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A B S T R A C T

Background: Solid tumours exhibit enhanced vessel permeability and fenestrated endothelium to varying degree,
but it is unknown how this varies in patients between and within tumour types. Dynamic contrast-enhanced
(DCE) MRI provides a measure of perfusion and permeability, the transfer constant Ktrans, which could be em-
ployed for such comparisons in patients.
Aim: To test the hypothesis that different tumour types exhibit systematically different Ktrans.
Materials and methods: DCE-MRI data were retrieved from 342 solid tumours in 230 patients. These data were
from 18 previous studies, each of which had had a different analysis protocol. All data were reanalysed using a
standardised workflow using an extended Tofts model. A model of the posterior density of median Ktrans was
built assuming a log-normal distribution and fitting a simple Bayesian hierarchical model.
Results: 12 histological tumour types were included. In glioma, median Ktrans was 0.016 min−1 and for non-
glioma tumours, median Ktrans ranged from 0.10 (cervical) to 0.21 min−1 (prostate metastatic to bone). The
geometric mean (95% CI) across all the non-glioma tumours was 0.15 (0.05, 0.45) min−1. There was insufficient
separation between the posterior densities to be able to predict the Ktrans value of a tumour given the tumour
type, except that the median Ktrans for gliomas was below 0.05 min−1 with 80% probability, and median Ktrans

measurements for the remaining tumour types were between 0.05 and 0.4 min−1 with 80% probability.
Conclusion: With the exception of glioma, our hypothesis that different tumour types exhibit different Ktrans was
not supported. Studies in which tumour permeability is believed to affect outcome should not simply seek
tumour types thought to exhibit high permeability. Instead, Ktrans is an idiopathic parameter, and, where per-
meability is important, Ktrans should be measured in each tumour to personalise that treatment.

1. Introduction

Personalised medicine creates an enhanced role for imaging bio-
markers [1]. In oncology, for example, some patients fail to benefit

from medical treatment simply because the drug fails to reach its site of
action. Imaging biomarkers may identify patients whose tumours are
accessible to drug treatment. Such imaging biomarkers would be of
broad interest. Drug developers may prefer trials of such drugs to be
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stratified by tumour permeability so as to identify the groups most
likely to benefit. Regulatory authorities may demand a predictive bio-
marker to contraindicate drug in patients with low tumour permeability
who are least likely to benefit. Oncologists want to personalise treat-
ment by selecting drugs most likely to reach their target and benefit
patients: radiologists want to identify those patients.

A systemic drug normally arrives in the tumour via the vasculature,
but to reach its target on a neoplastic cell, it must first traverse the
vascular endothelium. Enhanced perfusion and vascular permeability in
tumours are expected to accelerate the arrival of a drug at its target and
may enhance retention of macromolecules [2,3]. This enhanced per-
meability and retention effect is viewed as a universal property of solid
tumours [4], but the lack of comparative data assessing tumour per-
fusion and permeability in human subjects has hindered the evaluation
of its clinical relevance for different classes of therapies [5]. The effect
is likely to be more variable and complex in humans than in mouse
models [6,7]: one imaging study showed therapeutic liposome accu-
mulation to vary between 5% and 30% of the injected dose per weight
of tumour [8]. Such heterogeneity has clinical implications: patients
and tumours with high levels of drug accumulation may receive ther-
apeutic benefit, while patients with low accumulation will only ex-
perience off-target adverse effects.

Dynamic contrast-enhanced (DCE)-MRI and DCE-CT rely on en-
hanced tumour uptake of contrast agents, reflecting enhanced perfusion
and permeability. However, while radiologists commonly observe that
particular tumours are ‘highly enhancing’, they do not routinely
quantify their visual impression in a way that allows precise between-
patient and between-centre comparisons. DCE-MRI and -CT also allow
calculation of the transfer constant Ktrans, which quantifies the perme-
ability-surface area [9]. Ktrans and related metrics have been success-
fully employed as pharmacodynamic biomarkers in over 100 clinical
studies of anti-vascular agents as well as numerous studies of tumour
biology [10] in different studies and centres [10,11]. However, few
studies included> 40 patients [12], and the DCE-MRI biomarkers were
not generally measured in a consistent or standard way. While change
in Ktrans can be compared between studies [13], baseline values cannot.
This lack of standardisation poses a significant impediment [14], pre-
venting objective comparison of permeability-driven enhancement of
different tumour types. There is therefore a need for larger analyses to
evaluate the pre-treatment parameters for stratifying tumour perme-
ability.

