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ABSTRACT 

Purpose: 

CDK12 aberrations have been reported as a biomarker of response to immunotherapy for 

metastatic castration-resistant prostate cancer (mCRPC). Herein, we characterize CDK12-

mutated mCRPC, presenting clinical, genomic, and tumor-infiltrating lymphocyte data. 

Experimental Design: 

Patients with mCRPC consented to the molecular analyses of diagnostic and metastatic 

CRPC biopsies. Genomic analyses involved targeted next generation (MiSeqTM; Illumina) 

and exome sequencing (NovaSeqTM; Illumina). Tumor-infiltrating lymphocytes (TIL) were 

assessed by validated immunocytochemistry coupled with deep learning-based artificial 

intelligence analyses including multiplex immunofluorescence assays for CD4, CD8, and 

FOXP3 evaluating TIL subsets. The control group comprised a randomly selected mCRPC 

cohort with sequencing and clinical data available. 

Results: 

Biopsies from 913 patients underwent targeted sequencing between Feb/15 and Oct/19. 

Forty-three patients (4.7%) had tumors with CDK12 alterations. CDK12 altered cancers 

had distinctive features, with some revealing high chromosomal break numbers in exome 

sequencing. Biallelic CDK12-aberrant mCRPC had shorter overall survival from diagnosis 

than controls (5.1 years [95% CI: 4.0, 7.9] vs 6.4 years [95% CI: 5.7, 7.8]; HR=1.65 [95% 

CI: 1.07, 2.53]; P=0.02). Median intratumoral CD3+ cell density was higher in CDK12 

cancers, although this was not statistically significant (203.7 versus 86.7 cells/mm2, 

P=0.07). This infiltrate primarily comprised CD4+FOXP3- cells (50.5 versus 6.2 cells/mm2, 

P<0.0001), where high counts tended to be associated with worse survival from diagnosis 

(HR=1.64; 95% CI: [0.95, 2.84], P=0.077) in the overall population. 
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Conclusions:  

CDK12-altered mCRPCs have worse prognosis with these tumors surprisingly being 

primarily enriched for CD4+FOXP3- cells that seem to associate with worse outcome and 

may be immunosuppressive.    
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INTRODUCTION 

Cyclin-dependent kinase 12 (CDK12) is a transcription-associated CDK that forms a 

heterodimeric complex with Cyclin K (CycK) implicated in DNA repair (DDR), splicing, and 

differentiation [1-6]. CDK12 maps on chromosome 17q12 and generates two mRNA splice 

isoforms, differing only in the last exon with both having a central kinase region flanked by 

large N- and C-terminal extensions with arginine-serine-rich (RS) domains [3]. Recent 

genomic analyses of advanced prostate cancer (PCa) [7-11] and metastatic castration-

resistant prostate cancer (mCRPC) [11-15] have identified recurrent, deleterious, CDK12 

alterations in 2-4% of primary PCa [9,11] and in 4.7-11% of mCRPC [11, 14, 15]. 

Integrative genomic analysis of 360 mCRPC samples has demonstrated that CDK12-

mutated PCa is genetically, transcriptionally, and phenotypically distinct from tumors with 

homologous recombination repair defects (HRD) and mismatch repair deficiency (MMRd) 

[16],  being reported to have innumerable tandem duplications (TD) and genomic 

rearrangements, high neoantigen burdens, and increased tumor-infiltrating lymphocytes 

(TILs) [16]. This is postulated to confer a vulnerability to immunotherapy similar to cancers 

with MMRd [16,17], with this genomic profile probably also acquiring immune cell evasive 

strategies to allow tumor growth [18-20].   

 

Understanding the clinical, molecular, and immune characteristics of these tumors is 

critically important to the development of successful clinical therapeutic strategies for this 

disease sub-class [20-22]. Herein, we characterize CDK12 mutated PCa, with both bi-

allelic and mono-allelic aberrations, describing their genomic, clinical, histopathological, 

and immune infiltrate features. 
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MATERIALS AND METHODS 

Patient population 

This retrospective study included patients with metastatic PCa who consented for 

molecular characterization of their PCa biopsies at The Institute of Cancer Research 

(London, UK). Consent was obtained either within a Royal Marsden Hospital (RMH) 

specific protocol (Ethics Review Committee reference no. 04/Q0801/60) and/or the phase 

II trial TOPARP-B (ClinicalTrials.gov, NCT01682772). These studies were conducted in 

accordance with the Declaration oh Helsinki. Both studies allowed acquisition, whenever 

possible, of a metastatic CRPC biopsy and the diagnostic hormone-sensitive prostate 

cancer (HSPC) biopsy.  

