples were classified as

detected if (a) at least one targeted SV had more than two times the

highest number of reads observed in negative controls or unrelated

samples (i.e., more than 8 reads) or if (b) the number of targeted

SVs with any number of reads was more than two times the highest

number of targeted SVs with any reads observed in negative con-

trols or unrelated samples (i.e., more than 20 SVs).

In the SV-modWGS and SV-deepWGS assays, a modified version

of the fuzzy matching approach (used for the SV-multiplex PCR

assay) was used to identify patient-specific SVs. Reads that had at

least 10 bases clipped from the beginning or end of their alignment

were extracted from the BAM files for further assessment as poten-

tial junction-spanning sequences. Fuzzy string matching for the

20 bp flanking on each side of junctions was carried out using the

aregexec function in R, allowing up to two mismatches in each

flanking sequence. Those reads with matches for flanking sequences

were then compared against the extended junction sequence using

the R function adist, and retained if the edit distance was no more

than 2.5% of the length of the read sequence. The UMI sequence at

the beginning of each read was excluded from the flanking sequence

search and edit distance calculation. The UMI tags were considered

when tabulating the final counts of reads supporting each SV,

excluding duplicate reads from the same DNA molecule arising from

PCR amplification. For the AF calculations in SV-modWGS and SV-

deepWGS assays, all patient-specific reads were considered.

As these methods do not account for paired reads, in these

assays, the AF was estimated as: number of reads spanning the

breakpoint / (2 * average coverage depth of the sample * number of

patient-specific SVs targeted).

Evaluation of SNVs in SNV-hybrid capture, SNV-modWGS, and SNV-
deepWGS assays
INtegration of VAriant Reads (INVAR) (Wan et al, 2020) was used

to evaluate patient-specific SNVs from hybrid capture, modWGS,

and deepWGS data. INVAR is an analysis pipeline that leverages

custom error-suppression and signal-enrichment methods for sensi-

tive detection of low levels of ctDNA. Custom error suppression

includes (i) collapsing sequencing reads, (ii) requiring every muta-

tion to be both in a forward and a reverse read, (iii) applying a locus

16 of 20 EMBO Molecular Medicine 15: e16505 | 2023 � 2023 The Authors

EMBO Molecular Medicine Angela Santonja et al



noise filter, and (iv) applying a patient-specific outlier suppression

that removes the signal from one locus if not consistent with the dis-

tribution of the remaining loci. In order to exclude possible germline

SNPs, only loci with AFs < 0.25 were used (based on the assump-

tion that if a large number of loci are tested in a high ctDNA sample,

the detection is supported by having many low AF loci with signal).

Signal-enrichment methods included assigning greater weight to (v)

loci with higher AF observed in the tumor and to (vi) sequencing

reads with a fragment size similar to the size distribution of ctDNA

in the analyzed cohort.

In the SNV-hybrid capture assay, a subset of SNVs (called by the

intersect of both Mutect2 and Strelka variant callers and at loci cov-

ered by baits designed with moderately stringent masking) were

analyzed to minimize background noise. INVAR was used to sepa-

rately analyze the early-stage (n = 11 stage IA and n = 13 stage IIA

samples) and metastatic cohorts (n = 30 stage IV samples) due to

their differences in ctDNA fragment-size distribution. Default set-

tings were used to run INVAR with the following exceptions:

SLOP_BP = 20 (default 10, number of bp on either side of the target

locus to assess the background error rate); Proportion_of_controls = 0.3

(default 0.1, proportion of non-patient-specific samples above which

the blacklist loci need to have signal); and SIZE_COMBINED (path

to sequencing reads to perform the size weighting) for the

early-stage cohort using the size distribution based on two other

early-stage cohorts (Mouliere et al, 2018) to increase the number of

mutant fragments and to generate a proper fragment length

distribution.

In the SNV-modWGS and SNV-deepWGS assay, all patient-

specific SNVs (identified in WGS of the tumor and passing the filters

of Mutect2 or Strelka) were analyzed with the INVAR pipeline. Sam-

ples from early-stage (n = 3 stage IA and n = 2 stage IIA samples

for modWGS; n = 2 stage IA and n = 2 stage IIA samples for

deepWGS) and metastatic patients (n = 16 stage IV samples for

modWGS; n = 8 for deepWGS) were analyzed together due to the

smaller sample set. INVAR was run using default settings except for

MIN_DP = 1 (default 5, minimal depth to consider for mpileup).