In planning the development of an investigational new cancer
medicine, it is important to select the tumour types most likely to re-
spond. Our hypothesis was that tumour types exhibit systematic dif-
ferences in permeability and perfusion, and consequently in Ktrans. The
null hypothesis was therefore that Ktrans is an idiopathic parameter that
must be individually measured in each patient and each tumour. To test
our hypothesis, a standardised analysis of tumour Ktrans was performed
in 12 tumour types in 230 patients from baseline DCE-MRI datasets
accumulated from previously completed clinical imaging trials, to en-
able direct comparison of individual tumours and tumour types. The
resulting reference data set was analysed for inter-disease, intra-patient,
and intra-tumour heterogeneity in vascular endothelial permeability-
driven contrast agent accumulation. This DCE-MRI-based analysis
aimed to provide insight into the variation in perfusion and perme-
ability across a broad patient and tumour population.

2. Materials and methods

2.1. Data sets

We accessed a databank of quantitative DCE-MRI studies conducted
in our centre over 15 years, largely for the evaluation of putative
therapeutic treatments. A single baseline scan from each eligible patient
(Fig. 1) in this databank acquired up to May 2013 was analysed in this
study using the same software and workflow throughout. Ethical

approval was given by the Proportionate Review Sub-Committee of the
NRES Committee South Central Berkshire for reanalysis of the data, and
informed consent had been provided by the patients. Patients had un-
dergone DCE-MRI with measurements made before, during and after
bolus injection of a standard dose (0.1 mmol/kg) of either gadodiamide
(Omniscan, GEHC) or gadoterate (Dotarem, Guerbet) via the ante-
cubital vein using a Medrad Spectris power injector (Bayer AG) at a rate
of 3 ml/s followed by an equal volume saline flush, also at 3 ml/s. In-
clusion criteria for this study were: a consistent data acquisition pro-
tocol (a 3D fast field echo protocol with baseline T1 quantification data
acquired using a range of flip angles, and a dynamic acquisition using a
constant flip angle); acceptable data acquisition quality; and approval
by the original study sponsor. Similar scanning protocols were chosen
to allow meaningful direct comparison of the resulting biomarkers, see
[15–22] and Table 1.

2.2. Patient characteristics

A total of 230 patients had tumour data suitable for analysis. 45%
were male. Median weight was 73 kg (range 44–120). Median age was
62 (range 26–81). The patient cohort contained 342 imaged tumours
(with a range of 1 to 7 tumours per patient). Table 2 shows the number
of tumours classified by type, as well as the number of patients with
that tumour type. A breakdown of patient ages, weights and tumour
volumes is shown in Supplementary material.

Just over half (54%) of the imaged tumours were from patients with
colorectal primaries. A further 21% were from patients with ovarian
primaries. Patients with gliomas and prostate primaries formed the next
largest groups of 10% and 5% of tumours respectively.