Demographic and clinical data for each patient were collected from the hospital electronic 

patient record or the clinical trial database. Clinical outcomes included overall survival 

(OS) from diagnosis, OS from castration resistance, and time to CRPC, respectively 

defined as the time between diagnosis of PCa and death or last follow up, between 

castration resistance and death or last follow up, and between diagnosis and castration 

resistance. Furthermore, time-on-treatment with abiraterone/enzalutamide (whichever 

came first) was investigated separately before and after treatment with docetaxel. 

 

Tumor Tissue samples 

Formalin-fixed-paraffin-embedded (FFPE) PCa tissue was obtained from prostate needle 

biopsies, transurethral resections of the prostate, prostatectomies, or PCa metastases 

within bone (bone marrow trephine), lymph node, soft tissue, or visceral metastases 

(needle biopsies). A subset of patients had matching, same-patient, primary tissue and 

CRPC biopsies available. All tissue blocks were freshly sectioned, tumor content was 

confirmed by examination of H&E stained samples sections by a trained pathologist (B.G.).  
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Next-Generation Sequencing (NGS) 

Targeted NGS was performed on diagnostic and metastatic PCa samples. DNA was 

extracted from FFPE blocks positive for tumor content using the FFPE Tissue DNA kit 

(Qiagen) and quantified with the Quant-iT high-sensitivity PicoGreen double-stranded DNA 

Assay Kit (Invitrogen). The Illumina FFPE QC kit (WG-321-1001) was used for DNA quality 

control tests according to the manufacturer’s protocol. Libraries for next generation 

targeted sequencing were constructed from 40ng of DNA using a customized panel 

(Generead DNAseq Mix-n-Match Panel v2; Qiagen) covering 6025 amplicons across 113 

genes. Libraries were run using the MiSeq Sequencer (Illumina). FASTQ files were 

generated using the Illumina MiSeq Reporter v2.5.1.3. Sequence alignment and mutation 

calling were performed using BWA tools and the GATK variant annotator by the Qiagen 

GeneRead Targeted Exon Enrichment Panel Data Analysis Web Portal. Biallelic 

alterations in CDK12 were prospectively defined as (a) a deleterious mutation with loss of 

heterozygosity (LOH) at the wild-type allele, (b) copy number loss (homozygous deletion), 

(c) ≥2 CDK12 deleterious genomic alterations in a given sample. Mutations with >5% allele 

frequency were reported. 

 

Exome sequencing and Copy number break analysis 

Libraries for whole exome sequencing (WES) were performed using Kapa Hyper Plus 

Library Prep Kits and the Agilent SureSelectXT V6 target enrichment kit. Paired-end 

sequencing was performed using the NovaSeq 6000 S2 flow cell (2x100 cycles, Illumina). 

FASTQ files were generated from the sequencer's output using Illumina bcl2fastq2 

software (v.2.17.1.14, Illumina) with the default chastity filter to select sequence reads for 

subsequent analyses. All reads were aligned to the human genome reference sequence 
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(GRCh37-hg19) using the BWA-MEM algorithm (v. 0.7.12). Picard tools (v.2.8.2) were 

used to mark PCR duplicates and to calculate sequencing metrics for quality control 

check. The Genome Analysis Toolkit (GATK, v. 3.5-0) was applied to realign local indels, 

recalibrate base scores, and identify point mutations, small insertions and deletions. 

Somatic point mutations and indels were called using MuTect2 by comparing tumor DNA 

to germline DNA control. Copy-number estimation was obtained through a modified 

ASCAT2 package. CNA segmentation file was used to define the CNA breakpoint when 

there is a change of segment and/or CNA. 