In all these assays, the AF from INVAR analysis was estimated as

an integrated mutant allele fraction (IMAF) as generated by the

pipeline, which was optimized for the sensitive detection of low

levels of ctDNA (Wan et al, 2020). The present cohort included sev-

eral samples from metastatic patients and expected high levels of

ctDNA. While INVAR is able to confidently detect ctDNA in these

samples, the AF might be artificially decreased by inclusion of the

patient-specific outlier suppression for IMAF computation. Hence, if

more than 25% of a patient’s loci were detected before the applica-

tion of the patient-specific outlier suppression, the ctDNA fraction

(namely the number of mutated reads divided by the total number

of reads with the targeted loci) was computed by including all loci

that passed all filters except the patient outlier suppression filter.

Evaluation of SCNAs in the SCNA-sWGS, SCNA-modWGS, and
SCNA-deepWGS assays

SCNAs were assessed in all WGS assays (sWGS, modWGS, and

deepWGS) with ichorCNA (Adalsteinsson et al, 2017). For the anal-

ysis of plasma samples, default controls and settings were used with

the exception of (i) --normal “c(0.85,0.90,0.95,0.99,0.995,0.999),”

(ii) --maxCN 4, and (iii) --estimateScPrevalence False. Tumor and

buffy coat of each patient as positive and negative controls, respec-

tively, were analyzed using the same settings as for plasma except

that due to the known high tumor fraction, the possible starting nor-

mal value was reduced using the setting: (i) --normal “c

(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)” and (ii) --maxCN 5. The tumor frac-

tion was generated with ichorCNA, using the authors’ suggested cut-

off for detection at 3%. In plasma samples where the tumor fraction

was different from 0, in silico size selection was performed to select

fragments between 90 and 150 bp to increase the sensitivity of detec-

tion of tumor-derived DNA, as previously described (Mouliere

et al, 2018). This increased the apparent tumor fraction of all samples,

so size-selected samples were classified as detected if SCNAs were

observed when plotting the log2 ratio of the copy number while the

reported tumor fraction was calculated before size selection.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

Sequencing data: European Genome-phenome archive

EGAD00001008589 and EGAD00001006293 (https://ega-archive.org/

datasets/EGAD00001008589 and https://ega-archive.org/datasets/

EGAD00001006293).

The correspondence between IDs of patients and plasma time-

points used in the paper and those in EGA are detailed in

Table EV10. To obtain access, please email the corresponding

authors and rosenfeld.labadmin@cruk.cam.ac.uk and complete a

data access agreement with the University of Cambridge, which is

required to respect patient confidentiality.

The paper explained

Problem
Circulating tumor DNA (ctDNA) can be used as a non-invasive liquid
biopsy in cancer patients to track disease burden in blood. Different
strategies have been used to quantify ctDNA, but few studies have
compared the performance of different tumor-informed and tumor-
na€ıve assays to detect ctDNA in the same patient samples.

Results
Our results demonstrate that ctDNA dynamics and tumor allele frac-
tions were highly concordant when targeting different mutation types
in serial blood samples collected from breast cancer patients undergo-
ing treatment. Tumor-informed assays showed the highest sensitivity
for detection of ctDNA at low concentrations. SNV-hybrid capture,
targeting thousands of single nucleotide variants, and SV-multiplex
PCR, targeting tens of structural variants, were able to detect ctDNA
down to a few parts per million.

Impact
Choice of assay for ctDNA quantification depends on many factors
including the required sensitivity for its intended use, the mutation
type being assayed, turnaround time, and cost. This study demon-
strates that personalized assays targeting patient-specific mutations
identified in the tumor were the most sensitive assays to detect low
levels of ctDNA in blood, and SV-multiplex PCR has potential to be
used as a clinical diagnostic assay.
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INVAR code: Bitbucket (https://bitbucket.org/nrlab/invar/src/

master/).

Code for evaluating SVs: Github (https://github.com/nrlab-

CRUK/SV_detection).

Expanded View for this article is available online.
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