2.3. DCE-MRI analysis

The data were analysed using in-house analysis software. To ensure
comparability of data across studies, all the datasets were analysed
from the source signal intensity magnitude files following a prespecified
set of standard procedures. All datasets were reviewed to verify that the
source data had been acquired in compliance with the original study
protocol, and the data were not motion-corrupted. Delineation of the
tumour volume region-of-interest (ROI) was normally performed on
anatomical, not DCE, images. All ROIs were drawn by a radiographer
trained and experienced in tumour definition in MRI (YW; 15 years'
experience). Blinding was obviously impossible, because the anatomic
location of the tumour is evident in the image. Where an ROI was al-
ready available in the dataset, this was reviewed before inclusion into
this study. Where no ROI was present or usable, new ROIs were drawn.
The ROI was then formed into a mask volume, which was used for the
analysis. Both the ROI and the mask were reviewed during a quality
control step, in which a second individual checked the lesion edge was
properly defined and no obvious errors (such as missing slices) were
present. The mask was also checked to ensure that propagation onto the
dynamic data set had worked as expected (i.e. the mask lay over the
target lesion and was not corrupted). Whole tumour volume measure-
ments (mm3) were made for each tumour by summing the volume of
the voxels in the region of interest.

Baseline T1 maps for each patient were calculated voxelwise by
Levenberg-Marquardt minimisation across three volumetric acquisi-
tions using a set of flip angles shown in Table 1 and applying the fast
field echo equation (Eq. (1)) to solve for T1 and M0 [24]. Dynamic MRI
signal was converted to voxel-wise contrast agent concentration as a
function of time [24–26] assuming a linear relationship between con-
centration and change in relaxation rate (Eq. (2)), where r1 is the re-
spective longitudinal relaxivity: 3.6 s−1·mM−1 for gadoterate at 1.5 T;
4.3 s−1·mM−1 for gadodiamide at 1.5 T; or 4.0 s−1·mM−1 for gado-
diamide at 3 T [27].
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A population-derived vascular input function was used for each
patient to maximise precision [23]. These were used as input in cal-
culations of the extended Kety model [10] (Eq. (3)):
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which yields three DCE-MRI parameters:

• Ktrans, with dimensions min−1 and taking any non-negative value, is
the volume transfer constant from blood plasma to the extravascular
extracellular space and therefore incorporates both perfusion to the
tissue and the permeability-surface area product describing transfer
across the vascular endothelium.

• vp (dimensionless, 1≥ vp ≥ 0) is the volume fraction which is blood
plasma.

• ve (dimensionless, 1≥ ve ≥ 0) is the volume fraction which is ex-
travascular extracellular space.

These three parameters were extracted for each voxel within the
regions of interest which demonstrated positive contrast agent accu-
mulation within 60 s of contrast agent arrival to the tumour [28]. The
compartmental model assumes that the tumour capillary blood plasma

and the extravascular extracellular space are each well-mixed com-
partments.

2.4. Statistical modelling

Data were classified by tumour type. Where fewer than two patients
had a given tumour type, they were excluded from further analysis.
Preliminary analyses did not suggest a systematic difference between
gadodiamide Ktrans and gadoterate Ktrans, so in subsequent modelling
Ktrans differences between the two contrast agents are neglected.

A model of the posterior density of median Ktrans was built assuming
that median Ktrans values follow a log-normal distribution and fitting a
simple Bayesian hierarchical model for median Ktrans. Formally, if we
let yij be the log of median Ktrans for subject i, tumour j, then if subject i
has tumour type k then yij ~ Normal (μk, ϭk

2); that is, yij comes from a
normal distribution with mean μk and variance ϭk

2.
A linear model with tumour type as the only predictor for μk was

then fitted. That is, if x is the covariate matrix with x[i, k] = 1 if subject
i has tumour type k and x[i, k] = 0 otherwise and β = (β1…βK) then
μk = x × β.

Weakly–informative priors were chosen as follows: The prior dis-
tribution for each βk was assumed to be Normal (β0, δ2), that is, each βk
came from a normal distribution with mean β0 and variance δ2. β0 was
drawn from a normal distribution with mean 0 and variance 1000, i.e.
β0 ~ Normal (0, 1000), and δ was drawn from the Cauchy distribution
centred at 0 with scale parameter equal to 5, i.e. δ~ Cauchy (0, 52).
The prior distribution for σk was assumed to be Cauchy centred at 0

Fig. 1. Flowchart of selection for inclusion in this analysis.
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with scale parameter a0 where a0 ~ Uniform (0, 65). The upper limit
of this Uniform distribution was chosen to be 100 times the maximum
median Ktrans value in the data set.