Immunohistochemistry (IHC) 

Three-m thick sections from FFPE tissue blocks were obtained using a microtome, 

floated in a water bath, and mounted in Superfrost slides. Slides were baked and dried 

overnight at 37°C. CD3 IHC was performed using a rabbit anti-CD3 antibody (#A0452; 

polyclonal; DAKO; Agilent Technologies: Santa Clara, California, United States) and 

performed using an automated staining platform (Bond-RX, Leica Microsystems). Antigen 

retrieval was achieved by using Bond Epitope Retrieval Solution 1 (#AR9961, Leica 

Biosystems) for 30 minutes prior to incubation with anti-CD3 antibody (1:150 dilution) for 

15 minutes at room temperature. The reaction was visualized using the Bond Polymer 

refine kit (#DS9800, Leica Biosystems). Antibody specificity was confirmed in human 

appendix and prostate tissues (positive controls) and LNCaP cell pellets (negative control). 

PTEN and ATM protein expression studies were conducted as previously described 

[23,24]. 

Nuclear staining (and cytoplasmic staining for PTEN) was semi-quantitatively assessed 

using an H-score (3 x % of strongly staining cells and 2 x the % of moderately staining 

cells, and the % of weakly staining cells, for a range of 0 to 300). Cases were considered 

as PTEN or ATM loss if they had an H-score≤10. 
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Slide digitization and computer assisted image analysis for IHC 

CD3 IHC stained slides were scanned at high resolution (200x) using the ZEISS Axio 

Scan.Z1 digital slide scanner (Carl Zeiss AG). The digitized slides were then analyzed with 

the HALOTM image analysis suite (Indica Labs, New Mexico, USA). A supervised machine-

learning algorithm was trained to recognize prostate cancer foci and surrounding stroma. 

Color deconvolution for DAB and hematoxylin stains was performed, cell recognition and 

nuclear segmentation was optimized for hematoxylin stain, and recognition of CD3 staining 

was optimized for the membranous and cytoplasmic compartments. The analysis 

algorithm was adjusted to provide optical density data for intensity of CD3 membranous 

and cytoplasmic staining in the automatically annotated tumor and stromal regions. A 

threshold was set to categorize each detected cell into CD3 positive or negative. The 

number of intratumoral and stromal CD3 positive cells was then divided by the total area of 

prostate tumor and stroma, respectively, providing intratumoral and stromal CD3 density 

values (CD3+ per mm²) for each sample. Each stained sample was also visually assessed 

and assigned an intratumoral and stromal chronic inflammation score, using a modified 

version of the histopathological classification system developed by Nickel et al [25]. 

 

Multiplex Immunofluorescence (IF) Assay 

Intratumoral TILs were determined by IF for T cell subpopulations as previously described 

[26]. Briefly, multiplex IF staining was performed on 3μm FFPE tissue sections using an 

automated staining platform (BOND RX, Leica Microsystems). Antigen retrieval was 

achieved using BOND Epitope Retrieval Solution 2 (#AR9640, Leica Microsystems). 

Endogenous peroxidase was inactivated in 3% H2O2. Tissue sections were incubated with 

antibodies against CD4 (#ab133616, clone EPR6855, 1:100, Abcam) and CD8 (#M7103, 

clone C8/144B, 1:200, Dako, Agilent Technologies), and detected with AlexaFluor 555-
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conjugated IgG (H+L) goat anti-rabbit (#A21429, Invitrogen) and AlexaFluor 488-

conjugated IgG (H+L) goat anti-mouse (#A-11029, Invitrogen) secondary antibodies, 

respectively. Endogenous biotin was blocked with Avidin/Biotin blocking kit according to 

the manufacturer’s protocol (#ab64212, Abcam). Next, tissue sections were incubated with 

antibodies against FOXP3 conjugated to biotin (#13-4777-82, clone 236A/E7, 1:100, 

eBioscience) and pan-cytokeratin (PanCK) conjugated to AlexaFluor 647 (#4528S, clone 

C11, 1:100, Cell Signaling Technology), followed by streptavidin peroxidase (HRP) 

(#K5001, Dako, Agilent Technologies) and TSA Coumarin detection system 

(#NEL703001KT, Akoya Biosciences). Nuclei were counterstained with DRAQ 7 

(#DR71000, Biostatus) and tissue sections mounted with ProLong Gold antifade reagent 

(#P36930, Molecular Probes).  