A Bayesian hierarchical model using Markov Chain Monte Carlo
simulation was used to fit the data using JAGS (“Just Another Gibbs
Sampler”) [http://mcmc-jags.sourceforge.net/] and RJags [http://cran.
r-project.org/web/packages/rjags/]. 2000 draws were made from the
posterior distribution for each parameter after discarding 1000 draws
as burn in. Trace-plots and Gelman plots were used to show con-
vergence. The mean, standard deviation, and 90% quartiles for the
posterior distribution of each parameter were calculated.

3. Results

3.1. Variation within disease

To gain insight into tumour permeability, perfusion and accumu-
lation characteristics, two DCE-MRI biomarkers were used: Ktrans and
vp, as shown in Fig. 2. There was a substantial overlap in the distribu-
tion of Ktrans values across the range of tumours for all tumours other
than glioma. Gliomas exhibited the lowest median Ktrans value of
0.016 min−1 and the greatest separation from all other tumour types.
The distribution in Ktrans values for tumour types (excluding glioma)
with five or more measures were similar. The median values ranged
from 0.10 (cervical) to 0.21 min−1 (prostatic metastases). The median
values for the tumour types with lower number of samples appeared
consistent with the spread of this cohort of tumours (from 0.12 for
prostate to 0.25 min−1 for endometrial primaries). The geometric mean
across all the Ktrans measurements, excluding gliomas, was 0.15 min−1

with a standard deviation in loge space of 1.76, giving a 95% confidence
interval of (0.05 min−1, 0.45 min−1). The gliomas had a geometric
mean of 0.015 min−1 with a standard deviation in loge space of 1.07,
giving a 95% confidence interval of (0.002 min−1, 0.12 min−1). vp
showed more discrimination between the tumour types, with the renal
cell primaries showing the largest median blood plasma space of the
tumour types for which more than five measurements were made.

The posterior densities of median Ktrans for the six most frequently
observed tumour types are shown in Fig. 3. These demonstrate that
while the expected values of Ktrans estimated from the data in Fig. 2(a)Ta
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Table 2
Numbers of imaged tumours and patients with primary classification.

Primary cancer Number of
tumours

Number of
patients

Protocol reference
(number of patients)

Metastatic colorectal 183 93 D (6), G (64), I (1), J (8),
K (7), N (1), Q (5), R (1)

Ovarian 71 59 C (10), I (2), K (5), L (9),
M (11), N (4), P (15), Q
(3)

Glioma 35 34 O (34)
Prostate metastatic to

bone
18 13 A (13)

Cervical 7 6 F (3), K (1), N (2)
Renal cell 5 5 H (4), Q (1)
Oesophageal 2 2 E (2)
Gastric 2 1 N (1)
Hepatocellular 4 2 I (1), N (1)
Non-small-cell lung 3 3 R (2), Q (1)
Melanoma 2 2 I (1), R (1)
Primary rectal 2 2 I (2)
Primary endometrial 3 3 K (1), Q (2)
Mesothelioma 1 1 K (1)
Primary prostate 2 2 B (2)
Transitional cell

bladder
1 1 I (1)

Primary pancreatic 1 1 K (1)
Total 342 230 230

Protocol reference corresponds to Table 1.
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do vary between the tumour types, there is insufficient separation be-
tween the posterior densities to be able to predict the Ktrans value of a
tumour given the tumour type, except to say that the median Ktrans for
gliomas are below 0.05 min−1 with 80% probability, and median Ktrans

measurements for the remaining tumour types are between 0.05 and
0.4 min−1 with 80% probability.

Because of the possibility that differences in sampling periods (be-
tween 6 and 14 min) could bias Ktrans, we investigated the relationship
across all tumours (excluding gliomas) between Ktrans and sampling
period. Essentially no correlation was found (R2 = 0.00073).