Slides were scanned using the Vectra Automated Multispectral Imaging System (Akoya 

Biosciences) and analysed using inForm v2.2.1 (Akoya Biosciences). Tissue and nuclear 

cell segmentation were performed using previously described methods (1). TIL phenotype 

determination was based on staining for CD8, CD4, and FOXP3 and were separated into 

bins as follows: CD8+, CD4+FOXP3+, and CD4+FOXP3- T cells. Quantification of the 

immune cell densities are presented as number of cells per mm2.  

 

 

Statistical analysis 

In this analysis, the prevalence of CDK12 aberrations observed in our cohort was reported. 

In a subset of patients with available clinical (n=36, 28 biallelic, 8 monoallelic) and TIL data 

(n=24, 17 biallelic, 7 monoallelic), tumors with CDK12 aberrations were compared to a 

control group that comprised a random selection of patients concurrently sequenced at our 

institution without such aberrations nor mismatch-repair alterations. Comparison of 

lymphocyte infiltration between CDK12 biallelic, monoallelic cases, and controls was 
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performed using a t-test after density per mm2 was log10 transformed, whereas Wilcoxon 

rank sum test assessed differences between diagnostic and mCRPC samples in CDK12 

cases. Wilcoxon rank sum test was also used for copy number breaks (CNBs) comparison 

between CDK12 biallelic, monoallelic cases, and controls. Kaplan-Meier estimator and 

Cox regression models were used for time-to-event analyses comparing controls and 

biallelic CDK12 cases only. In a sensitivity analysis, all time-to-event analyses were 

repeated with mono- and biallelic CDK12 cases being pooled into one group and 

compared to the control group. The significance level was set to 5% for all analyses and 

there was no multiplicity adjustment made as to the exploratory nature of this work. 

Analyses were carried out with R version 3.6.2. 

 

RESULTS 

CDK12 altered prostate cancers  

Between March 2015 and October 2019, 913 PCa patients were analyzed by targeted 

next-generation-sequencing after passing quality control. All patients had a histological 

diagnosis of PCa and either diagnostic tissue and/or a mCRPC biopsy sample available 

for analysis; the patient characteristics and their treatment histories are described in Table 

1 and Supplementary Table 1. We identified 43 patients with potentially pathogenic 

alterations of CDK12 (4.7%), of which 31 (3.4%) had biallelic genomic aberrations. One 

tumor had a concomitant MSH6 somatic mutation with associated MSH6 loss of 

expression on IHC and was not included in subsequent analyses being deemed to be an 

MMRd PCa. The remaining 11 patients were considered to have monoallelic CDK12 

alterations (Supplementary Figure 1).   
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For the 31 biallelic cases identified, a total of 34 diagnostic and metastatic PCa samples 

were sequenced by NGS; three patients had matched primary and metastatic samples 

available for analyses, which were concordant with the presence of the same CDK12 

genomic alterations. The biallelic group comprised 11 missense alterations, 13 nonsense 

alterations, 32 frameshift mutations or indels, and two splice site mutations. We discovered 

a CDK12 deep deletion on copy number analysis in one case (Figure 1A; Supplementary 

Table 2). The majority of these aberrations were truncating mutations, predominantly 

located in the region between the amino-terminus and the kinase domain or within the 

kinase domain, whereas the missense mutations were predominantly clustered in the 

CDK12 kinase domain. Two patients had three CDK12 aberrations, including V463G, one 

of the missense mutations not located in the kinase domain (lollipop plot shown in Figure 

1A). 

 

Beyond the MMRd cancer with a concomitant CDK12 deleterious alteration, we identified 

multiple PCas with biallelic CDK12 deleterious alterations contemporaneously harboring 

other DNA repair defects (Figure 1B). The PCa with CDK12 deep deletion also had an 

ATM alteration and ATM loss by IHC. Other samples presented with pathogenic PALB2 

alteration (I265Tfs*12 in diagnostic and CRPC biopsies), BRCA2 (S744*) and CHEK2 

(L464fs*16) mutations, FANCA deep deletion, and FANCL frame-shift mutation 

(T372Ifs*2). Other alterations in CDK12 biallelic tumors included PTEN mutations, the 

androgen receptor (AR) L702H point mutation, PIK3CA activating mutation (E545K) and 

SPOP alterations (Supplementary Table 2). We had IHC data for PTEN and ATM 

available respectively for 16 and 17 of the 31 CDK12 biallelic cases. Interestingly, none of 

the cancers with biallelic CDK12 alterations had PTEN loss by IHC; conversely, 4 of the 

biallelic CDK12 tumors (4/17, 23.5%) had ATM loss by IHC. 

 

Research. 
on October 12, 2020. © 2020 American Association for Cancerclincancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on September 28, 2020; DOI: 10.1158/1078-0432.CCR-20-2371 

http://clincancerres.aacrjournals.org/


Clinical outcomes of PCa with CDK12 alterations 

Clinical data were available for 36 of the 42 patients with CDK12 aberrations (28 biallelic, 8 

monoallelic) and were compared to the data of 144 controls. Patient characteristics and 

treatment histories are described in Table 1 and Supplementary Table 1. The two groups 

were balanced for age, staging, and presence of metastatic disease as well as for PSA 

levels and initial treatment received. However, CDK12 tumors had higher Gleason scores 

at diagnosis (P<0.001). Biallelic CDK12 cases experienced worse survival than the control 

group with a median OS from diagnosis of 6.4 years (95% CI: [5.7, 7.8]) for the control 

group and 5.1 years (95% CI: [4.0, 7.9]) for the biallelic CDK12 group (HR=1.65; 95% CI: 

[1.07, 2.53]; P=0.02). Similar results were obtained when monoallelic and biallelic cases 

were combined into one group and compared to controls (HR=1.50; 95% CI: [1.02, 2.20]; 

P=0.04) (Figures 2A and Figure 2B) and when OS was estimated from the date of CRPC 

(Figure 2C and 2D). However, in the multivariable analysis (MVA), CDK12 mutational 

status was no longer independently prognostic (HR=0.94, CI: [0.6, 1.6]; P=0.81) 

(Supplementary Table 3). Median time to from diagnosis CRPC was not different 

between biallelic and control cohorts being 1.9 years (95% CI: [1.4, 2.6]) in the control 

group and 2.2 years (95% CI: [1.5, 2.7]) in the biallelic CDK12 group (HR=1.25; 95% CI: 

[0.82, 1.91]; P=0.3) (Supplementary Figure 2A). Almost all patients had received 

docetaxel chemotherapy, and abiraterone or enzalutamide; 61% of patients in the control 

group received cabazitaxel, but only 36% in the combined mono/biallelic CDK12 group 

(Supplementary Table 1). There was no statistically significant difference in time on 

abiraterone/enzalutamide between the groups with median duration of treatment in the 

pre-docetaxel setting being 7.6 months (95% CI: [6.0, 9.3]) in the control group and 8.2 

months (95% CI: [4.7, NA]) in the biallelic-CDK12 group (HR=1.07; 95% CI: [0.58, 2.11]; 

P=0.75) with similar findings in the post-docetaxel setting (Supplementary Figure 2B and 

Research. 
on October 12, 2020. © 2020 American Association for Cancerclincancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on September 28, 2020; DOI: 10.1158/1078-0432.CCR-20-2371 

http://clincancerres.aacrjournals.org/


2C) and when monoallelic and biallelic cases were combined into one group (data not 

shown).  

 

Exome Sequencing data 

Overall, out of the 913 patients with PCa evaluated by targeted NGS, 211 (diagnostic=93; 

CRPC=118) had samples suitable for exome sequencing including 26 samples harboring 

CDK12 genomic aberrations, 23 of which were biallelic and three monoallelic. Although 

73% of the CDK12-aberrant cases (19/26) had CNB values higher than the median, which 

was 513 [Q1:405.5, Q3: 617.5], only 10 of the 26 (38.5%) CDK12-aberrant cases were 

above the CNB upper quartile (Figure 3A). In general, however, CDK12 tumors had 

significantly higher CNBs than the controls (P=0.01) (Figure 3B).  