Examples of a series of anatomical MRI images are shown in Fig. 4.
These have superimposed Ktrans parametric maps representing slices
from tumours with low, median and high median Ktrans values (left,
middle and right columns respectively) and for the four different pri-
mary tumour types: glioma, colorectal, prostate and ovarian. The
images illustrate the variability of the transfer constant values within
tumour types as well as across tumour types, and highlight the wide
range of measurements that can be expected in a patient population.

3.2. Variation within patients

When more than one tumour was present in a patient, the minimum
and maximum value of the median transfer constant Ktrans was obtained
for each of those patients and shown in Fig. 5.

3.3. Variation within tumours

Imaging techniques can be used to assess the heterogeneity of
contrast agent uptake across an individual tumour lesion [29]. Fig. 6(a)
demonstrates that tumours with high median Ktrans values tend to have
a wider range of transfer constant values, which corresponds to higher
intra-tumoural heterogeneity. In our data, tumours of primary type
colorectal, with high median Ktrans and high interquartile range, are
well separated from those of primary type gliomas with low median

Fig. 2. Mean and range of DCE-MRI parameter values by tumour type for (a) median
Ktrans and (b) mean vp (log scale). The number of observations is indicated for each tu-
mour type.

Fig. 3. Posterior density of Ktrans for primary tumour types glioblastoma multiforme,
metastatic colorectal cancer, ovarian, primary endometrial cancer, prostate cancer me-
tastatic to bone and renal cell cancer. The geometric mean of the non-glioma tumours is
indicated by the dashed line.

Fig. 4. Example Ktrans maps overlaid on patient anatomy for patients with median Ktrans

measurements near the (left) lower quartile, (centre) median and (right) upper quartile of
the distribution for the primary tumour type. From top to bottom the primary tumour
types were: high grade glioma; multiple liver metastases from primary colorectal ade-
nocarcinoma; bone metastases from primary prostatic adenocarcinoma; and stage III/IV
ovarian adenocarcinoma with lesions in (left) para-aortic lymph node, (centre) central
pelvic mass and (right) a sub-serosal liver metastasis. Where multiple tumours are pre-
sent, an arrow indicates the tumour with the lower quartile, median or upper quartile
measurement.
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Ktrans and interquartile range, indicating that the former tumour type
presents higher transfer constants (as shown also in Fig. 3) with a wider
range than the latter tumour type. Although the dispersion between
gliomas and other primary tumour types is clear, there is significant
overlap in the scatterplot between the other primary tumour types in a
similar manner to that of the median Ktrans values by primary tumour
measurements (Fig. 2(a)).

Variation in Ktrans between (and, by implication of Fig. 6(a), within)
tumours was not related to tumour size (Fig. 6(b)). This plot shows that,
while there was a large range in the volumes of most of the tumour
types, there was no association between the measured volume and the
median Ktrans measurement for those parts of tumour which demon-
strate contrast agent delivery.

4. Discussion

The motivation for this study work arose from current challenges in
anticancer drug development. It is often difficult for the drug developer
to choose the tumour type(s) in which to undertake trials and seek
regulatory approval. For drugs where the Enhanced Permeability and
Retention effect is thought to be important, it would be very valuable to
know that certain tumour types have a consistently and unusually high
Ktrans, so that the drug developer could initiate clinical trials specifically
in those cancers. This critical information is currently missing from the
imaging literature and makes personalised medicines and healthcare
more challenging, particularly for novel drug delivery products and
nanomedicines. The study was based on a convenience sample of pa-
tients having tumours from different tissues of origin with a range of
different histopathological characteristics (e.g., complex and simple
matrix organisation, fibroblast content, vascular localisation and den-
sity, etc.), which will affect drug accumulation and retention [7,30–32].
Our convenience set was heavily weighted to local Phase I drug trial
populations: precisely the setting in which investigational drugs are
likely to be initially evaluated. A major feature of the study is that all
230 patients' data were analysed anew with the same software, algo-
rithms and workflow, and it is this which made possible a direct com-
parison between diverse tumour types. Our inclusion criteria were de-
signed to avoid extreme variability between the original data
acquisition protocols. However, there were minor differences between
acquisition protocols among the 18 included studies, and since most of
those studies were restricted to a single tumour type, any attempt to

account for the variability in data acquisition would be confounded by
tumour type.