 

Tumor-infiltrating-lymphocyte (TIL) analyses 

For the analysis of intratumor CD3+ TIL density (D-TIL), there were 122 samples for 

controls as well as 17 samples with biallelic CDK12 alterations, and 7 monoallelic CDK12 

alteration cases (tot n=146) (Figures 4A and 4B). Median intratumoral total CD3+ cell 

density was higher in CDK12 biallelic loss samples than in controls, although this was not 

statistically significant (203.7 versus 86.7 CD3+/mm2, P=0.073) (Figure 4B). Two of the 

CDK12 biallelic loss PCa cases had more than 1200 CD3+ cells per mm2, which is above 

the 90% centile (Figure 4A); however, multiple samples with biallelic CDK12 aberrations 

had CD3+ counts that were below the median. D-TIL was not statistically different between 

diagnostic and mCRPC samples for all CDK12 cases (Supplementary Figure 3). 

Interestingly, there was no association found in our analyses between copy number breaks 

and TIL density, neither in diagnostic nor in CRPC samples. The samples with the highest 
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CD3+ density also had the highest CD4+and CD8+ infiltrates. The two samples with the 

highest CD3+ density had modest CNB scores of 613 and 600 (just above the median of 

513). 

 

 

We next quantified D-TILs, based on T-cell subtypes (Figures 5A and 5B; 

Supplementary Figure 4 A-C); tissue sites included prostate tissue (n=9), lymph node 

biopsies (n=31), bone (n=10), liver (n=1) and soft tissue metastases (n=1) 

(Supplementary Table 4). In the overall population, total CD3+ cell numbers were 

correlated with CD4+FOXP3- (R=0.51; P<0.001) and CD8+ cell numbers (R=0.45; 

P<0.001) (Figure 5A). Moreover, our analyses revealed that CDK12 cancers were 

significantly enriched for CD4+FOXP3- cells (median CD4+FOXP3- /mm2 50.5 in CDK12 

biallelic cases versus 6.2 in controls, P<0.001), with a higher CD4/CD8 ratio (r) compared 

to controls (CD4/CD8 r=1.22 for CDK12 biallelic cases versus 0.4 for controls) without, 

significantly higher CD8+ or CD4+FOXP3+ (Figure 5B). Higher CD4+FOXP3- infiltration 

appeared to be associated with shorter OS (HR=1.64; 95% CI: [0.95, 2.84], P=0.077), with 

similar trends for CD4+FOXP3+ and CD8+ cells (respectively, HR=1.14, 95% CI: [0.73, 

1.76], P=0.6 HR=1.42, 95% CI: [0.94, 2.16], P=0.0967). 

 

DISCUSSION 

Deleterious CDK12 mutations have been reported in multiple tumor types, but are not 

common although they may have especial clinical importance in view of their 

immunogenomic properties.  A subset of mCRPC has deleterious CDK12 aberrations 

[16,27,28], resulting in characteristic genomic profiles with innumerable focal tandem 

duplications, gene-fusions, and neoantigens [16,27]. These PCa CDK12 alterations, like 
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MMRd, have been postulated to represent a predictive biomarker of response to 

immunotherapy [17], making their study of huge interest [29,30]. Our analysis is arguably 

one of the largest integrated efforts interrogating their genomic, pathologic, and clinical 

characteristics and also investigating their TIL landscape.  

We confirm that approximately 5% of mCRPC have CDK12 deleterious aberrations 

[11,16], although fewer (3.4%) are definitely biallelic with the majority being frameshift or 

nonsense mutations and a small minority single nucleotide aberrations of the kinase 

domain with a high likelihood of impact on protein function. Interestingly, these alterations 

are invariably present at diagnosis in matched same patient HSPC and mCRPC biopsies 

suggesting that they are clonal events. Exome analyses have identified a specific genomic 

pattern of CDK12-aberrant cancers characterized by a high number of copy number 

breaks, and this highly fragmented genome has been shown to be correlated with a 

tandem duplicator phenotype [16]. In our analysis, although high CNBs are characteristic 

of these tumors, not all PCa with biallelic CDK12 alterations had this genomic signature 

indicating that this may not be useful as the sole test to identify this subset. However, in 

keeping with the PROfound olaparib Phase III genomic analyses data we did observe 

concomitant mutations in other DNA repair genes in CDK altered tumors including PALB2, 

BRCA2, FANCA, ATM, MSH6 and in AR, PTEN and PI3K/AKT pathway genes, with 

23.5% of these cancers presenting concomitant ATM loss but no PTEN loss by IHC [31]. 

We also show that PCa with CDK12 biallelic alterations associate with higher Gleason 

scores and shorter survival from diagnosis, although we did not observe any differences in 

outcome on abiraterone/enzalutamide which has been previously reported – maybe due to 

the retrospective nature of our investigation [29,30].  

We also show for the first time that PCa with biallelic CDK12 aberrations are 

predominantly enriched for CD4+FOXP3- cells with these tumors surprisingly not having 
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significantly higher CD4+FOXP3+ or CD8+ TILs compared to controls. Interestingly, 

multiple studies have reported on immunosuppressive CD4+FOXP3- TIL subsets [32,33], 

with some of these cells being reported to express high PD-1 (4PD1hi) and being able to 

inhibit cytotoxic T cell function in a PD-1/PD-L1 dependent fashion as well as limit 

immunotherapy antitumor activity [32]. The data herein suggest that CD4+FOXP3- cells, 

which CDK12-altered PCa seem to be enriched for, might have an immunosuppressive 

role, associating with worse survival and might be relevant to immunotherapy trials as a 

biomarker of interest [30, 34-35].   

We acknowledge that significant limitations of our data include the fact that this was a 

single institution retrospective study, and that, while we screened almost a thousand 

patients, our CDK 12 analyses are based on a relatively small cohort, even though this 

comprises one of the largest studies of mCRPC subjects. Furthermore, we acknowledge 

that more effort is now needed to elucidate why not all PCas with biallelic CDK12 

alterations have the tandem duplication signature, and studies need to evaluate whether 

monoallelic loss can result in any biological relevance perhaps due to haploinsufficiency 

and a gene dose effect. Moreover, further studies to characterize the CD4+FOXP3- TIL 

subset are now crucial to drive therapeutic advances for this subset. 

In conclusion, our data indicate that biallelic CDK12 aberrations in PCa are associated 

with higher Gleason grade and poorer prognosis, and are infiltrated by CD4+FOXP3- T-

lymphocytes that appear to be associated with worse outcome and are likely to be 

immunosuppressive, with this being relevant to immunotherapy approaches.  
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FIGURE LEGENDS 

Figure 1.  

A. Lollipop plot depicting mutations in CDK12 in this prostate cancer cohort with biallelic 

alterations (n=31); missense mutations are depicted in green, frameshift and non-sense 

mutations in black. 

B. OncoPrint figure representing CDK12 mutations for the bi-allelic tumors in hormone 

sensitive prostate cancer (HSPC) and metastatic castration-resistant (mCRPC) samples 

(top figures). 

Middle panel shows concomitant alterations in other DNA repair genes and other relevant 

pathways in prostate cancer, detected on targeted and exome sequencing in diagnostic 

and/or mCRPC samples. Bottom panel depicts the available immunohistochemistry (IHC) 

data for PTEN and ATM on the samples sequenced. PTEN and ATM data were 

respectively available for 16 and 17 samples of the 31 CDK12 biallelic cases.        

Grey boxes indicate sample with no available PTEN or ATM results by IHC, 

Figure 2. Survival curves: 

- A. Kaplan-Meier curves for overall survival from date of diagnosis. CDK12 biallelic mutation 

cases in yellow, controls in blue. 

- B. Kaplan-Meier curves for overall survival from date of diagnosis. CDK12 biallelic and 

monoallelic mutated cases in yellow, controls in blue. 

- C. Kaplan-Meier curves for overall survival from date of castration resistant prostate cancer 

(CRPC) diagnosis. CDK12 biallelic mutated cases in yellow, controls in blue. 

- D. Kaplan-Meier curves for overall survival from date of castration resistant prostate cancer 

(CRPC) diagnosis. CDK12 biallelic and monoallelic mutated cases in yellow, controls in 

blue. 

Figure 3. Genomic analyses: 

- A. Copy number breaks (CNBs) determined from exome sequencing data in n=211 

patients. CDK12 biallelic mutation cases (n=23) in red, monoallelic cases (n=3) in yellow, 

and cancers with no CDK12 alterations (controls) in blue. The black line indicates the 

median number of CNBs (median =513) in the whole cohort.  

- B. Violin plot depicting CNB numbers in CDK12 mutated in red and controls in blue. 

Figure 4. Tumor infiltrating lymphocytes (TILs) analyses:   

- A. Intratumoral CD3+ TILs per mm2. Bar Chart depicting intratumoral CD3+/mm2 density (y-

axis) in CDK12 biallelic cases in red, monoallelic cases in yellow, and controls in blue.  