Our hypothesis was that different tumour types exhibit different
Ktrans reflecting different permeability and perfusion. The gliomas were
found to constitute a distinct population, clearly separated from other
tumour types. The expectation from the posterior density analysis was
that 80% of gliomas would show a Ktrans value of< 0.05 min−1, and
80% of the remaining tumour types expected to show Ktrans values
between 0.05 min−1 and 0.4 min−1. Remarkably, after gliomas have
been removed from the set, the data provide little or no support for our
initial hypothesis. Tumour-to-tumour variability in uptake character-
istics was high, and this was plainly evident even for tumour types
where as few as two patients were available. Considerable inter-lesion
variability was observed within individual patients. Collectively the
data imply that, where endothelial permeability affects exposure, se-
lecting patients for treatment based simply on tumour type will not
enrich the population for positive therapeutic response. Rather, a pa-
tient-specific selection strategy should be adopted, identifying in-
dividual lesions with different perfusion and permeability character-
istics.

Different tumours within the same patient can have very different
permeability and perfusion characteristics. The patients in this sample
with multiple tumours had mainly prostate, ovarian and metastatic
colorectal cancer. The range of median Ktrans values tended to increase
with the number of tumours. Moreover, many patients showed an intra-
patient range similar to the inter-patient range of Ktrans values [29].
This suggests that effective drug delivery for patients with multiple
tumours may be influenced by the characteristics of the individual tu-
mours in the patient, and that different lesions within a single patient
may respond differently.

Average Ktrans within an individual tumour correlated with the
range of Ktrans values measured across the tumour, suggesting an in-
creased intratumoural heterogeneity for tumours with high Ktrans for
those areas of the tumour with contrast agent delivery. A high average
Ktrans does not exclude the possibility of low perfusion/permeability
regions. Heterogeneity is a key feature of tumour biology [33] and is
highly relevant to drug delivery and tumour pharmacokinetics [34,35];
for example, if high vascular heterogeneity is due to local ‘hotspots’
then the drug may not achieve a uniform distribution across the tumour
[36]. This could mean either limited drug exposure or the potential for
a depot effect for a drug that diffuses easily throughout the tumour.

Fig. 5. Intrapatient variability of Ktrans measurements in
terms of the minimum and maximum median Ktrans values
observed for each patient ordered by number of tumours
and the range of observations. The number of tumours per
patient and tumour type are indicated.
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Heterogeneity was lesion dependent and tumour volume was not pre-
dictive of Ktrans. This further highlights the need to characterise each
individual target lesion prospectively in clinical trials.

A limitation of this study is that the contrast agents used were
smaller than the drugs and formulations thought to benefit most from
enhanced permeability and retention. While convection and enhanced
permeability [37,38] to larger molecules or nanoformulations should be
reflected in enhanced permeability to contrast agents of< 1 kDa such
as gadodiamide or gadoterate, the converse may not be true. Although
large-molecule contrast agents such as ferucarbotran or gadomelitol
have been used in man, they are now unavailable in most jurisdictions
and are therefore unsuitable for a personalised medicine approach.

There is precedent in using an imaging biomarker to provide a
companion diagnostic of drug access to tumour. [90Y]-ibritumomab
tiuxetan (Zevalin) [39] and [131I]-tositumomab (Bexxar) [40] were
each approved by FDA with a predictive SPECT biomarker, while the
investigational anticancer agents MM-302 [41] and MM-398 [42] are
reportedly in development respectively with PET-based and MRI-based
companion diagnostics. Although lack of standardisation of DCE-MRI

biomarkers would previously have precluded their use as companion
diagnostics, recent initiatives [43,44] now provide a platform for
standardisation.

In conclusion, our study shows that for many important tumour
types, perfusion and permeability are idiopathic parameters which
cannot be predicted but must be measured prospectively in every region
of every lesion in every patient.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.mri.2017.11.008.
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