- B. Box and Whisker plot of log10-transformed intratumoral CD3+ cell density per mm2 

depicting CDK12 biallelic in red, monoallelic cases in yellow, and control cases in blue. 

Figure 5. Tumor infiltrating lymphocyte (TIL) subset analyses:  

- A. i) Scatter plots depicting associations between log-transformed CD3+ cells/mm2 TILs and 

CD4+FOXP3- cells/mm2, ii) CD3+ cells/mm2 and CD8+cells/mm2, as well as iii) CD3+ 

cells/mm2 and CD4+FOXP3+cells/mm2.   

- B. Box and whisker plots representing intratumoral infiltrate density as log10-transformed 

CD4+FOXP3- cells/mm2 (i), CD8+cells/mm2 (ii), CD4+ FOXP3+cells/mm2 (iii) in CDK12 
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biallelic (red), monoallelic (yellow), and control cases (blue); iv) Tumor CD4+FOXP3-/ CD8+ 

ratio between  biallelic cases (red) and controls (blue). 
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TABLE LEGENDS 

Table 1. Patients Characteristics.  

IQR= interquartile range; N= presence of nodal disease; M= presence of metastatic disease; PSA= 

prostate specific antigen. 

1= Kruskal-Wallis test . 2= Fisher Exact test. 
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Figure 1 A 

Figure 1 B 
Diagnostic HSPC 
mCRPC 
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Figure 2: Kaplan-Meier Curves 
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Figure 3: Chromosomal breaks and CDK12 alterations from exome NGS 
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Figure 4: Intratumoral CD3+ tumour-infiltrating lymphocytes (TIL) analyses  
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Figure 5: TIL subtypes analyses 
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Table 1: Patients Characteristics 
 

  Overall control monoallelic biallelic p 

n 180 144 8 28   

Age at diagnosis (median [IQR]) 61.0 [56.0, 64.2] 61.0 [55.8, 64.0] 59.0 [55.0, 63.5] 62.5 [60.0, 65.0] 0.4011 

T group (%)         0.2812 

T1 2 ( 1.1) 1 ( 0.7) 1 (12.5) 0 ( 0.0)   

T2 20 (11.1) 18 (12.5) 0 ( 0.0) 2 ( 7.1)   

T3 76 (42.2) 57 (39.6) 4 (50.0) 15 ( 53.6)   

T4 34 (18.9) 26 (18.1) 2 (25.0) 6 ( 21.4)   

TX 48 (26.7) 42 (29.2) 1 (12.5) 5 ( 17.9)   

T3/4 = Yes (%) 110 (83.3) 83 (81.4) 6 (85.7) 21 ( 91.3) 0.6232 

N (%)         0.1972 

N0 42 (36.8) 28 (33.3) 5 (83.3) 9 ( 37.5)   

N1 65 (57.0) 51 (60.7) 1 (16.7) 13 ( 54.2)   

N2 7 ( 6.1) 5 ( 6.0) 0 ( 0.0) 2 ( 8.3)   

N1/2  = Yes (%) 72 (63.2) 56 (66.7) 1 (16.7) 15 ( 62.5) 0.0592 

M = M1 (%) 96 (56.5) 76 (56.3) 2 (28.6) 18 ( 64.3) 0.2312 

Total Gleason score (G) (median 

[IQR]) 

9.0 [7.0, 9.0] 8.0 [7.0, 9.0] 9.0 [7.8, 9.0] 9.0 [9.0, 9.0] <0.0011 

G≤7vs G>8 = Yes (%) 117 (72.2) 84 (66.1) 6 (75.0) 27 (100.0) <0.0012 

PSA at diagnosis (median [IQR]) 63.0 [15.4, 176.1] 53.5 [10.9, 162.0] 106.0 [34.5, 137.0] 72.0 [25.5, 229.2] 0.4491 

Prostatectomy Y/N = Yes (%) 22 (12.2) 18 (12.5) 2 (25.0) 2 ( 7.1) 0.3182 

Radiotherapy Y/N = Yes (%) 67 (37.2) 57 (39.6) 2 (25.0) 8 ( 28.6) 0.4502 
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